Exercise sheet 4
Advanced Mathematics III

Question 16: Evaluate the domain integrals

\[(a) \int_B (x_1^2 - x_2^2) \, d(x_1, x_2), \quad \text{and} \quad (b) \int_S \frac{\sin(x_2)}{x_2} \, d(x_1, x_2); \]

the first on \(B \subseteq \mathbb{R}^2 \) which is bounded by the graphs of the functions \(x_2 = x_1^2 \) and \(x_2 = x_3^3 \), the second on \(S \subseteq \mathbb{R}^2 \) which is defined by \(S := \{(x_1, x_2) \in \mathbb{R}^2 : 0 \leq x_1 \leq x_2 \leq \frac{3}{2}\} \).

Which variant proves to be more effective: integrating first w.r.t. \(x_1 \) or integrating first w.r.t. \(x_2 \)?

Question 17: To be evaluated is the domain integral

\[J = \int_0^2 \left[\int_{x_2=0}^{x_1} \frac{x_1}{x_2+5} \, dx_2 \right] dx_1 + \int_1^2 \left[\int_{x_2=0}^{\sqrt{20-x_1^2}} \frac{x_1}{x_2+5} \, dx_2 \right] dx_1. \]

Sketch the domain of integration in the \((x_1, x_2)\)-plane and give an explicit representation of its boundary curves. Change the order of integrations to compute the value of \(J \). (Remark: Determining \(J \) in the given order of integration will not be accepted as a solution.)

Question 18: For each case of the following domain integrals, sketch the domains of integration \(D \) and introduce coordinates adapted conveniently to the geometries of \(D \) in order to facilitate evaluation of the integrals:

(a) \(D \) be the triangle with vertices \((0, 0)\), \((1, 0)\) and \((1/2, 1/2)\). Evaluate

\[\int_D e^{x_1 + x_2} \, dx. \]

(b) \(D \) be that part of an annulus centred on \((0, 0)\), with outer radius 4 and inner radius 2, which lies in the half plane \(x_2 < 0 \). Evaluate

\[\int_D (x_1^2 - x_2^2) \, dx. \]

(c) \(D \) be that part of an ellipse with semi–minor axis 1 w.r.t. \(x_1 \) and semi–major axis 2 w.r.t. \(x_2 \), which is cut out by the lines \(x_2 = x_1 \) and \(x_2 = -x_1 \), with \(x_1 \geq 0 \). Evaluate

\[\int_D (x_1 - x_2) \, dx. \]

Question 19: Consider the surface \(F \subseteq \mathbb{R}^3 \) given by \(F = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_3 = 4 + x_1 x_2 \} \). Let \(K \) be that body, which is bounded by (i) the cylinder \(x_1^2 + x_2^2 = 4 \), (ii) the “bottom” \(x_3 = 0 \), and (iii) the “lid” \(F \).

(a) Sketch the contour lines of \(F \) for \(x_3 = 0, x_3 = 1, x_3 = 2, x_3 = 3, x_3 = 4 \).

(b) Determine the volume of \(K \).

Question 20: The domain \(B \subseteq \mathbb{R}^2 \) is bounded by the curves \(x_2 = x_1 - 1, x_2 = \frac{1}{2}x_1 - 1, x_2 = 2x_1^3 - 1 \) and \(x_2 = \sqrt{x_1} - 1 \). Use the coordinate transformation \(x = \Psi(y) = (\frac{y_1}{y_2}, \frac{1-y_2}{y_2})^T \) to evaluate the domain integral

\[\int_B \frac{dx}{(x_2 + 1)^3}. \]

Deadline: Thursday, November 20, 2008 at 15:45h