Worksheet No. 3
Advanced Mathematics I

Exercise 11:
(a) Show that the lines
\[G : x(t) = (1, 2, 5)^\top + t(-1, 1, 2)^\top, \quad t \in \mathbb{R} \] and
\[H : y(s) = (3, -1, 2)^\top + s(1, 1, 0)^\top, \quad s \in \mathbb{R} \]
are skew, i.e. are not parallel and have no common point.

(b) Determine the equation of the plane that is parallel to \(G \) and \(H \) and is the same distance from each of them.

Exercise 12: Let \(E := \{x \in \mathbb{R}^3 : x_1 - x_3 = 0\} \) and \(F \) : a plane passing through the points \(A = (4|0|0), \) \(B = (3|0|1), \) \(C = (2|1|0) \) two subsets of \(\mathbb{R}^3. \)

(a) Find the parametric form of the sets \(E \) and \(F. \)

(b) Determine the intersection \(G = E \cap F. \)

(c) Which of the sets \(G, E, F \) is a subspace of \(\mathbb{R}^3? \) Give reason for your answer.

Exercise 13: Solve the following non homogeneous linear systems of equations by using Gaussian Elimination:

(a) \[
\begin{align*}
x + 2y - 3z &= -1 \\
3x - y + 2z &= 7 \\
5x + 3y - 4z &= 2
\end{align*}
\]
(b) \[
\begin{align*}
2x + y - 2z &= 10 \\
3x + 2y + 2z &= 1 \\
4x + 3y - 2z &= 14
\end{align*}
\]
(c) \[
\begin{align*}
x + 2y - 3z &= 6 \\
2x + y + 5z &= -6 \\
2x + y + 2z &= 0
\end{align*}
\]

Exercise 14: Determine all solutions of the linear systems

(a) \[
\begin{align*}
x_1 + 3x_2 &= x_3 + x_4 = 1 \\
2x_1 + x_2 + 16x_3 + x_4 &= 11 \\
-x_1 + 2x_2 + 2x_4 &= 0 \\
x_2 + 3x_3 + x_4 &= 2
\end{align*}
\]

(b) \[
\begin{align*}
(1 + i)x_1 - ix_2 &= 2 + 3i \\
(2 + i)x_1 + (3 - i)x_2 &= 4 + 7i
\end{align*}
\]

Exercise 15: Determine all solutions of the following linear systems of equations:

\[
\begin{align*}
\alpha^2 x + (2\alpha^2 - 4)y + (2\alpha^2 + 1)z &= \alpha - 10 \\
2x + y + 5z &= -6 \\
\alpha^2 x + (2\alpha^2 + 1)y + 2\alpha^2 z &= \alpha + 2
\end{align*}
\]

Due date: Please hand in your homework on Friday, November 23, 11:15.
Exercise T9:
(a) Do the following lines intersect:
\[G_1 : x(\lambda) = (-2, 5, 1)^\top + \lambda(3, -4, 2)^\top, \lambda \in \mathbb{R} \]
and
\[G_2, \text{ which passes through the points with position vectors } (1, 3, -4)^\top, (0, 5, -7)^\top \text{ and } (2, 1, -1)^\top? \]

(b) Determine the line of intersection of the planes
\[E_1 : x(\alpha, \beta) = (2, 0, 0)^\top + \alpha(1, 2, 0)^\top + \beta(0, 4, 1)^\top, \alpha, \beta \in \mathbb{R}, \]
\[E_2, \text{ which contains the points with position vectors } (1, 0, 0)^\top, (3, 0, 1)^\top \text{ and } (1, 2, 3)^\top. \]

Exercise T10: Solve the following non homogeneous linear systems of equations by using Gaussian Elimination:

(a) \[
\begin{align*}
2x + y - 2z &= 10 \\
3x + 2y + 2z &= 1 \\
5x + 4y + 3z &= 4
\end{align*}
\]

(b) \[
\begin{align*}
(1 + 3i)z_1 + (2 + 3i)z_2 &= -12 + 11i \\
(-1 + 2i)z_1 + (1 + 2i)z_2 &= -9 + 6i
\end{align*}
\]

Exercise T11: Determine all solutions of the following linear systems of equations:

(a) \[
\begin{align*}
-3x_1 + x_2 + x_3 &= 3 \\
-2x_1 - 2x_2 + x_3 &= 1 \\
-2x_1 - x_2 + x_3 &= 2
\end{align*}
\]

(b) \[
\begin{align*}
x_1 + 2x_2 + 4x_3 &= 3 \\
4x_1 + 7x_2 + x_3 &= 2 \\
-2x_1 - 3x_2 + 7x_3 &= 4
\end{align*}
\]

(c) \[
\begin{align*}
-5x_1 + 6x_2 + 5x_3 &= 1 \\
5x_1 - 9x_2 - 5x_3 &= 0 \\
2x_1 + 5x_2 - 2x_3 &= 2
\end{align*}
\]

(d) \[
\begin{align*}
4x_1 + 4x_2 - 5x_3 &= -1 \\
4x_1 - 3x_2 - 9x_3 &= 2 \\
-3x_1 - 6x_2 + 2x_3 &= 2 \\
-6x_1 - 7x_2 + 7x_3 &= 2
\end{align*}
\]

Exercise T12: Let \[G : x(s) = (5, 1, -1)^\top + s(4, 0, -3)^\top, s \in \mathbb{R} \text{ a line and } P_\alpha = (0|2|4\alpha), \alpha \in \mathbb{R} \text{ und } Q = (0|2|2). \]

(a) Determine the parameter form of the line \(H_\alpha \) passing through the points \(P_\alpha \) and \(Q \).

(b) Are \(G \) and \(H_\alpha \) subspaces of \(\mathbb{R}^3 \)? Give reason for your answer.