Exercise 6: Let
\[u = \begin{pmatrix} 1 \\ -2 \\ -1 \\ 0 \end{pmatrix}, \quad v = \begin{pmatrix} 2 \\ 0 \\ 3 \\ -1 \end{pmatrix}, \quad w = \begin{pmatrix} -1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \quad z = \begin{pmatrix} 2 \\ 2 \\ 3 \\ -3 \end{pmatrix} \]

be vectors in \(\mathbb{R}^4 \).

(a) Compute the following linear combinations: \(u + v - z \), \(2v - (w - z) \), \(2u - v + 2w \).

(b) Show that the vectors \(u, v, w \) are a basis of the subspace span \{u, v, w\}.

(c) What is the dimension of the subspace span \{u, v, w, z\}?

Exercise 7: Determine all linear combinations of

(a) \(a^{(1)} = (4, 1, 1)^\top \), \(a^{(2)} = (1, 2, 3)^\top \), \(a^{(3)} = (5, 6, 7)^\top \),

(b) \(b^{(1)} = (2, 1, 1)^\top \), \(b^{(2)} = (1, -1, 6)^\top \), \(b^{(3)} = (5, 1, 8)^\top \),

(c) \(c^{(1)} = (5, 1, 4)^\top \), \(c^{(2)} = (4, 1, 3)^\top \), \(c^{(3)} = (-1, 3, -4)^\top \)

which describe \(x = (3, 1, 2)^\top \).

Exercise 8: Consider the plane \(E : 4x_1 + x_3 + 8 = 0 \), the point \(P = (2|1|1) \) and the line \(H : x(\lambda) = (4, 3, -2)^\top + \lambda(3, 1, -1)^\top \), \(\lambda \in \mathbb{R} \).

(a) Determine a line \(G \) through \(P \) that is orthogonal to \(E \).

(b) Determine the distance from \(P \) to \(E \) as well as the point \(Q \) in \(E \) closest to \(P \).

(c) Determine the point at which the line \(H \) intersects \(E \) and the point \(R \) on \(H \), that is closest to \(P \).

Exercise 9: Let the points \(P = (2|1|0), Q = (1|3| - 1) \) and \(R = (0|2|0) \) be given.

(a) Represent the plane \(E \) through the points \(P, Q \) and \(R \) in both parametric and normal form.

(b) Does the line \(G : x(u) = (-2, -7, 0)^\top + u(3, 2, 1)^\top \) intersect the plane \(E \)? If so determine the point and angle of intersection.

(c) Compute the orthogonal projection of the direction vector \((3, 2, 1)^\top \) of the line \(G \) onto the normal vector of the plane \(E \). Using this and the intersection point of \(G \) and \(E \) determine the projection \(H \) of the line \(G \) onto \(E \).

Exercise 10: \(C[0,1] \) denotes the vector space of continuous functions on the closed interval \([0, 1]\). Let \(U \) be a subspace of \(C[0,1] \) spanned by two polynomials \(b^{(1)}(x) = 1 \) and \(b^{(2)}(x) = x - \frac{1}{2} \). We define \(y(x) := \sqrt{x} \in C[0,1] \) and the scalar product of two functions by

\[\langle f, g \rangle := \int_0^1 f(x) \overline{g(x)} \, dx \in \mathbb{C}. \]

(a) Find a linear combination \(c = a_1 b^{(1)} + a_2 b^{(2)} \in U \), such that \(c(0) = y(0) \) and \(c(1) = y(1) \).

(b) Determine \(d \in U \) with smallest distance to \(y \), i.e. the distance vector \(e = d - y \) must be orthogonal to \(b^{(1)} \) and \(b^{(2)} \). Draw the graphs of \(y \) and the approximations \(c \) and \(d \) of it in \([0, 1]\) in a figure.

Remark: The Finite Element Method includes the computing of orthogonal approximations like \(d \).

Due date: Please hand in your homework on Thursday, May 7, 11:15.
Exercise T5: Let
\[u = \begin{pmatrix} -2 \\ 1 \\ 3 \end{pmatrix}, \quad v = \begin{pmatrix} -9 \\ 2 \\ 4 \end{pmatrix}, \quad w = \begin{pmatrix} 3 \\ 1 \\ 5 \end{pmatrix} \]
be vectors in \(\mathbb{R}^3 \).

(a) Compute the following linear combinations of these vectors: \(u + w \), \(v - 3u \), \(2u - v + w \).

(b) Show that every pair of vectors in the set \(\{u, v, w\} \) are linearly independent.

(c) Are the three vectors also linearly independent as a triple?

Exercise T6: For which \(\alpha \in \mathbb{R} \) is \(x = (-7, \alpha, 2)^T \) a linear combination of \(a^{(1)} = (1, 2, 4)^T \), \(a^{(2)} = (-2, 1, 2)^T \) and \(a^{(3)} = (3, 1, 2)^T \)? Determine all possible linear combinations of \(x \).

Exercise T7: Let
\[E : x_1 - x_3 = 0 \quad \text{and} \quad F : x_1 + 2x_2 + x_3 = 4. \]
be planes in \(\mathbb{R}^3 \).

(a) Find the intersection line \(G \) between \(E \) and \(F \).

(b) For another straight line \(H \), which lies neither in \(E \) nor in \(F \), exist only the following possibilities:

- it intersects \(E \) as well as \(F \) in only one point. (Find the angles of intersection.)
- it intersects one of them in only one point, but doesn’t intersect the other at all,
- it doesn’t intersect any of them.

Construct an example for each of these possibilities and visualize the geometric position of the planes and the straight line.

Exercise T8: Consider the points \(P = (2|1| - 4), Q = (-1| - 5| - 1) \) and the plane \(E : x_1 + 2x_2 - x_3 = 2. \)

(a) Determine a parametric representation of the line \(G \) through \(P \) and \(Q \), as well as a parametric representation of \(E \).

(b) Compute the point \(S \) of intersection of \(G \) and \(E \), and show that the line \(G \) and the plane \(E \) intersect at right angles (i.e. orthogonally). How far is \(P \) from \(E \)?

Tutorial date: Monday, May 4, 3:45pm-5:15pm