Inhaltsverzeichnis

I Studienplan

<table>
<thead>
<tr>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
</tr>
</tbody>
</table>

II Module

1 Masterarbeit

| Modul Masterarbeit (MATHMAST) - M-MATH-102917 | 25 |

2 Mathematische Methoden

2.1 Stochastik

<table>
<thead>
<tr>
<th>Kurse und Beschreibungen</th>
<th>Seitenzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asymptotische Stochastik (MATHST07) - M-MATH-102902</td>
<td>27</td>
</tr>
<tr>
<td>Brownsche Bewegung (MATHST10) - M-MATH-102904</td>
<td>29</td>
</tr>
<tr>
<td>Der Poisson-Prozess (MATHST20) - M-MATH-102922</td>
<td>31</td>
</tr>
<tr>
<td>Extremwerttheorie (MATHST23) - M-MATH-102939</td>
<td>33</td>
</tr>
<tr>
<td>Finanzmathematik in diskreter Zeit (MATHST04) - M-MATH-102919</td>
<td>35</td>
</tr>
<tr>
<td>Finanzmathematik in stetiger Zeit (MATHST08) - M-MATH-102860</td>
<td>37</td>
</tr>
<tr>
<td>Generalisierte Regressionsmodelle (MATHST09) - M-MATH-102906</td>
<td>39</td>
</tr>
<tr>
<td>Markovsche Entscheidungsprozesse (MATHST11) - M-MATH-102907</td>
<td>41</td>
</tr>
<tr>
<td>Mathematische Statistik (MATHST15) - M-MATH-102909</td>
<td>43</td>
</tr>
<tr>
<td>Nichtparametrische Statistik (MATHST16) - M-MATH-102910</td>
<td>45</td>
</tr>
<tr>
<td>Perkolation (MATHST13) - M-MATH-102905</td>
<td>47</td>
</tr>
<tr>
<td>Räumliche Stochastik (MATHST14) - M-MATH-102903</td>
<td>49</td>
</tr>
<tr>
<td>Steinsche Methode (MATHST24) - M-MATH-102946</td>
<td>51</td>
</tr>
<tr>
<td>Steuerung stochastischer Prozesse (MATHST12) - M-MATH-102908</td>
<td>52</td>
</tr>
<tr>
<td>Stochastische Evolutionsgleichungen (MATHAN04) - M-MATH-102942</td>
<td>54</td>
</tr>
<tr>
<td>Stochastische Geometrie (MATHST06) - M-MATH-102865</td>
<td>56</td>
</tr>
<tr>
<td>Vorhersagen: Theorie und Praxis (MATHST28) - M-MATH-102956</td>
<td>58</td>
</tr>
<tr>
<td>Wahrscheinlichkeitsrechnung und kombinatorische Optimierung (MATHST27) - M-MATH-102947</td>
<td>60</td>
</tr>
<tr>
<td>Zufällige Graphen (MATHST29) - M-MATH-102951</td>
<td>64</td>
</tr>
</tbody>
</table>

2.2 Analysis oder Angewandte und Numerische Mathematik, Optimierung

2.2.1 Analysis

<table>
<thead>
<tr>
<th>Kurse und Beschreibungen</th>
<th>Seitenzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computerunterstützte analytische Methoden für Rand- und Eigenwertprobleme (MATHAN11) - M-MATH-102883</td>
<td>66</td>
</tr>
<tr>
<td>Dynamische Systeme (MATHAN43) - M-MATH-103080</td>
<td>68</td>
</tr>
<tr>
<td>Evolutionsgleichungen (MATHAN12) - M-MATH-102872</td>
<td>70</td>
</tr>
<tr>
<td>Fourieranalyse (MATHAN14) - M-MATH-102873</td>
<td>72</td>
</tr>
<tr>
<td>Funktionalanalysis (MATHAN05) - M-MATH-101320</td>
<td>74</td>
</tr>
<tr>
<td>Integralgleichungen (MATHAN07) - M-MATH-102874</td>
<td>76</td>
</tr>
<tr>
<td>Inverse Probleme (MATHNM06) - M-MATH-102890</td>
<td>78</td>
</tr>
<tr>
<td>Klassische Methoden für partielle Differentialgleichungen (MATHAN08) - M-MATH-102870</td>
<td>80</td>
</tr>
<tr>
<td>Komplexe Analysis (MATHAN16) - M-MATH-102878</td>
<td>82</td>
</tr>
<tr>
<td>L2-Invarianten (MATHAG38) - M-MATH-102952</td>
<td>84</td>
</tr>
<tr>
<td>Maxwellgleichungen (MATHAN28) - M-MATH-102885</td>
<td>86</td>
</tr>
<tr>
<td>Optimierung in Banachräumen (MATHNM32) - M-MATH-102924</td>
<td>88</td>
</tr>
<tr>
<td>Potentialtheorie (MATHAN20) - M-MATH-102879</td>
<td>90</td>
</tr>
<tr>
<td>Rand- und Eigenwertprobleme (MATHAN09) - M-MATH-102871</td>
<td>91</td>
</tr>
<tr>
<td>Sobolevräume (MATHAN37) - M-MATH-102926</td>
<td>93</td>
</tr>
<tr>
<td>Spektraltheorie - M-MATH-101768</td>
<td>94</td>
</tr>
<tr>
<td>Steuerungstheorie (MATHAN18) - M-MATH-102941</td>
<td>96</td>
</tr>
<tr>
<td>Stochastische Differentialgleichungen (MATHAN24) - M-MATH-102881</td>
<td>97</td>
</tr>
<tr>
<td>Stochastische Evolutionsgleichungen (MATHAN40) - M-MATH-102942</td>
<td>99</td>
</tr>
<tr>
<td>Variationsrechnung (MATHAN25) - M-MATH-102882</td>
<td>101</td>
</tr>
<tr>
<td>Wandernde Wellen (MATHAN38) - M-MATH-102927</td>
<td>103</td>
</tr>
</tbody>
</table>

2.2.2 Angewandte und Numerische Mathematik, Optimierung

<table>
<thead>
<tr>
<th>Kurse und Beschreibungen</th>
<th>Seitenzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adaptive Finite Elemente Methoden (MATHNM19) - M-MATH-102900</td>
<td>105</td>
</tr>
<tr>
<td>Nummer</td>
<td>Kursbeschreibung</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Advanced Inverse Problems: Nonlinearity and Banach Spaces (MATHNM44)</td>
</tr>
<tr>
<td></td>
<td>Bildgebende Verfahren in der Medizintechnik (MATHNM15)</td>
</tr>
<tr>
<td></td>
<td>Compressive Sensing (MATHNM37)</td>
</tr>
<tr>
<td></td>
<td>Einführung in das Wissenschaftliche Rechnen (MATHNM05)</td>
</tr>
<tr>
<td></td>
<td>Einführung in Matlab und numerische Algorithmen (MATHNM43)</td>
</tr>
<tr>
<td></td>
<td>Einführung in Partikuläre Strömungen (MATHNMG1)</td>
</tr>
<tr>
<td></td>
<td>Finite Elemente Methoden (MATHNM07)</td>
</tr>
<tr>
<td></td>
<td>Geometrische numerische Integration (MATHNM31)</td>
</tr>
<tr>
<td></td>
<td>Integralgleichungen (MATHAN07)</td>
</tr>
<tr>
<td></td>
<td>Inverse Probleme (MATHNM06)</td>
</tr>
<tr>
<td></td>
<td>Mathematische Methoden in Signal- und Bildverarbeitung (MATHNM16)</td>
</tr>
<tr>
<td></td>
<td>Mathematische Modellierung und Simulation in der Praxis (MATHNM27)</td>
</tr>
<tr>
<td></td>
<td>Matrixfunktionen (MATHNM39)</td>
</tr>
<tr>
<td></td>
<td>Maxwellgleichungen (MATHAN28)</td>
</tr>
<tr>
<td></td>
<td>Numerische Fortsetzungsmethoden (MATHNM42)</td>
</tr>
<tr>
<td></td>
<td>Numerische Methoden für Differentialgleichungen (MATHNM03)</td>
</tr>
<tr>
<td></td>
<td>Numerische Methoden für hyperbolische Gleichungen (MATHNM28)</td>
</tr>
<tr>
<td></td>
<td>Numerische Methoden für Integralgleichungen (MATHNM29)</td>
</tr>
<tr>
<td></td>
<td>Numerische Methoden für zeitabhängige partielle Differentialgleichungen (MATHMWM20)</td>
</tr>
<tr>
<td></td>
<td>Numerische Methoden in der Elektrodynamik (MATHNM13)</td>
</tr>
<tr>
<td></td>
<td>Numerische Methoden in der Finanzmathematik (MATHNM18)</td>
</tr>
<tr>
<td></td>
<td>Numerische Methoden in der Finanzmathematik II (MATHNM26)</td>
</tr>
<tr>
<td></td>
<td>Numerische Methoden in der Strömungsmechanik (MATHNM34)</td>
</tr>
<tr>
<td></td>
<td>Numerische Optimierungsmethoden (MATHNM25)</td>
</tr>
<tr>
<td></td>
<td>Numerische Verfahren für die Maxwellgleichungen (MATHNM33)</td>
</tr>
<tr>
<td></td>
<td>Operatorfunktionen (MATHNM38)</td>
</tr>
<tr>
<td></td>
<td>Optimierung in Banachräumen (MATHNM32)</td>
</tr>
<tr>
<td></td>
<td>Optimierung und optimale Kontrolle bei Differentialgleichungen (MATHNM09)</td>
</tr>
<tr>
<td></td>
<td>Potentialtheorie (MATHAN0)</td>
</tr>
<tr>
<td></td>
<td>Projektioniertes Softwarepraktikum (MATHNM40)</td>
</tr>
<tr>
<td></td>
<td>Sobolevräume (MATHAN37)</td>
</tr>
<tr>
<td></td>
<td>Spezielle Themen der numerischen linearen Algebra (MATHNM30)</td>
</tr>
<tr>
<td></td>
<td>Wavelets (MATHNM14)</td>
</tr>
<tr>
<td>2.3</td>
<td>Wahlbereich Mathematische Methoden</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Algebra und Geometrie</td>
</tr>
<tr>
<td></td>
<td>Algebra (MATHAG05)</td>
</tr>
<tr>
<td></td>
<td>Algebraische Geometrie</td>
</tr>
<tr>
<td></td>
<td>Algebraische Topologie</td>
</tr>
<tr>
<td></td>
<td>Algebraische Topologie II (MATHAG41)</td>
</tr>
<tr>
<td></td>
<td>Algebraische Zahlentheorie</td>
</tr>
<tr>
<td></td>
<td>Die Riemannsche Zeta-Funktion (MATHAG45)</td>
</tr>
<tr>
<td></td>
<td>Differentialgeometrie</td>
</tr>
<tr>
<td></td>
<td>Einführung in die geometrische Mathematik (MATHAG35)</td>
</tr>
<tr>
<td></td>
<td>Extremale Graphentheorie</td>
</tr>
<tr>
<td></td>
<td>Geometrie der Schemata</td>
</tr>
<tr>
<td></td>
<td>Geometrische Gruppenentheorie</td>
</tr>
<tr>
<td></td>
<td>Globale Differentialgeometrie</td>
</tr>
<tr>
<td></td>
<td>Graphentheorie (MATHAG26)</td>
</tr>
<tr>
<td></td>
<td>Gruppenwirkungen in der Riemannschen Geometrie</td>
</tr>
<tr>
<td></td>
<td>Homotopieentheorie (MATHAG44)</td>
</tr>
<tr>
<td></td>
<td>Kombinatorik (MATHAG37)</td>
</tr>
<tr>
<td></td>
<td>Kombinatorik in der Ebene (MATHAG28)</td>
</tr>
<tr>
<td></td>
<td>Konvexe Geometrie (MATHAG07)</td>
</tr>
<tr>
<td></td>
<td>L2-Invarianten (MATHAG38)</td>
</tr>
<tr>
<td></td>
<td>Spin-Mannigfaltigkeiten, alpha-Invarianz und positive Skalarkrümmung (MATHAG43)</td>
</tr>
<tr>
<td></td>
<td>Stochastische Geometrie</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wirtschaftsmathematik (M.Sc.)</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulhandbuch mit Stand 04.08.2016 für Wintersemester 16/17</td>
<td></td>
</tr>
</tbody>
</table>
Analysis

2.3.2

<table>
<thead>
<tr>
<th>Course Title</th>
<th>Module Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vergleichsgeometrie (MATHAG30)</td>
<td>M-MATH-102940</td>
</tr>
<tr>
<td>Computerunterstützte analytische Methoden für Rand- und Eigenwertprobleme</td>
<td>M-MATH-102883</td>
</tr>
<tr>
<td>Dynamische Systeme (MATHAN43)</td>
<td>M-MATH-103080</td>
</tr>
<tr>
<td>Evolutionsgleichungen (MATHAN12)</td>
<td>M-MATH-102872</td>
</tr>
<tr>
<td>Fourieranalyse (MATHAN14)</td>
<td>M-MATH-102873</td>
</tr>
<tr>
<td>Funktionalanalyse (MATHAN05)</td>
<td>M-MATH-101320</td>
</tr>
<tr>
<td>Integralgleichungen (MATHAN07)</td>
<td>M-MATH-102874</td>
</tr>
<tr>
<td>Inverse Probleme (MATHNM06)</td>
<td>M-MATH-102890</td>
</tr>
<tr>
<td>Klassische Methoden für partielle Differentialgleichungen (MATHAN08)</td>
<td>M-MATH-102870</td>
</tr>
<tr>
<td>Komplexe Analysis (MATHAN16)</td>
<td>M-MATH-102878</td>
</tr>
<tr>
<td>L2-Invarianten (MATHAG38)</td>
<td>M-MATH-102952</td>
</tr>
<tr>
<td>Maxwelleichungen (MATHAN28)</td>
<td>M-MATH-102885</td>
</tr>
<tr>
<td>Optimierung in Banachräumen (MATHNM32)</td>
<td>M-MATH-102942</td>
</tr>
<tr>
<td>Potentialtheorie (MATHAN20)</td>
<td>M-MATH-102879</td>
</tr>
<tr>
<td>Rand- und Eigenwertprobleme (MATHAN09)</td>
<td>M-MATH-102871</td>
</tr>
<tr>
<td>Sobolevräume (MATHAN37)</td>
<td>M-MATH-102926</td>
</tr>
<tr>
<td>Spektraltheorie</td>
<td>M-MATH-101768</td>
</tr>
<tr>
<td>Steuerungstheorie</td>
<td>M-MATH-102941</td>
</tr>
<tr>
<td>Stochastische Differentialgleichungen (MATHAN24)</td>
<td>M-MATH-102881</td>
</tr>
<tr>
<td>Stochastische Evolutionsgleichungen (MATHAN40)</td>
<td>M-MATH-102942</td>
</tr>
<tr>
<td>Variationsrechnung</td>
<td>M-MATH-102882</td>
</tr>
<tr>
<td>Wandernde Wellen (MATHAN38)</td>
<td>M-MATH-102927</td>
</tr>
</tbody>
</table>

2.3.3 Angewandte und Numerische Mathematik, Optimierung

<table>
<thead>
<tr>
<th>Course Title</th>
<th>Module Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adaptive Finite Element Method (MATHNM19)</td>
<td>M-MATH-102900</td>
</tr>
<tr>
<td>Advanced Inverse Problems: Nonlinearity and Banach Spaces (MATHNM44)</td>
<td>M-MATH-102955</td>
</tr>
<tr>
<td>Bildgebende Verfahren in der Medizintechnik (MATHNM15)</td>
<td>M-MATH-102896</td>
</tr>
<tr>
<td>Compressive Sensing (MATHNM37)</td>
<td>M-MATH-102935</td>
</tr>
<tr>
<td>Einführung in das Wissenschaftliche Rechnen (MATHNM05)</td>
<td>M-MATH-102889</td>
</tr>
<tr>
<td>Einführung in Matlab und numerische Algorithmen (MATHAN43)</td>
<td>M-MATH-102945</td>
</tr>
<tr>
<td>Einführung in Partikuläre Strömungen (MATHNM41)</td>
<td>M-MATH-102943</td>
</tr>
<tr>
<td>Finite Elemente Methoden (MATHNM07)</td>
<td>M-MATH-102891</td>
</tr>
<tr>
<td>Geometrische numerische Integration (MATHNM31)</td>
<td>M-MATH-102921</td>
</tr>
<tr>
<td>Integralgleichungen (MATHAN07)</td>
<td>M-MATH-102874</td>
</tr>
<tr>
<td>Inverse Probleme (MATHNM06)</td>
<td>M-MATH-102890</td>
</tr>
<tr>
<td>Mathematische Methoden in Signal- und Bildverarbeitung (MATHNM16)</td>
<td>M-MATH-102897</td>
</tr>
<tr>
<td>Mathematische Modellierung und Simulation in der Praxis (MATHNM27)</td>
<td>M-MATH-102929</td>
</tr>
<tr>
<td>Matrixfunktionen (MATHNM39)</td>
<td>M-MATH-102937</td>
</tr>
<tr>
<td>Maxwellgleichungen (MATHAN28)</td>
<td>M-MATH-102885</td>
</tr>
<tr>
<td>Numerische Fortsetzungsmethoden (MATHNM42)</td>
<td>M-MATH-102944</td>
</tr>
<tr>
<td>Numerische Methoden für Differentialgleichungen (MATHNM03)</td>
<td>M-MATH-102988</td>
</tr>
<tr>
<td>Numerische Methoden für hyperbolische Gleichungen (MATHNM28)</td>
<td>M-MATH-102915</td>
</tr>
<tr>
<td>Numerische Methoden für Integralgleichungen (MATHNM29)</td>
<td>M-MATH-102930</td>
</tr>
<tr>
<td>Numerische Methoden für zeitabhängige partielle Differentialgleichungen</td>
<td>M-MATH-102928</td>
</tr>
<tr>
<td>(MATHMWNM20)</td>
<td>M-MATH-102894</td>
</tr>
<tr>
<td>Numerische Methoden in der Elektrodynamik (MATHNM13)</td>
<td>M-MATH-102984</td>
</tr>
<tr>
<td>Numerische Methoden in der Finanzmathematik (MATHNM18)</td>
<td>M-MATH-102901</td>
</tr>
<tr>
<td>Numerische Methoden in der Finanzmathematik II (MATHNM26)</td>
<td>M-MATH-102914</td>
</tr>
<tr>
<td>Numerische Methoden in der Strömungsmechanik (MATHNM34)</td>
<td>M-MATH-102932</td>
</tr>
<tr>
<td>Numerische Optimierungsmethoden (MATHNM25)</td>
<td>M-MATH-102892</td>
</tr>
<tr>
<td>Numerische Verfahren für die Maxwellgleichungen (MATHNM33)</td>
<td>M-MATH-102931</td>
</tr>
<tr>
<td>Operatorfunktionen (MATHNM38)</td>
<td>M-MATH-102936</td>
</tr>
<tr>
<td>Optimierung in Banachräumen (MATHNM32)</td>
<td>M-MATH-102924</td>
</tr>
<tr>
<td>Optimierung und optimale Kontrolle bei Differentialgleichungen (MATHNM09)</td>
<td>M-MATH-102899</td>
</tr>
<tr>
<td>Potentialtheorie (MATHAN20)</td>
<td>M-MATH-102879</td>
</tr>
<tr>
<td>Projektionsorientiertes Softwarepraktikum (MATHNM40)</td>
<td>M-MATH-102938</td>
</tr>
<tr>
<td>Sobolevräume (MATHAN37)</td>
<td>M-MATH-102926</td>
</tr>
</tbody>
</table>
2.3.4 **Stochastik**

- Asymptotische Stochastik (MATHST07) - M-MATH-102902
- Brownsche Bewegung (MATHST10) - M-MATH-102904
- Der Poisson-Prozess (MATHST20) - M-MATH-102922
- Extremwerttheorie (MATHST23) - M-MATH-102939
- Finanzmathematik in diskreter Zeit (MATHST04) - M-MATH-102919
- Finanzmathematik in stetiger Zeit (MATHST08) - M-MATH-102860
- Generalisierte Regressionsmodelle (MATHST09) - M-MATH-102906
- Markovsche Entscheidungsprozesse (MATHST11) - M-MATH-102907
- Mathematische Statistik (MATHST15) - M-MATH-102909
- Nichtparametrische Statistik (MATHST16) - M-MATH-102910
- Perkolation (MATHST13) - M-MATH-102905
- Räumliche Stochastik (MATHST14) - M-MATH-102903
- Steinsche Methode (MATHST24) - M-MATH-102946
- Steuerung stochastischer Prozesse (MATHST12) - M-MATH-102908
- Stochastische Evolutionsgleichungen (MATHAN40) - M-MATH-102942
- Stochastische Geometrie (MATHST06) - M-MATH-102865
- Vorhersagen: Theorie und Praxis (MATHST28) - M-MATH-102956
- Wahrscheinlichkeitstheorie und kombinatorische Optimierung (MATHST27) - M-MATH-102947
- Zeitreihenanalyse (MATHST18) - M-MATH-102911
- Zufällige Graphen (MATHST29) - M-MATH-102951

3 **Finance - Risk Management - Managerial Economics**

- Analytics und Statistik - M-WIWI-101637
- Collective Decision Making (WW4VWL16) - M-WIWI-101504
- Entscheidungs- und Spieltheorie (MATHMWVWL10) - M-WIWI-102970
- Experimentelle Wirtschaftsforschung (WW4VWL17) - M-WIWI-101505
- Finance 1 (WW4BWLFBV1) - M-WIWI-101482
- Finance 2 (WW4BWLFBV2) - M-WIWI-101483
- Finance 3 (WW4BWLFBV11) - M-WIWI-101480
- Innovation und Wachstum (WW4VWLWW1) - M-WIWI-101478
- Insurance Management I (WW4BWLFBV6) - M-WIWI-101469
- Microeconomic Theory (WW4VVL15) - M-WIWI-101500
- Ökonometrie und Statistik I - M-WIWI-101638
- Ökonometrie und Statistik II - M-WIWI-101639
- Ökonomische Theorie und ihre Anwendung in Finance (WW4VVL14) - M-WIWI-101502
- Wachstum und Agglomeration (WW4VWL12) - M-WIWI-101496

4 **Operations Management - Datenanalyse - Informatik**

- Anwendungen des Operations Research (WW3OR5) - M-WIWI-101413
- Energiewirtschaft und Technologie (WW4BWLIIIP) - M-WIWI-101452
- Informatik (WW4INFO1) - M-WIWI-101472
- Marketing Management (WW4BWLMAR5) - M-WIWI-101490
- Mathematische Optimierung (WW4OR9) - M-WIWI-101473
- Methodische Grundlagen des OR (WW3OR6) - M-WIWI-101414
- Operations Research im Supply Chain Management (WW4OR11) - M-WIWI-102832
- Service Operations (WW4BWLKSR4) - M-WIWI-102805
- Stochastische Methoden und Simulation (WW3OR7) - M-WIWI-101400
- Stochastische Modellierung und Optimierung (WW4OR10) - M-WIWI-101454

5 **Wirtschaftswissenschaftliches Seminar**

- Seminar (MATHMWSEM02) - M-WIWI-102971
- Seminar (MATHMWSEM03) - M-WIWI-102973

6 **Mathematisches Seminar**

- Seminar - M-MATH-102730
Inhaltsverzeichnis

7 Wahlpflichtfach

<table>
<thead>
<tr>
<th>Thema</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adaptive Finite Elemente Methoden (MATHNM19)</td>
<td>M-MATH-102900</td>
</tr>
<tr>
<td>Advanced Inverse Problems: Nonlinearity and Banach Spaces (MATHNM44)</td>
<td>M-MATH-102955</td>
</tr>
<tr>
<td>Algebra (MATHAG05)</td>
<td>M-MATH-101315</td>
</tr>
<tr>
<td>Algebraische Geometrie</td>
<td>M-MATH-101724</td>
</tr>
<tr>
<td>Algebraische Topologie I (MATHAG41)</td>
<td>M-MATH-102948</td>
</tr>
<tr>
<td>Algebraische Topologie II (MATHAG41)</td>
<td>M-MATH-102953</td>
</tr>
<tr>
<td>Algebraische Zahlentheorie</td>
<td>M-MATH-101725</td>
</tr>
<tr>
<td>Analytics und Statistik</td>
<td>M-WIWI-101637</td>
</tr>
<tr>
<td>Anwendungen des Operations Research (WW3OR5)</td>
<td>M-WIWI-101413</td>
</tr>
<tr>
<td>Asymptotische Stochastik</td>
<td>M-MATH-102902</td>
</tr>
<tr>
<td>Bildgebende Verfahren in der Medizintechnik (MATHM15)</td>
<td>M-MATH-102896</td>
</tr>
<tr>
<td>Brownsche Bewegung</td>
<td>M-MATH-102904</td>
</tr>
<tr>
<td>Collective Decision Making</td>
<td>M-WIWI-101504</td>
</tr>
<tr>
<td>Compressive Sensing</td>
<td>M-MATH-102935</td>
</tr>
<tr>
<td>Computerunterstützte analytische Methoden für Rand- und Eigenwertprobleme (MATHAN11)</td>
<td>M-MATH-102883</td>
</tr>
<tr>
<td>Der Poisson-Prozess</td>
<td>M-MATH-102922</td>
</tr>
<tr>
<td>Die Riemannsche Zeta-Funktion</td>
<td>M-MATH-102960</td>
</tr>
<tr>
<td>Differentialgeometrie</td>
<td>M-MATH-101317</td>
</tr>
<tr>
<td>Dynamische Systeme</td>
<td>M-MATH13080</td>
</tr>
<tr>
<td>Einführung in das Wissenschaftliche Rechnen (MATHNM05)</td>
<td>M-MATH-102889</td>
</tr>
<tr>
<td>Einführung in die geometrische Maßtheorie (MATHAG35)</td>
<td>M-MATH-102949</td>
</tr>
<tr>
<td>Einführung in MatLab und numerische Algorithmen (MATHNM43)</td>
<td>M-MATH-102945</td>
</tr>
<tr>
<td>Einführung in Partikuläre Strömungen (MATHM041)</td>
<td>M-MATH-102943</td>
</tr>
<tr>
<td>Energiewirtschaft und Technologie</td>
<td>M-WIWI-101452</td>
</tr>
<tr>
<td>Entscheidungs- und Spieltheorie</td>
<td>M-WIWI-102970</td>
</tr>
<tr>
<td>Evolutionsgleichungen (MATHAN12)</td>
<td>M-MATH-102872</td>
</tr>
<tr>
<td>Experimentelle Wirtschaftsforschung</td>
<td>M-WIWI-101505</td>
</tr>
<tr>
<td>Extremale Graphentheorie</td>
<td>M-MATH-102957</td>
</tr>
<tr>
<td>Extremwerttheorie</td>
<td>M-MATH-102939</td>
</tr>
<tr>
<td>Finance 1 (WW4BWLFFBV1)</td>
<td>M-WIWI-101482</td>
</tr>
<tr>
<td>Finance 2 (WW4BWLFFBV2)</td>
<td>M-WIWI-101483</td>
</tr>
<tr>
<td>Finance 3 (WW4BWLFFBV11)</td>
<td>M-WIWI-101480</td>
</tr>
<tr>
<td>Finanzmathematik in diskreter Zeit (MATHST04)</td>
<td>M-MATH-102919</td>
</tr>
<tr>
<td>Finanzmathematik in stetiger Zeit (MATHST08)</td>
<td>M-MATH-102860</td>
</tr>
<tr>
<td>Finite Elemente Methoden</td>
<td>M-MATH-102891</td>
</tr>
<tr>
<td>Fourieranalyse (MATHAN14)</td>
<td>M-MATH-102873</td>
</tr>
<tr>
<td>Funktionalanalyse</td>
<td>M-MATH-101320</td>
</tr>
<tr>
<td>Generalisierte Regressionsmodelle (MATHST09)</td>
<td>M-MATH-102906</td>
</tr>
<tr>
<td>Geometrie der Schemata</td>
<td>M-MATH-102886</td>
</tr>
<tr>
<td>Geometrische Gruppentheorie</td>
<td>M-MATH-102867</td>
</tr>
<tr>
<td>Geometrische numerische Integration (MATHNM31)</td>
<td>M-MATH-102921</td>
</tr>
<tr>
<td>Globale Differentialgeometrie</td>
<td>M-MATH-102912</td>
</tr>
<tr>
<td>Graphentheorie (MATHAG26)</td>
<td>M-MATH-101336</td>
</tr>
<tr>
<td>Gruppenwirkungen in der Riemannschen Geometrie (MATHAG40)</td>
<td>M-MATH-102954</td>
</tr>
<tr>
<td>Homotopietheorie</td>
<td>M-MATH-102959</td>
</tr>
<tr>
<td>Informatik (WW4INFO1)</td>
<td>M-WIWI-101472</td>
</tr>
<tr>
<td>Innovation und Wachstum</td>
<td>M-WIWI-101478</td>
</tr>
<tr>
<td>Insurance Management I (WW4BWLFFBV6)</td>
<td>M-WIWI-101469</td>
</tr>
<tr>
<td>Integralgleichungen (MATHAN07)</td>
<td>M-MATH-102874</td>
</tr>
<tr>
<td>Inverse Probleme</td>
<td>M-MATH-102890</td>
</tr>
<tr>
<td>Klassische Methoden für partielle Differentialgleichungen (MATHAN08)</td>
<td>M-MATH-102870</td>
</tr>
<tr>
<td>Kombinatorik (MATHAG37)</td>
<td>M-MATH-102950</td>
</tr>
<tr>
<td>Kombinatorik in der Ebene</td>
<td>M-MATH-102925</td>
</tr>
<tr>
<td>Komplexe Analysis</td>
<td>M-MATH-102878</td>
</tr>
<tr>
<td>Konvexe Geometrie</td>
<td>M-MATH-102864</td>
</tr>
<tr>
<td>L2-Invarianten (MATHAG38)</td>
<td>M-MATH-102952</td>
</tr>
<tr>
<td>Kurs</td>
<td>Kursschlüssel</td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
</tr>
<tr>
<td>Marketing Management (WW4BWLMAR5)</td>
<td>M-WIWI-101490</td>
</tr>
<tr>
<td>Markovsche Entscheidungsprozesse (MATHST11)</td>
<td>M-MATH-102907</td>
</tr>
<tr>
<td>Mathematische Methoden in Signal- und Bildverarbeitung (MATHNM16)</td>
<td>M-MATH-102897</td>
</tr>
<tr>
<td>Mathematische Modellierung und Simulation in der Praxis (MATHNM27)</td>
<td>M-MATH-102929</td>
</tr>
<tr>
<td>Mathematische Optimierung (WW4OR9)</td>
<td>M-WIWI-101473</td>
</tr>
<tr>
<td>Mathematische Statistik (MATHST15)</td>
<td>M-MATH-102909</td>
</tr>
<tr>
<td>Matrixfunktionen (MATHNM39)</td>
<td>M-MATH-102937</td>
</tr>
<tr>
<td>Maxwelleichungen (MATHAN28)</td>
<td>M-MATH-102885</td>
</tr>
<tr>
<td>Methodische Grundlagen des OR (WW3OR6)</td>
<td>M-WIWI-101414</td>
</tr>
<tr>
<td>Microeconomic Theory (WW4VWL15)</td>
<td>M-WIWI-101500</td>
</tr>
<tr>
<td>Nichtparametrische Statistik (MATHST16)</td>
<td>M-MATH-102910</td>
</tr>
<tr>
<td>Numerische Fortsetzungsmethoden (MATHNM42)</td>
<td>M-MATH-102944</td>
</tr>
<tr>
<td>Numerische Methoden für Differentialgleichungen (MATHNM03)</td>
<td>M-MATH-102888</td>
</tr>
<tr>
<td>Numerische Methoden für hyperbolische Gleichungen (MATHNM28)</td>
<td>M-MATH-102915</td>
</tr>
<tr>
<td>Numerische Methoden für Integralgleichungen (MATHNM29)</td>
<td>M-MATH-102930</td>
</tr>
<tr>
<td>Numerische Methoden für zeitabhängige partielle Differentialgleichungen (MATHMWNM20)</td>
<td>M-MATH-102928</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>Numerische Methoden in der Elektrodynamik (MATHNM13)</td>
<td>M-MATH-102894</td>
</tr>
<tr>
<td>Numerische Methoden in der Finanzmathematik (MATHNM18)</td>
<td>M-MATH-102901</td>
</tr>
<tr>
<td>Numerische Methoden in der Finanzmathematik II (MATHNM26)</td>
<td>M-MATH-102914</td>
</tr>
<tr>
<td>Numerische Methoden in der Strömungsmechanik (MATHNM34)</td>
<td>M-MATH-102932</td>
</tr>
<tr>
<td>Numerische Optimierungsmethoden (MATHNM25)</td>
<td>M-MATH-102892</td>
</tr>
<tr>
<td>Numerische Verfahren für die Maxwelleichungen (MATHNM33)</td>
<td>M-MATH-102931</td>
</tr>
<tr>
<td>Ökonometrie und Statistik I - M-WIWI-101638</td>
<td></td>
</tr>
<tr>
<td>Ökonometrie und Statistik II - M-WIWI-101639</td>
<td></td>
</tr>
<tr>
<td>Ökonomische Theorie und ihre Anwendung in Finance (WW4VWL14)</td>
<td>M-WIWI-101502</td>
</tr>
<tr>
<td>Operations Research im Supply Chain Management (WW4OR11)</td>
<td>M-WIWI-102832</td>
</tr>
<tr>
<td>Operatorfunktionen (MATHNM38)</td>
<td>M-MATH-102936</td>
</tr>
<tr>
<td>Optimierung in Banachräumen (MATHNM32)</td>
<td>M-MATH-102924</td>
</tr>
<tr>
<td>Optimierung und optimale Kontrolle bei Differentialgleichungen (MATHNM09)</td>
<td>M-MATH-102899</td>
</tr>
<tr>
<td>Perkolation (MATHST13)</td>
<td>M-MATH-102905</td>
</tr>
<tr>
<td>Potentialtheorie (MATHAN20)</td>
<td>M-MATH-102879</td>
</tr>
<tr>
<td>Projektioniertes Softwarepraktikum (MATHM40)</td>
<td>M-MATH-102938</td>
</tr>
<tr>
<td>Rand- und Eigenwertprobleme (MATHAN9)</td>
<td>M-MATH-102871</td>
</tr>
<tr>
<td>Räumliche Stochastic (MATHST14)</td>
<td>M-MATH-102903</td>
</tr>
<tr>
<td>Seminar (MATHMWSEM02)</td>
<td>M-WIWI-102971</td>
</tr>
<tr>
<td>Seminar (MATHMWSEM04)</td>
<td>M-WIWI-102972</td>
</tr>
<tr>
<td>Seminar (MATHMWSEM03)</td>
<td>M-WIWI-102973</td>
</tr>
<tr>
<td>Seminar (MATHMWSEM05)</td>
<td>M-WIWI-102974</td>
</tr>
<tr>
<td>Sobolevräume (MATHAN37)</td>
<td>M-MATH-102926</td>
</tr>
<tr>
<td>Spektraltheorie - M-MATH-101768</td>
<td></td>
</tr>
<tr>
<td>Spezielle Themen der numerischen linearen Algebra (MATHNM30)</td>
<td>M-MATH-102920</td>
</tr>
<tr>
<td>Spin-Mannigfaltigkeiten, alpha-Invariante und positive Skalarkrümmung (MATHAG43)</td>
<td>M-MATH-102958</td>
</tr>
<tr>
<td>Steinsche Methode (MATHST24)</td>
<td>M-MATH-102946</td>
</tr>
<tr>
<td>Steuerung stochastischer Prozesse (MATHST12)</td>
<td>M-MATH-102908</td>
</tr>
<tr>
<td>Steuerungstheorie (MATHAN18)</td>
<td>M-MATH-102941</td>
</tr>
<tr>
<td>Stochastische Differentialgleichungen (MATHAN24)</td>
<td>M-MATH-102881</td>
</tr>
<tr>
<td>Stochastische Evolutionsgleichungen (MATHAN40)</td>
<td>M-MATH-102942</td>
</tr>
<tr>
<td>Stochastische Geometrie (MATHST06)</td>
<td>M-MATH-102865</td>
</tr>
<tr>
<td>Stochastische Methoden und Simulation (WW3OR7)</td>
<td>M-WIWI-101400</td>
</tr>
<tr>
<td>Stochastische Modellierung und Optimierung (WW4OR10)</td>
<td>M-WIWI-101454</td>
</tr>
<tr>
<td>Variationsrechnung (MATHAN25)</td>
<td>M-MATH-102882</td>
</tr>
<tr>
<td>Vergleichsgeometrie (MATHAG30)</td>
<td>M-MATH-102940</td>
</tr>
<tr>
<td>Vorhersagen: Theorie und Praxis (MATHST28)</td>
<td>M-MATH-102956</td>
</tr>
<tr>
<td>Wachstum und Agglomeration (WW4VWL12)</td>
<td>M-WIWI-101496</td>
</tr>
<tr>
<td>Wahrscheinlichkeitstheorie und kombinatorische Optimierung (MATHST27)</td>
<td>M-MATH-102947</td>
</tr>
<tr>
<td>Wandernde Wellen (MATHAN38)</td>
<td>M-MATH-102927</td>
</tr>
</tbody>
</table>
Zusatzleistungen

<table>
<thead>
<tr>
<th>Kurs</th>
<th>Kursnummer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelets (MATHNM14) - M-MATH-102895</td>
<td>608</td>
</tr>
<tr>
<td>Zeitreihenanalyse (MATHST18) - M-MATH-102911</td>
<td>610</td>
</tr>
<tr>
<td>Zufällige Graphen (MATHST29) - M-MATH-102951</td>
<td>612</td>
</tr>
<tr>
<td>Adaptive Finite Elemente Methoden (MATHNM19) - M-MATH-102900</td>
<td>614</td>
</tr>
<tr>
<td>Advanced Inverse Problems: Nonlinearity and Banach Spaces (MATHNM44) - M-MATH-102955</td>
<td>616</td>
</tr>
<tr>
<td>Algebra (MATHAG05) - M-MATH-101315</td>
<td>618</td>
</tr>
<tr>
<td>Algebraische Geometrie - M-MATH-101724</td>
<td>620</td>
</tr>
<tr>
<td>Algebraische Topologie (MATHAG34) - M-MATH-102948</td>
<td>622</td>
</tr>
<tr>
<td>Algebraische Topologie II (MATHAG41) - M-MATH-102953</td>
<td>624</td>
</tr>
<tr>
<td>Algebraische Zahlentheorie - M-MATH-101725</td>
<td>626</td>
</tr>
<tr>
<td>Analytics und Statistik - M-WIWI-101637</td>
<td>627</td>
</tr>
<tr>
<td>Anwendungen des Operations Research (WW3OR5) - M-WIWI-101413</td>
<td>629</td>
</tr>
<tr>
<td>Asymptotische Stochastik (MATHST07) - M-MATH-102902</td>
<td>631</td>
</tr>
<tr>
<td>Bildgebende Verfahren in der Medizintechnik (MATHNM15) - M-MATH-102896</td>
<td>633</td>
</tr>
<tr>
<td>Brownsche Bewegung (MATHST10) - M-MATH-102904</td>
<td>635</td>
</tr>
<tr>
<td>Collective Decision Making (WW4VWL16) - M-WIWI-101504</td>
<td>637</td>
</tr>
<tr>
<td>Compressive Sensing (MATHNM37) - M-MATH-102935</td>
<td>638</td>
</tr>
<tr>
<td>Computerunterstützte analytische Methoden für Rand- und Eigenwertprobleme (MATHAN11) - M-MATH-102883</td>
<td>640</td>
</tr>
<tr>
<td>Der Poisson-Prozess (MATHST20) - M-MATH-102922</td>
<td>642</td>
</tr>
<tr>
<td>Die Riemannsche Zeta-Funktion (MATHAG45) - M-MATH-102960</td>
<td>644</td>
</tr>
<tr>
<td>Differentialgeometrie (MATHAG04) - M-MATH-101317</td>
<td>645</td>
</tr>
<tr>
<td>Dynamische Systeme (MATHAN43) - M-MATH-103080</td>
<td>647</td>
</tr>
<tr>
<td>Einführung in das Wissenschaftliche Rechnen (MATHNM05) - M-MATH-102889</td>
<td>649</td>
</tr>
<tr>
<td>Einführung in die geometrische Maßtheorie (MATHAG35) - M-MATH-102949</td>
<td>651</td>
</tr>
<tr>
<td>Einführung in Matlab und numerische Algorithmen (MATHNM43) - M-MATH-102945</td>
<td>653</td>
</tr>
<tr>
<td>Einführung in Partikuläre Strömungen (MATHNM41) - M-MATH-102943</td>
<td>655</td>
</tr>
<tr>
<td>Energiewirtschaft und Technologie (WW4BWLIIP5) - M-WIWI-101452</td>
<td>657</td>
</tr>
<tr>
<td>Entscheidungs- und Spieltheorie (MATHMWVWL10) - M-WIWI-102970</td>
<td>659</td>
</tr>
<tr>
<td>Evolutionsgleichungen (MATHAN12) - M-MATH-102872</td>
<td>660</td>
</tr>
<tr>
<td>Experimentelle Wirtschaftsforschung (WW4VWL17) - M-WIWI-101505</td>
<td>662</td>
</tr>
<tr>
<td>Extremale Graphentheorie (MATHAG42) - M-MATH-102957</td>
<td>664</td>
</tr>
<tr>
<td>Extremwerttheorie (MATHST23) - M-MATH-102939</td>
<td>666</td>
</tr>
<tr>
<td>Finance 1 (WW4BWLFBV1) - M-WIWI-101482</td>
<td>668</td>
</tr>
<tr>
<td>Finance 2 (WW4BWLFBV2) - M-WIWI-101483</td>
<td>669</td>
</tr>
<tr>
<td>Finance 3 (WW4BWLFBV11) - M-WIWI-101480</td>
<td>671</td>
</tr>
<tr>
<td>Finanzmathematik in diskreter Zeit (MATHST04) - M-MATH-102919</td>
<td>673</td>
</tr>
<tr>
<td>Finanzmathematik in stetiger Zeit (MATHST08) - M-MATH-102860</td>
<td>675</td>
</tr>
<tr>
<td>Finite Elemente Methoden (MATHNM07) - M-MATH-102891</td>
<td>677</td>
</tr>
<tr>
<td>Fourieranalyse (MATHAN14) - M-MATH-102873</td>
<td>679</td>
</tr>
<tr>
<td>Funktionalanalyse (MATHAN05) - M-MATH-101320</td>
<td>681</td>
</tr>
<tr>
<td>Generalisierte Regressionsmodelle (MATHST09) - M-MATH-102906</td>
<td>683</td>
</tr>
<tr>
<td>Geometrie der Schemata (MATHAG11) - M-MATH-102866</td>
<td>685</td>
</tr>
<tr>
<td>Geometrische Gruppentheorie (MATHAG12) - M-MATH-102867</td>
<td>687</td>
</tr>
<tr>
<td>Geometrische numerische Integration (MATHNM31) - M-MATH-102921</td>
<td>689</td>
</tr>
<tr>
<td>Globale Differentialgeometrie (MATHAG27) - M-MATH-102912</td>
<td>691</td>
</tr>
<tr>
<td>Graphentheorie (MATHAG26) - M-MATH-101336</td>
<td>692</td>
</tr>
<tr>
<td>Gruppenwirkungen in der Riemannschen Geometrie (MATHAG40) - M-MATH-102954</td>
<td>694</td>
</tr>
<tr>
<td>Homotopietheorie (MATHAG44) - M-MATH-102959</td>
<td>696</td>
</tr>
<tr>
<td>Informatik (WW4INFO1) - M-WIWI-101472</td>
<td>697</td>
</tr>
<tr>
<td>Innovation und Wachstum (WW4VWL1IWW1) - M-WIWI-101478</td>
<td>699</td>
</tr>
<tr>
<td>Insurance Management I (WW4BWLFBV6) - M-WIWI-101469</td>
<td>701</td>
</tr>
<tr>
<td>Integralgleichungen (MATHAN07) - M-MATH-102874</td>
<td>703</td>
</tr>
<tr>
<td>Inverse Probleme (MATHNM06) - M-MATH-102890</td>
<td>705</td>
</tr>
<tr>
<td>Klassische Methoden für partielle Differentialgleichungen (MATHAN08) - M-MATH-102870</td>
<td>707</td>
</tr>
<tr>
<td>Kombinatorik (MATHAG37) - M-MATH-102950</td>
<td>709</td>
</tr>
<tr>
<td>Modulbezeichnung</td>
<td>Modulnummer</td>
</tr>
<tr>
<td>---</td>
<td>--------------</td>
</tr>
<tr>
<td>Wahrscheinlichkeitstheorie und kombinatorische Optimierung</td>
<td>M-MATH-102947</td>
</tr>
<tr>
<td>Wachstum und Agglomeration</td>
<td>M-WIWI-101490</td>
</tr>
<tr>
<td>Vorhersagen: Theorie und Praxis</td>
<td>M-MATH-102956</td>
</tr>
<tr>
<td>Vergleichsgeometrie</td>
<td>M-MATH-102940</td>
</tr>
<tr>
<td>Variationsrechnung</td>
<td>M-MATH-102882</td>
</tr>
<tr>
<td>Spezielle Themen der numerischen linearen Algebra</td>
<td>M-MATH-102928</td>
</tr>
<tr>
<td>Operations Research im Supply Chain Management</td>
<td>M-WIWI-102832</td>
</tr>
<tr>
<td>Optimaler Kontrollplan</td>
<td>M-MATH-102930</td>
</tr>
<tr>
<td>Perkolation</td>
<td>M-MATH-102905</td>
</tr>
<tr>
<td>Potentialtheorie</td>
<td>M-MATH-102879</td>
</tr>
<tr>
<td>Projektionsorientiertes Softwarepraktik</td>
<td>M-MATH-102938</td>
</tr>
<tr>
<td>Rand- und Eigenwertprobleme</td>
<td>M-MATH-102971</td>
</tr>
<tr>
<td>Räumliche Stochastik</td>
<td>M-MATH-102903</td>
</tr>
<tr>
<td>Service Operations</td>
<td>M-WIWI-102805</td>
</tr>
<tr>
<td>Sobolevräume</td>
<td>M-MATH-102926</td>
</tr>
<tr>
<td>Spektraltheorie</td>
<td>M-MATH-101769</td>
</tr>
<tr>
<td>Spezielle Themen der numerischen linearen Algebra</td>
<td>M-MATH-102920</td>
</tr>
<tr>
<td>Spin-Mannigfaltigkeiten</td>
<td>M-MATH-102958</td>
</tr>
<tr>
<td>Steinzsche Methode</td>
<td>M-MATH-102946</td>
</tr>
<tr>
<td>Steuerung stochastischer Prozesse</td>
<td>M-MATH-102908</td>
</tr>
<tr>
<td>Steuerungstheorie</td>
<td>M-MATH-102941</td>
</tr>
<tr>
<td>Stochastische Differentialgleichungen</td>
<td>M-MATH-102942</td>
</tr>
<tr>
<td>Stochastische Geometrie</td>
<td>M-MATH-102865</td>
</tr>
<tr>
<td>Stochastische Methoden und Simulation</td>
<td>M-WIWI-101400</td>
</tr>
<tr>
<td>Stochastische Modellierung und Optimierung</td>
<td>M-WIWI-101454</td>
</tr>
<tr>
<td>Variationsrechnung</td>
<td>M-MATH-102882</td>
</tr>
<tr>
<td>Verhülsosung: Theorie und Praxis</td>
<td>M-MATH-102940</td>
</tr>
<tr>
<td>Wachstum und Agglomerations</td>
<td>M-WIWI-101496</td>
</tr>
<tr>
<td>Wahrscheinlichkeitstheorie und kombinatorische Optimierung</td>
<td>M-MATH-102947</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wirtschaftsmathematik (M.Sc.)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Marketing Management</td>
<td>M-WIWI-101490</td>
</tr>
<tr>
<td>Markovsche Entscheidungsprozesse</td>
<td>M-MATH-102907</td>
</tr>
<tr>
<td>Mathematische Methoden in Signal- und Bildverarbeitung</td>
<td>M-MATH-102897</td>
</tr>
<tr>
<td>Mathematische Modellierung und Simulation in der Praxis</td>
<td>M-MATH-102929</td>
</tr>
<tr>
<td>Mathematische Optimierung</td>
<td>M-WIWI-101473</td>
</tr>
<tr>
<td>Mathematische Statistik</td>
<td>M-MATH-102909</td>
</tr>
<tr>
<td>Matrixfunktionen</td>
<td>M-MATH-102937</td>
</tr>
<tr>
<td>Matrixfunktionen</td>
<td>M-MATH-102888</td>
</tr>
<tr>
<td>Methodische Grundlagen des OR</td>
<td>M-WIWI-101414</td>
</tr>
<tr>
<td>Microeconomic Theory</td>
<td>M-WIWI-101500</td>
</tr>
<tr>
<td>Nichtparametrische Statistik</td>
<td>M-MATH-102910</td>
</tr>
<tr>
<td>Numerische Fortsetzungsmethoden</td>
<td>M-MATH-102944</td>
</tr>
<tr>
<td>Numerische Methoden für Differentialgleichungen</td>
<td>M-MATH-102888</td>
</tr>
<tr>
<td>Numerische Methoden für hyperbolische Gleichungen</td>
<td>M-MATH-102915</td>
</tr>
<tr>
<td>Numerische Methoden für Integralgleichungen</td>
<td>M-MATH-102930</td>
</tr>
<tr>
<td>Numerische Methoden für zeitabhängige partielle</td>
<td>M-MATH-102928</td>
</tr>
<tr>
<td>Numerische Methoden in der Elektrodynamik</td>
<td>M-MATH-102894</td>
</tr>
<tr>
<td>Numerische Methoden in der Finanzmathematik</td>
<td>M-MATH-102901</td>
</tr>
<tr>
<td>Numerische Methoden in der Finanzmathematik II</td>
<td>M-MATH-102914</td>
</tr>
<tr>
<td>Numerische Methoden in der Strömungsmechanik</td>
<td>M-MATH-102932</td>
</tr>
<tr>
<td>Numerische Optimierungsmethoden</td>
<td>M-MATH-102892</td>
</tr>
<tr>
<td>Numerische Verfahren für die Maxwellgleichungen</td>
<td>M-MATH-102931</td>
</tr>
<tr>
<td>Ökonometrie und Statistik I</td>
<td>M-WIWI-101638</td>
</tr>
<tr>
<td>Ökonometrie und Statistik II</td>
<td>M-WIWI-101639</td>
</tr>
<tr>
<td>Ökonometrische Theorie und ihre Anwendung in Finance</td>
<td>M-WIWI-101502</td>
</tr>
<tr>
<td>Operations Research im Supply Chain Management</td>
<td>M-WIWI-102832</td>
</tr>
<tr>
<td>Operatorkenfunktionen</td>
<td>M-MATH-102938</td>
</tr>
<tr>
<td>Optimierung in Banachräumen</td>
<td>M-MATH-102924</td>
</tr>
<tr>
<td>Optimierung und optimale Kontrolle bei Differentialglichen</td>
<td>M-MATH-102899</td>
</tr>
<tr>
<td>Perkolation</td>
<td>M-MATH-102905</td>
</tr>
<tr>
<td>Potentialtheorie</td>
<td>M-MATH-102879</td>
</tr>
<tr>
<td>Projektionsorientiertes Softwarepraktik</td>
<td>M-MATH-102938</td>
</tr>
<tr>
<td>Rand- und Eigenwertprobleme</td>
<td>M-MATH-102871</td>
</tr>
<tr>
<td>Räumliche Stochastik</td>
<td>M-MATH-102903</td>
</tr>
<tr>
<td>Service Operations</td>
<td>M-WIWI-102805</td>
</tr>
<tr>
<td>Sobolevräume</td>
<td>M-MATH-102926</td>
</tr>
<tr>
<td>Spektraltheorie</td>
<td>M-MATH-101768</td>
</tr>
<tr>
<td>Spezielle Themen der numerischen linearen Algebra</td>
<td>M-MATH-102920</td>
</tr>
<tr>
<td>Spezielle Themen der numerischen linearen Algebra</td>
<td>M-MATH-102958</td>
</tr>
<tr>
<td>Spezielle Themen der numerischen linearen Algebra</td>
<td>M-MATH-102908</td>
</tr>
<tr>
<td>Spezielle Themen der numerischen linearen Algebra</td>
<td>M-MATH-102941</td>
</tr>
<tr>
<td>Spezielle Themen der numerischen linearen Algebra</td>
<td>M-MATH-102942</td>
</tr>
<tr>
<td>Spezielle Themen der numerischen linearen Algebra</td>
<td>M-MATH-102882</td>
</tr>
<tr>
<td>Spezielle Themen der numerischen linearen Algebra</td>
<td>M-MATH-102940</td>
</tr>
<tr>
<td>Spezielle Themen der numerischen linearen Algebra</td>
<td>M-MATH-102956</td>
</tr>
<tr>
<td>Spezielle Themen der numerischen linearen Algebra</td>
<td>M-MATH-102882</td>
</tr>
<tr>
<td>Spezielle Themen der numerischen linearen Algebra</td>
<td>M-MATH-102946</td>
</tr>
<tr>
<td>Steuerung stochastischer Prozesse</td>
<td>M-MATH-102908</td>
</tr>
<tr>
<td>Steuerungstheorie</td>
<td>M-MATH-102941</td>
</tr>
<tr>
<td>Stochastische Differentialgleichungen</td>
<td>M-MATH-102881</td>
</tr>
<tr>
<td>Stochastische Evolutionsgleichungen</td>
<td>M-MATH-102942</td>
</tr>
<tr>
<td>Stochastische Geometrie</td>
<td>M-MATH-102865</td>
</tr>
<tr>
<td>Stochastische Methoden und Simulation</td>
<td>M-WIWI-101400</td>
</tr>
<tr>
<td>Stochastische Modellierung und Optimierung</td>
<td>M-WIWI-101454</td>
</tr>
<tr>
<td>Variationsrechnung</td>
<td>M-MATH-102882</td>
</tr>
<tr>
<td>Vergleichsgeometrie</td>
<td>M-MATH-102940</td>
</tr>
<tr>
<td>Vorhersagen: Theorie und Praxis</td>
<td>M-MATH-102956</td>
</tr>
<tr>
<td>Wachstum und Agglomerations</td>
<td>M-WIWI-101496</td>
</tr>
<tr>
<td>Wahrscheinlichkeitstheorie und kombinatorische Optimierung</td>
<td>M-MATH-102947</td>
</tr>
</tbody>
</table>

INHALTSVERZEICHNIS

INHALTSVERZEICHNIS
III Teilleistungen

- Adaptive Finite Elemente Methoden - T-MATH-105898
- Advanced Game Theory - T-WIWI-102861
- Advanced Inverse Problems: Nonlinearity and Banach Spaces - T-MATH-105927
- Advanced Topics in Economic Theory - T-WIWI-102609
- Algebra - T-MATH-102253
- Algebraische Geometrie - T-MATH-103340
- Algebraische Topologie - T-MATH-105915
- Algebraische Topologie II - T-MATH-105926
- Algebraische Zahlentheorie - T-MATH-103346
- Algorithms for Internet Applications - T-WIWI-102658
- Anforderungsanalyse und management - T-WIWI-102759
- Angewandte Informatik II - Informatiksysteme für eCommerce - T-WIWI-102651
- Angewandte Ökonometrie - T-WIWI-103125
- Computational Economics - T-WIWI-102680
- Computerunterstützte analytische Methoden für Rand- und Eigenwertprobleme - T-MATH-105854
- Corporate Financial Policy - T-WIWI-102622
- Current Issues in the Insurance Industry - T-WIWI-102637
- Data Mining and Applications - T-WIWI-103066
- Datenbanksysteme und XML - T-WIWI-102661
- Der Poisson-Prozess - T-MATH-105922
- Derivate - T-WIWI-102643
- Die Riemannsche Zeta-Funktion - T-MATH-105934
- Differentialgeometrie - T-MATH-102275
- Dokumentenmanagement und Groupwaresysteme - T-WIWI-102663
- Dynamische Systeme - T-MATH-106114
- Efficient Energy Systems and Electric Mobility - T-WIWI-102793
- Effiziente Algorithmen - T-WIWI-102655
- eFinance: Informationswirtschaft für den Wertpapierhandel - T-WIWI-102600
- Einführung in das Wissenschaftliche Rechnen - T-MATH-105837
- Einführung in die geometrische Mathematik - T-MATH-105918
- Einführung in Matlab und numerische Algorithmen - T-MATH-105913
- Einführung in Partikuläre Strömungen - T-MATH-105911
- Endogene Wachstumstheorie - T-WIWI-102785
- Energie und Umwelt - T-WIWI-102650
- Energy Systems Analysis - T-WIWI-102830
- Enterprise Architecture Management - T-WIWI-102668
- Ereignisdiskrete Simulation in Produktion und Logistik - T-WIWI-102718
- Evolutionsgleichungen - T-MATH-105844
- Experimentelle Wirtschaftsforschung - T-WIWI-102614
- Extremale Graphentheorie - T-MATH-105931
- Extremwerttheorie - T-MATH-105908
- Festverzinsliche Titel - T-WIWI-102644
INHALTSVERZEICHNIS

Financial Analysis - T-WIWI-102900 .. 884
Financial Econometrics - T-WIWI-103064 ... 885
Finanzintermediation - T-WIWI-102623 ... 886
Finanzmathematik in diskreter Zeit - T-MATH-105839 887
Finanzmathematik in stetiger Zeit - T-MATH-105930 888
Finite Elemente Methoden - T-MATH-105857 .. 889
Fourieranalysis - T-MATH-105845 .. 890
Funktionalanalyse - T-MATH-102255 .. 891
Gemisch-ganzzahlige Optimierung I - T-WIWI-102719 892
Gemisch-ganzzahlige Optimierung I und II - T-WIWI-102733 893
Gemisch-ganzzahlige Optimierung II - T-WIWI-102720 894
Generalisierte Regressionsmodelle - T-MATH-105870 895
Geometrie der Schemata - T-MATH-105841 ... 896
Geometrische Gruppentheorie - T-MATH-105842 897
Geometrische numerische Integration - T-MATH-105919 898
Geschäftspolitik der Kreditinstitute - T-WIWI-102626 899
Globale Differentialgeometrie - T-MATH-105885 900
Globale Optimierung I - T-WIWI-102726 .. 901
Globale Optimierung I und II - T-WIWI-103638 902
Globale Optimierung II - T-WIWI-102727 .. 903
Graph Theory and Advanced Location Models - T-WIWI-102723 904
Graphentheorie - T-MATH-102273 ... 905
Gruppenwirkungen in der Riemannschen Geometrie - T-MATH-105925 906
Homotopie- und Homologiegruppen - T-MATH-105933 907
Incentives in Organizations - T-WIWI-105781 908
Innovationstheorie und -politik - T-WIWI-102840 909
Insurance Marketing - T-WIWI-102601 ... 910
Insurance Production - T-WIWI-102648 ... 911
Insurance Risk Management - T-WIWI-102636 912
Integralgleichungen - T-MATH-105834 .. 913
Internationale Finanzierung - T-WIWI-102646 914
Internationale Wirtschaftspolitik - T-WIWI-102897 915
Inverse Probleme - T-MATH-105835 .. 916
Klassische Methoden für partielle Differentialgleichungen - T-MATH-105832 917
Knowledge Discovery - T-WIWI-102666 .. 918
Kombinatorik - T-MATH-105916 ... 919
Kombinatorik in der Ebene - T-MATH-105895 920
Komplexe Analysis - T-MATH-105849 .. 921
Konvexe Analysis - T-WIWI-102856 .. 922
Konvexe Geometrie - T-MATH-105831 .. 923
Krankenhausmanagement - T-WIWI-102787 924
Kreditrisiken - T-WIWI-102645 .. 925
L2-Invarianten - T-MATH-105924 ... 926
Management von Informatik-Projekten - T-WIWI-102667 927
Marketing Strategy Planspiel - T-WIWI-102835 928
Marketingkommunikation - T-WIWI-102902 929
Markovsche Entscheidungsprozesse - T-MATH-105921 930
Marktforschung - T-WIWI-102811 .. 931
Masterarbeit - T-MATH-105878 .. 932
Mathematische Methoden in Signal- und Bildverarbeitung - T-MATH-105862 933
Mathematische Modellierung und Simulation in der Praxis - T-MATH-105889 934
Mathematische Statistik - T-MATH-105872 .. 935
Mathematische Theorie der Demokratie - T-WIWI-102617 936
Matrixfunktionen - T-MATH-105906 .. 937
Maxwellgleichungen - T-MATH-105856 .. 938
Modellierung von Geschäftsprozessen - T-WIWI-102697 939
Modelling, Measuring and Managing of Extreme Risks - T-WIWI-102841 940
Multivariate Verfahren - T-WIWI-103124 941
<table>
<thead>
<tr>
<th>Kurs Titel</th>
<th>Codes</th>
<th>Seitenzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naturinspirierte Optimierungsverfahren</td>
<td>T-WIWI-102679</td>
<td>947</td>
</tr>
<tr>
<td>Nicht- und Semiparametrik</td>
<td>T-WIWI-103126</td>
<td>948</td>
</tr>
<tr>
<td>Nichtlineare Optimierung I</td>
<td>T-WIWI-102724</td>
<td>949</td>
</tr>
<tr>
<td>Nichtlineare Optimierung I und II</td>
<td>T-WIWI-103637</td>
<td>950</td>
</tr>
<tr>
<td>Nichtlineare Optimierung II</td>
<td>T-WIWI-102725</td>
<td>951</td>
</tr>
<tr>
<td>Nichtparametrische Statistik</td>
<td>T-MATH-105873</td>
<td>952</td>
</tr>
<tr>
<td>Numerische Fortsetzungsmethoden</td>
<td>T-MATH-105912</td>
<td>953</td>
</tr>
<tr>
<td>Numerische Methoden für Differentialgleichungen</td>
<td>T-MATH-105836</td>
<td>954</td>
</tr>
<tr>
<td>Numerische Methoden für hyperbolische Gleichungen</td>
<td>T-MATH-105900</td>
<td>955</td>
</tr>
<tr>
<td>Numerische Methoden für Integralgleichungen</td>
<td>T-MATH-105901</td>
<td>956</td>
</tr>
<tr>
<td>Numerische Methoden für zeitabhängige partielle Differentialgleichungen</td>
<td>T-MATH-105899</td>
<td>957</td>
</tr>
<tr>
<td>Numerische Methoden in der Elektrodynamik</td>
<td>T-MATH-105860</td>
<td>958</td>
</tr>
<tr>
<td>Numerische Methoden in der Finanzmathematik</td>
<td>T-MATH-105865</td>
<td>959</td>
</tr>
<tr>
<td>Numerische Methoden in der Finanzmathematik II</td>
<td>T-MATH-105880</td>
<td>960</td>
</tr>
<tr>
<td>Numerische Methoden in der Strömungsmechanik</td>
<td>T-MATH-105902</td>
<td>961</td>
</tr>
<tr>
<td>Numerische Optimierungsmethoden</td>
<td>T-MATH-105858</td>
<td>962</td>
</tr>
<tr>
<td>Numerische Verfahren für die Maxwellgleichungen</td>
<td>T-MATH-105920</td>
<td>963</td>
</tr>
<tr>
<td>Open Innovation - Konzepte, Methoden und Best Practices</td>
<td>T-WIWI-102901</td>
<td>964</td>
</tr>
<tr>
<td>Operations Research in Health Care Management</td>
<td>T-WIWI-102884</td>
<td>966</td>
</tr>
<tr>
<td>Operations Research in Supply Chain Management</td>
<td>T-WIWI-102715</td>
<td>968</td>
</tr>
<tr>
<td>Operatorfunktionen</td>
<td>T-MATH-105905</td>
<td>969</td>
</tr>
<tr>
<td>Optimierung in Banachräumen</td>
<td>T-MATH-105893</td>
<td>970</td>
</tr>
<tr>
<td>Optimierung in einer zufälligen Umwelt</td>
<td>T-WIWI-102628</td>
<td>971</td>
</tr>
<tr>
<td>Optimierung und optimale Kontrolle bei Differentialgleichungen</td>
<td>T-MATH-105864</td>
<td>972</td>
</tr>
<tr>
<td>Organic Computing</td>
<td>T-WIWI-102659</td>
<td>973</td>
</tr>
<tr>
<td>OR-nahe Modellierung und Analyse realer Probleme (Projekt)</td>
<td>T-WIWI-102730</td>
<td>975</td>
</tr>
<tr>
<td>P&C Insurance Simulation Game</td>
<td>T-WIWI-102797</td>
<td>976</td>
</tr>
<tr>
<td>Paneldaten</td>
<td>T-WIWI-103127</td>
<td>977</td>
</tr>
<tr>
<td>Parametrische Optimierung</td>
<td>T-WIWI-102855</td>
<td>978</td>
</tr>
<tr>
<td>Perkolation</td>
<td>T-MATH-105869</td>
<td>979</td>
</tr>
<tr>
<td>Portfolio and Asset Liability Management</td>
<td>T-WIWI-103128</td>
<td>980</td>
</tr>
<tr>
<td>Potentialtheorie</td>
<td>T-MATH-105850</td>
<td>981</td>
</tr>
<tr>
<td>Praktikum Informatik</td>
<td>T-WIWI-103523</td>
<td>982</td>
</tr>
<tr>
<td>Praxis-Seminar: Health Care Management (mit Fallstudien)</td>
<td>T-WIWI-102716</td>
<td>984</td>
</tr>
<tr>
<td>Predictive Mechanism and Market Design</td>
<td>T-WIWI-102862</td>
<td>986</td>
</tr>
<tr>
<td>Principles of Insurance Management</td>
<td>T-WIWI-102603</td>
<td>987</td>
</tr>
<tr>
<td>Produkt- und Innovationsmanagement</td>
<td>T-WIWI-102812</td>
<td>988</td>
</tr>
<tr>
<td>Projektorientiertes Softwarepraktikum</td>
<td>T-MATH-105907</td>
<td>990</td>
</tr>
<tr>
<td>Public Management</td>
<td>T-WIWI-102740</td>
<td>991</td>
</tr>
<tr>
<td>Qualitätssicherung I</td>
<td>T-WIWI-102728</td>
<td>993</td>
</tr>
<tr>
<td>Qualitätssicherung II</td>
<td>T-WIWI-102729</td>
<td>994</td>
</tr>
<tr>
<td>Rand- und Eigenwertprobleme</td>
<td>T-MATH-105833</td>
<td>995</td>
</tr>
<tr>
<td>Räumliche Stochastik</td>
<td>T-MATH-105867</td>
<td>996</td>
</tr>
<tr>
<td>Risk Communication</td>
<td>T-WIWI-102649</td>
<td>997</td>
</tr>
<tr>
<td>Semantic Web Technologien</td>
<td>T-WIWI-102874</td>
<td>998</td>
</tr>
<tr>
<td>Seminar Betriebswirtschaftslehne A (Master)</td>
<td>T-WIWI-103474</td>
<td>1000</td>
</tr>
<tr>
<td>Seminar Betriebswirtschaftslehne B (Master)</td>
<td>T-WIWI-103476</td>
<td>1002</td>
</tr>
<tr>
<td>Seminar Informatik A (Master)</td>
<td>T-WIWI-103479</td>
<td>1004</td>
</tr>
<tr>
<td>Seminar Informatik B (Master)</td>
<td>T-WIWI-103480</td>
<td>1008</td>
</tr>
<tr>
<td>Seminar Mathematik</td>
<td>T-MATH-105868</td>
<td>1012</td>
</tr>
<tr>
<td>Seminar Operations Research A (Master)</td>
<td>T-WIWI-103481</td>
<td>1013</td>
</tr>
<tr>
<td>Seminar Operations Research B (Master)</td>
<td>T-WIWI-103482</td>
<td>1014</td>
</tr>
<tr>
<td>Seminar Statistik A (Master)</td>
<td>T-WIWI-103483</td>
<td>1015</td>
</tr>
<tr>
<td>Seminar Statistik B (Master)</td>
<td>T-WIWI-103484</td>
<td>1016</td>
</tr>
<tr>
<td>Seminar Volkswirtschaftslehne A (Master)</td>
<td>T-WIWI-103478</td>
<td>1017</td>
</tr>
<tr>
<td>Seminar Volkswirtschaftslehne B (Master)</td>
<td>T-WIWI-103477</td>
<td>1018</td>
</tr>
<tr>
<td>Service Oriented Computing</td>
<td>T-WIWI-105801</td>
<td>1019</td>
</tr>
<tr>
<td>Simulation I</td>
<td>T-WIWI-102627</td>
<td>1020</td>
</tr>
<tr>
<td>Thema</td>
<td>Kursnummer</td>
<td>Seite</td>
</tr>
<tr>
<td>--</td>
<td>--------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>Zufällige Graphen - T-MATH-105929</td>
<td></td>
<td>1089</td>
</tr>
<tr>
<td>Zeitreihenanalyse - T-MATH-105874</td>
<td></td>
<td>1088</td>
</tr>
<tr>
<td>Workflow-Management - T-WIWI-102662</td>
<td></td>
<td>1086</td>
</tr>
<tr>
<td>Web Science - T-WIWI-103112</td>
<td></td>
<td>1085</td>
</tr>
<tr>
<td>Workflow-Management - T-WIWI-102662</td>
<td></td>
<td>1086</td>
</tr>
<tr>
<td>Zeitreihenanalyse - T-MATH-105874</td>
<td></td>
<td>1088</td>
</tr>
<tr>
<td>Zufällige Graphen - T-MATH-105929</td>
<td></td>
<td>1089</td>
</tr>
</tbody>
</table>
IV Anhang: Studien- und Prüfungsordnung SPO 2016 1090

Stichwortverzeichnis 1105
Studienplan für den Masterstudiengang Wirtschaftsmathematik
am Karlsruher Institut für Technologie (KIT)

Fakultäten für Mathematik und Wirtschaftswissenschaften
04.08.2016

Vorbemerkung
Dieser Studienplan soll die Studien- und Prüfungsordnung des Masterstudiengangs Wirtschaftsmathematik ergänzen, erläutern und den Studierenden konkrete Beispiele zur Organisation des Studiums aufzeigen.

1 Qualifikationsziele und Profil des Studiengangs
Ausbildungsziel des interdisziplinären Masterstudiengangs Wirtschaftsmathematik ist die Qualifizierung für eine berufliche Tätigkeit in den Bereichen Industrie, Banken, Versicherungen, Logistik, Softwareentwicklung und Forschung. Durch die forschungsorientierte Ausbildung werden die Absolventinnen und Absolventen insbesondere auf lebenslanges Lernen vorbereitet.

Fachliche Kernkompetenzen:

Überfachliche Kompetenzen:
Absolventinnen und Absolventen können Probleme in neuen und unvertrauten Situationen, die in einem multidisziplinären Zusammenhang zum Studium stehen, mit ihren erworbenen Fähigkeiten analysieren, bewerten und lösen. Sie sind in der Lage ihr Wissen selbständig zu integrieren, mit hoher Komplexität umzugehen und sie besitzen Ausdauer bei der Lösung schwieriger Probleme. Erhaltene Ergebnisse wissen sie zielführend zu dokumentieren,

Lernergebnisse:

2 Gliederung des Studiums

1. Fach: „Mathematische Methoden“

In diesem Fach sind 18 Leistungspunkte zu erwerben. Die zu den Gebieten gehörenden Module sind dem Modulhandbuch zu entnehmen.

In diesem Fach sind 18 Leistungspunkte zu erwerben. Die zu den Gebieten gehörenden Module sind dem Modulhandbuch zu entnehmen.

Seminare

Des Weiteren müssen zwei Seminarmodule über je 3 Leistungspunkte abgelegt werden, jeweils eines aus den beiden Fächern Mathematik und Wirtschaftswissenschaften.

Wahlpflichtbereich

Masterarbeit

Die Masterarbeit wird in der Regel im vierten Semester geschrieben und ist mit 30 LP versehen. Voraussetzung für die Zulassung zum Modul Masterarbeit ist, dass die/der Studierende Modulprüfungen im Umfang von 70 LP erfolgreich abgelegt hat. Sie kann in beiden beteiligten Fakultäten betreut werden und soll nach Möglichkeit ein für die Wirtschaftsmathematik inhaltlich und methodisch relevantes Thema behandeln. Voraussetzung ist eine angemessene Vertiefung im Themenbereich der Arbeit.
<table>
<thead>
<tr>
<th>Fach</th>
<th>nachzuweisende Leistungspunkte (LP) in Modulprüfungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematische Methoden</td>
<td>36 (mindestens 8 LP aus Modulen der Stochastik und weitere 8 LP aus Modulen der Analysis oder Angewandter und Numerischer Mathematik, Optimierung)</td>
</tr>
<tr>
<td>Finance - Risk Management - Managerial Economics</td>
<td>18</td>
</tr>
<tr>
<td>Operations Management – Datenanalyse - Informatik</td>
<td>18</td>
</tr>
<tr>
<td>Wirtschaftswissenschaftliches Seminar</td>
<td>3</td>
</tr>
<tr>
<td>Mathematisches Seminar</td>
<td>3</td>
</tr>
<tr>
<td>Wahlpflichtfach</td>
<td>12</td>
</tr>
<tr>
<td>Masterarbeit</td>
<td>30</td>
</tr>
</tbody>
</table>

3 Überfachliche Qualifikationen

Basiskompetenzen (soft skills)

1. Teamarbeit, soziale Kommunikation und Kreativitätstechniken (z.B. Arbeit in Kleingruppen, gemeinsames Bearbeiten der Hausaufgaben und Nacharbeiten des Vorlesungsstoffes)
2. Präsentationerstellung und -techniken
3. Logisches und systematisches Argumentieren und Schreiben (z.B. in Übungen, Seminaren, beim Ausarbeiten der Vorträge und Verfassen der Hausaufgaben)
4. Strukturierte Problemlösung und Kommunikation
Praxisorientierung (enabling skills)

1. Kompetenzen im Projektmanagement
2. Betriebswirtschaftliche Grundkenntnisse
3. Englisch als Fachsprache

Orientierungswissen

1. Vermittlung von interdisziplinärem Wissen
2. Wissen über internationale Organisationen
3. Medien, Technik und Innovation

4 Exemplarische Studienverläufe

Die folgenden Versionen stellen lediglich eine Auswahl von vielen Möglichkeiten dar, den Studienverlauf zu gestalten.

Version 1:

Semester 1: 30 LP, 5 Prüfungsleistungen
Fach 1: Analysis 8 LP, Stochastik 8 LP, Wahl 5 LP = 21 LP
Fach 2: Finance 1 9 LP (SS) bzw. Insurance Management I 9 LP (WS)

Semester 2: 28 LP, 6 Prüfungsleistungen
Fach 1: Wahl 6 LP + Wahl 4 LP (oder 5+5 oder 7+5) = 10 LP
Fach 2: Finance 2 9 LP (WS) bzw. Finance 1 (SS)
Fach 3: Informatik 9 LP

Semester 3: 32 LP, 6 Prüfungsleistungen, 1 Studienleistung
Fach 1: Wahl 5 LP
Fach 3: Stochastische Methoden und Simulation 9 LP
Fach 4: 3 LP (Seminar WiWi)
Fach 5: 3 LP (Seminar Math)
Wahlpflichtfach: 8 LP+4 LP (oder andere Stückelung) = 12 LP

Semester 4: 30 LP
Masterarbeit
Version 2:

Semester 1: 33 LP, 5 Prüfungsleistungen
Fach 1: Analysis 8 LP, Stochastik 8 LP, Wahl 8 LP = 24 LP
Fach 2: Finance 1 9 LP (SS) bzw. Insurance Management I 9 LP (WS)

Semester 2: 30 LP, 6 Prüfungsleistungen
Fach 1: Wahl 8 LP + Wahl 4 LP (oder andere Stückelung wie 6+6 oder 7+5) = 12 LP
Fach 2: Finance 2 9 LP (WS) bzw. Finance 1 (SS)
Fach 3: Informatik 9 LP

Semester 3: 27 LP, 5 Prüfungsleistungen, 1 Studienleistung
Fach 3: Stochastische Methoden und Simulation 9 LP
Fach 4: 3 LP (Seminar WiWi)
Fach 5: 3 LP (Seminar Math)
Wahlpflichtfach: 8 LP+4 LP (oder andere Stückelung wie z.B. 6+6 oder 7+5) = 12 LP

Semester 4: 30 LP
Masterarbeit

Version 3:

Semester 1: 30 LP, 5 Prüfungsleistungen
Fach 1: Analysis 8 LP, Stochastik 8 LP, Wahl 5 LP = 21 LP
Fach 2: Finance 1 9 LP

Semester 2: 30 LP, 6 Prüfungsleistungen, 1 Studienleistung
Fach 2: Finance 2 9 LP
Fach 3: Informatik 9 LP, Stochastische Methoden und Simulation 9 LP = 18 LP
Fach 5: 3 LP (Seminar Math)

Semester 3: 30 LP, 5 -- 6 Prüfungsleistung (je nach Stückelung)
Fach 1: Wahl 15 LP (in verschiedenen Stückelungen denkbar, z.B. 5+5+5, 8+7, 6+4+5)
Wahlpflichtfach: 12 LP (z.B. 8+4 LP oder 9+3 LP)
Fach 4: 3 LP (Seminar WiWi)

Semester 4: 30 LP
Masterarbeit

Version 4: Beginn Sommersemester (mit ganz konkreter, möglicher Wahl)

Semester 1: 29 LP, 5 Prüfungsleistungen
Fach 1: Einführung in das wissenschaftliche Rechnen (Numerik und angewandte Mathematik) 8 LP, Finanzmathematik in stetiger Zeit (Stochastik) 8 LP, Zeitreihen (Stochastik) 4 LP = 20 LP
Fach 2: Finance 1: Derivate 4.5 LP, Asset Pricing 4.5 LP = 9 LP

Semester 2: 30 LP, 5 Prüfungsleistungen
Fach 1: Funktionalanalysis (Analysis) 8 LP, Räumliche Stochastik (Stochastik) (8 LP = 16 LP)
Fach 2: Finance 2: Festverzinsliche Titel 4.5 LP, Kreditrisiken 4.5 LP = 9 LP
Fach 3: Informatik: Algorithms for Internet Applications 5 LP

Semester 3: 31 LP, 6 Prüfungsleistungen, 1 Studienleistung
Fach 3: Informatik: Smart Energy Distribution 4 LP
Fach 3: Operations Research im Supply Chain Management und Health Care Management: Taktisches und operatives Supply Chain Management 4.5 LP + Ereignisdiskrete Simulation in Produktion und Logistik 4.5 LP = 9 LP
Fach 4: Seminar WiWi 3 LP (Prüfungsleistung)
Fach 5: Seminar Math 3 LP (Studienleistung)
Wahlpflichtfach: Stochastische Geometrie (Stochastik) 8 LP, Generalisierte Regressionsmodelle (Stochastik) 4 LP = 12 LP

Semester 4: 30 LP
Masterarbeit

Version 5: Beginn Sommersemester (mit ganz konkreter, möglicher Wahl)

Semester 1: 29 LP, 5 Prüfungsleistungen
Fach 1: Einführung in das wissenschaftliche Rechnen (Numerik und angewandte Mathematik) 8 LP, Finanzmathematik in stetiger Zeit (Stochastik) 8 LP, Zeitreihen (Stochastik) 4 LP = 20 LP
Fach 2: Finance 1: Derivate 4.5 LP, Asset Pricing 4.5 LP = 9 LP

Semester 2: 33 LP, 5 Prüfungsleistungen, 1 Studienleistung
Fach 1: Funktionalanalysis (Analysis) 8 LP, Asymptotische Stochastik (Stochastik) 8 LP = 16 LP
Fach 2: Finance 2: Festverzinsliche Titel 4.5 LP, Kreditrisiken 4.5 LP = 9 LP
Fach 3: Informatik: Algorithms for Internet Applications 5 LP
Fach 5: 3 LP (Seminar Mathe) 3 LP (Studienleistung)

Semester 3: 28 LP, 6 Prüfungsleistungen
Fach 3: Informatik: Smart Energy Distribution 4 LP
Fach 3: Operations Research im Supply Chain Management und Health Care Management: Taktisches und operatives Supply Chain Management 4.5 LP + Ereignisdiskrete Simulation in Produktion und Logistik 4.5 LP = 9 LP
Fach 4: Seminar WiWi 3 LP (Prüfungsleistung)
Wahlpflichtfach: Rand- und Eigenwertprobleme (Analysis) 8 LP, Generalisierte Regressionsmodelle (Stochastik) 4 LP = 12 LP

Semester 4: 30 LP
Masterarbeit
Version 6: Beginn Wintersemester (mit ganz konkreter, möglicher Wahl)

Semester 1: 31.5 LP, 5 Prüfungsleistungen
Fach 1: Funktionalanalysis (Analysis) 8 LP, Finanzmathematik in diskreter Zeit (Stochastik) 8 LP, Algebra 8 LP = 24 LP
Fach 2: Finance 1: Valuation 4.5 LP
Fach 4: Seminar WiWi 3 LP

Semester 2: 32.5 LP, 6 Prüfungsleistungen
Fach 1: Finanzmathematik in stetiger Zeit (Stochastik) 8 LP, Zeitreihen (Stochastik) 4 LP = 12 LP
Fach 2: Finance 1: Derivate 4.5 LP
Fach 3: Informatik: Dokumentenmanagement und Groupwaresysteme 4 LP
Wahlpflichtbereich: Rand- und Eigenwertprobleme (Analysis) 8 LP, Generalisierte Regressionsmodelle (Stochastik) 4 LP = 12 LP

Semester 3: 26 LP, 5 Prüfungsleistungen, 1 Studienleistung
Fach 2: Finance 2: Finanzintermediation 4.5 LP + eFinance: Informationswirtschaft für den Wertpapierhandel 4.5 LP = 9 LP
Fach 3: Informatik: Algorithms for Internet Applications 5 LP
Fach 3: Operations Research im Supply Chain Management und Health Care Management: Standortplanung und strategisches Supply Chain Management in der Prozessindustrie 4.5 LP + Supply Chain Wirtschaftsmathematik (M.Sc.) 4.5 LP = 9 LP
Fach 5: Seminar Mathe 3 LP

Semester 4: 30 LP
Masterarbeit

Version 7: Beginn Wintersemester (mit ganz konkreter, möglicher Wahl)

Semester 1: 31.5 LP, 5 Prüfungsleistungen
Fach 1: Funktionalanalysis (Analysis) 8 LP, Finanzmathematik in diskreter Zeit (Stochastik) 8 LP, Algebra 8 LP = 24 LP
Fach 2: Finance 1: Valuation 4.5 LP
Fach 4: Seminar WiWi 3 LP

Semester 2: 32.5 LP, 6 Prüfungsleistungen
Fach 1: Finanzmathematik in stetiger Zeit (Stochastik) 8 LP, Zeitreihen (Stochastik) 4 LP = 12 LP
Fach 2: Finance 1: Derivate 4.5 LP
Fach 3: Informatik: Dokumentenmanagement und Groupwaresysteme 4 LP
Wahlpflichtbereich: Einführung in das wissenschaftliche Rechnen (Numerik und angewandte Mathematik) 8 LP, Generalisierte Regressionsmodelle (Stochastik) 4 LP = 12 LP

Semester 3: 26,5 LP, 5 Prüfungsleistungen, 1 Studienleistung
Fach 2: Finance 2: Finanzintermediation 4.5 LP + eFinance: Informationswirtschaft für den Wertpapierhandel 4.5 LP = 9 LP
Fach 3: Informatik: Algorithms for Internet Applications 5 LP
Fach 3: Operations Research im Supply Chain Management und Health Care Management: Standortplanung und strategisches Supply Chain Management 4.5 LP + Supply Chain Wirtschaftsmathematik (M.Sc.)
Management in der Prozessindustrie 4.5 LP = 9 LP
Fach 5: Seminar Math 3 LP

Semester 4: 30 LP
Masterarbeit

Version 8: Beginn Wintersemester (mit ganz konkreter, möglicher Wahl)

Semester 1: 31.5 LP, 5 Prüfungsleistungen
Fach 1: Funktionalanalysis (Analysis) 8 LP, Finanzmathematik in diskreter Zeit (Stochastik) 8 LP, Algebra 8 LP = 24 LP
Fach 2: Finance 1: Valuation 4.5 LP
Fach 4: Seminar WiWi 3 LP

Semester 2: 29.5 LP, 6 Prüfungsleistungen
Fach 1: Finanzmathematik in stetiger Zeit (Stochastik) 8 LP, Zeitreihen (Stochastik) 4 LP = 12 LP
Fach 2: Finance 1: Derivate 4.5 LP
Fach 3: Informatik: Dokumentenmanagement und Groupwaresysteme 4 LP + Effiziente Algorithmen 5 LP = 9 LP
Wahlpflichtbereich: Generalisierte Regressionsmodelle (Stochastik) 4 LP

Semester 3: 29 LP, 6 Prüfungsleistungen, 1 Studienleistung
Fach 2: Insurance Management I: Insurance Production 4.5 LP
Fach 3: Stochastische Modellierung und Optimierung: Simulation I 4.5 LP + Simulation II 4.5 LP = 9 LP
Wahlpflichtbereich: Differentialgeometrie (Algebra und Geometrie) 8 LP

Semester 4: 30 LP
Masterarbeit

Version 9: Beginn Wintersemester (mit ganz konkreter, möglicher Wahl)

Semester 1: 31.5 LP, 5 Prüfungsleistungen
Fach 1: Funktionalanalysis (Analysis) 8 LP, Finanzmathematik in diskreter Zeit (Stochastik) 8 LP, Algebra 8 LP = 24 LP
Fach 2: Insurance Management I: Insurance Production 4.5 LP
Fach 4: Seminar WiWi 3 LP

Semester 2: 29.5 LP, 6 Prüfungsleistungen
Fach 1: Finanzmathematik in stetiger Zeit (Stochastik) 8 LP, Zeitreihen (Stochastik) 4 LP = 12 LP
Fach 2: Insurance Management I: Insurance Marketing 4.5 LP
Fach 3: Stochastische Modellierung und Optimierung: Simulation I 4.5 LP + Simulation II 4.5 LP = 9 LP
Wahlpflichtbereich: Informatik: Smart Energy Distribution 4 LP

Semester 3: 29 LP, 6 Prüfungsleistungen, 1 Studienleistung
Fach 2: Entscheidungs- und Spieltheorie: Auktionstheorie 4.5 LP + Experimentelle Wirtschaftsforschung 4.5 LP = 9 LP

Fach 3: Operations Research im Supply Chain Management: Graph Theory and Advanced Location Models 4.5 LP, Standortplanung und strategisches Supply Chain Management 4.5 LP = 9 LP

Fach 5: Seminar Math 3 LP

Wahlpflichtbereich: Informatik: Knowledge Discovery 5 LP + Seminar Informatik B (Master) 3 LP = 8 LP

Semester 4: 30 LP

Masterarbeit
Teil II
Module

1 Masterarbeit

Modul: Modul Masterarbeit (MATHMAST) [M-MATH-102917]

Verantwortung: Sebastian Grensing
Einrichtung: KIT-Fakultät für Mathematik
Curriculare Verankerung: Pflicht
Bestandteil von: Masterarbeit

Leistungspunkte	Modulturnus	Dauer
30 | Jedes Semester | 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105878</td>
<td>Masterarbeit (S. 936)</td>
<td>30</td>
<td>Sebastian Grensing</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Soll die Masterarbeit außerhalb der KIT-Fakultät für Mathematik oder der KIT-Fakultät für Wirtschaftswissenschaften angefertigt werden, so bedarf dies der Genehmigung durch den Prüfungsausschuss. Details regelt §14 der Studien- und Prüfungsordnung.

Voraussetzungen

Voraussetzung für die Zulassung zum Modul Masterarbeit ist, dass die/der Studierende Modulprüfungen im Umfang von 70 LP erfolgreich abgelegt hat.

Qualifikationsziele

Inhalt

Nach §14 SPO soll die Masterarbeit zeigen, dass die Studierenden in der Lage sind, ein Problem aus ihrem Studienfach selbstständig und in begrenzter Zeit nach wissenschaftlichen Methoden auf dem Stand der Forschung bearbeiten. Sie beherrschen die dafür erforderlichen wissenschaftlichen Methoden und Verfahren, setzen diese korrekt an, modifizieren diese Methoden und Verfahren, falls dies erforderlich ist, und entwickeln sie bei Bedarf weiter. Alternative Ansätze werden kritisch verglichen. Die Studierenden schreiben ihre Ergebnisse klar strukturiert und in akademisch angemessener Form in ihrer Arbeit auf.

Wirtschaftsmathematik (M.Sc.)
Modulhandbuch mit Stand 04.08.2016 für Wintersemester 16/17
Arbeitsaufwand
Arbeitsaufwand gesamt: 900 h

Präsenzstudium: 0 h
Eigenstudium: 900 h
2 Mathematische Methoden

2.1 Stochastik

Verantwortung: Norbert Henze

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Stochastik
Mathematische Methoden/Wahlbereich Mathematische Methoden/Stochastik
Wahlpflichtfach
Zusatzleistungen

Leistungspunkte: 8
Modulturnus: Jedes Wintersemester
Dauer: 1 Semester

Pflichtbestandteile

Kennen Verantwortung
T-MATH-105866 Asymptotische Stochastik (S. 839) 8 Bernhard Klar, Vicky Fasen-Hartmann, Norbert Henze

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 30 min).

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Die Absolvent(inn)en

- sind mit grundlegenden probabilistischen Techniken im Zusammenhang mit dem Nachweis der Verteilungskonvergenz von Zufallsvektoren vertraut und können diese anwenden,
- kennen das asymptotische Verhalten von Maximum-Likelihood-Schätzern und des verallgemeinerten Likelihood-Quotienten bei parametrischen Testproblemen,
- können das Limesverhalten von nichtdegenerierten und einfach degenerierten U-Statistiken erläutern,
- kennen den Satz von Donsker und können dessen Beweis skizzieren.

Inhalt

- Poissonsscher Grenzwertsatz für Dreiecksschemata,
- Momentenmethode,
- Zentraler Grenzwertsatz für stationäre m-abhängige Folgen,
- allgemeine multivariate Normalverteilung,
- Verteilungskonvergenz und Zentraler Grenzwertsatz im \mathbb{R}^d,
- Satz von Glivenko-Cantelli,
2.1 Stochastik

- Grenzwertsätze für U-Statistiken,
- asymptotische Schätzungstheorie (Maximum-Likelihood- und Momentenschätzer),
- asymptotische Effizienz und relative Effizienz von Schätzern,
- asymptotische Tests in parametrischen Modellen, parametrischer Bootstrap,
- schwache Konvergenz in metrischen Räumen,
- Satz von Prokhorov,
- Brown-Wiener-Prozess, Satz von Donsker, funktionaler Zentraler Grenzwertsatz, Brownsche Brücke
- Anpassungstests.

Empfehlungen
Die Inhalte des Moduls "Wahrscheinlichkeitstheorie" werden benötigt.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Brownsche Bewegung (MATHST10) [M-MATH-102904]

Verantwortung: Nicole Bäuerle

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung:
- Mathematische Methoden/Stochastik
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Stochastik
- Wahlpflichtfach
- Zusatzleistungen

Leistungspunkte: 4
Modulturnus: Unregelmäßig
Dauer: 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105868</td>
<td>Brownsche Bewegung (S. 843)</td>
<td>4</td>
<td>Günter Last, Nicole Bäuerle, Vicky Fasen-Hartmann</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 20 min).

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen können
- Eigenschaften der Brownschen Bewegung nennen, erklären und begründen,
- die Brownsche Bewegung zur Modellierung von stochastischen Phänomenen anwenden,
- spezifische probabilistische Techniken gebrauchen,
- selbstorganisiert und reflexiv arbeiten.

Inhalt
- Existenz und Konstruktion der Brownschen Bewegung
- Pfadeigenschaften der Brownschen Bewegung
- Starke Markov-Eigenschaft der Brownschen Bewegung mit Anwendungen
- Skorohod Darstellung der Brownschen Bewegung

Empfehlungen
Die Inhalte des Moduls “Wahrscheinlichkeitstheorie” werden benötigt.

Arbeitsaufwand
Präsenzzeit: 45 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 75 Stunden

Wirtschaftsmathematik (M.Sc.)
Modulhandbuch mit Stand 04.08.2016 für Wintersemester 16/17
• Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
• Bearbeitung von Übungsaufgaben
• Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
• Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Der Poisson-Prozess (MATHST20) [M-MATH-102922]

Verantwortung: Günter Last

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Mathematische Methoden/Stochastik, Wahlpflicht

Bestandteil von: Mathematische Methoden/Wahlbereich Mathematische Methoden/Stochastik, Wahlpflichtfach, Zusatzleistungen

Leistungspunkte 5 Modulturnus Unregelmäßig Dauer 1 Semester

Pflichtbestandteile

Kennung Teilleistung LP Verantwortung
T-MATH-105922 Der Poisson-Prozess (S. 856) 5 Günter Last, Vicky Fasen-Hartmann, Daniel Hug

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 30 min).

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele

Inhalt
- Verteilungseigenschaften des Poisson-Prozesses
- Der Poisson-Prozess als spezieller Punktdprozess
- Stationäre Poisson- und Punktdprozesse
- Zufällige Maße und Coxprozesse
- Poisson-Cluster Prozesse und zusammengesetzte Poisson-Prozesse
- Der räumliche Gale-Shapley Algorithmus

Empfehlungen
Die Inhalte des Moduls Wahrscheinlichkeitstheorie werden zum Teil benötigt.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 150 Stunden
Präsenzzeit: 60 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 90 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
• Bearbeitung von Übungsaufgaben
• Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
• Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Extremwerttheorie (MATHST23) [M-MATH-102939]

Verantwortung: Vicky Fasen-Hartmann

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung:
- Mathematische Methoden/Stochastik
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Stochastik
- Wahlpflichtfach
- Zusatzleistungen

Leistungspunkte Modulturnus Dauer

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105908</td>
<td>Extremwerttheorie (S. 882)</td>
<td>4</td>
<td>Vicky Fasen-Hartmann, Norbert Henze</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 20 min).

Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Absolventinnen und Absolventen können

- statistische Methoden zur Schätzung von Risikomaßen nennen, erklären, begründen und anwenden,
- extreme Ereignisse modellieren und quantifizieren,
- spezifische probabilistische Techniken gebrauchen,
- selbstorganisiert und reflexiv arbeiten.

Inhalt

- Satz von Fisher und Tippett
- verallgemeinerte Extremwert- und Paretoverteilung (GED und GPD)
- Anziehungsbereiche von verallgemeinerten Extremwertverteilungen
- Satz von Pickands-Balkema-de Haan
- Schätzen von Risikomaßen
- Hill-Schätzer
- Blockmaximamethode
- POT-Methode
Empfehlungen
Die Inhalte des Moduls “Wahrscheinlichkeitstheorie” werden benötigt.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 120 Stunden
Präsenzzeit: 45 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 75 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Finanzmathematik in diskreter Zeit (MATHST04) [M-MATH-102919]

Verantwortung: Nicole Bäuerle

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung:
- Mathematische Methoden/Stochastik
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Stochastik
- Wahlpflichtfach
- Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105839</td>
<td>Finanzmathematik in diskreter Zeit (S. 887)</td>
<td>8</td>
<td>Nicole Bäuerle, Vicky Fasen-Hartmann</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form einer schriftlichen Gesamtprüfung (120 min).

Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Absolventinnen und Absolventen können

- grundlegende Techniken der modernen diskreten Finanzmathematik nennen, erörtern und anwenden,
- spezifische probabilistische Techniken gebrauchen,
- ökonomische Fragestellungen im Bereich der diskreten Bewertung und Optimierung mathematisch analysieren,
- selbstorganisiert und reflexiv arbeiten.

Inhalt

- Endliche Finanzmärkte
- Das Cox-Ross-Rubinstein-Modell
 - Grenzübergang zu Black-Scholes
- Charakterisierung von No-Arbitrage
- Charakterisierung der Vollständigkeit
- Unvollständige Märkte
- Amerikanische Optionen
- Exotische Optionen
- Portfolio-Optimierung
- Präferenzen und stochastische Dominanz
Erwartungswert-Varianz Portfolios
Risikomaße

Empfehlungen
Die Inhalte des Moduls „Wahrscheinlichkeitstheorie“ werden benötigt.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden
Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
Bearbeitung von Übungsaufgaben
Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Finanzmathematik in stetiger Zeit (MATHST08) [M-MATH-102860]

Verantwortung: Nicole Bäuerle

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Mathematische Methoden/Stochastik, Wahlbereich Mathematische Methoden/Stochastik, Wahlpflichtfach, Zusatzleistungen

Zusatzleistungen

Leistungspunkte 8
Modulturnus Jedes Sommersemester
Dauer 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105930</td>
<td>Finanzmathematik in stetiger Zeit (S. 888)</td>
<td>8</td>
<td>Nicole Bäuerle, Vicky Fasenhartmann</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 30 min).

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Das Modul kann nicht zusammen mit der Lehrveranstaltung Stochastic Calculus and Finance geprüft werden.

Qualifikationsziele
Absolventinnen und Absolventen können

- grundlegende Techniken der modernen zeitstetigen Finanzmathematik nennen, erörtern und anwenden,
- spezifische probabilistische Techniken gebrauchen,
- ökonomische Fragestellungen im Bereich der Bewertung und Optimierung mathematisch analysieren,
- selbstorganisiert und reflexiv arbeiten.

Inhalt

- Stochastische Prozesse und Filtrationen
 - Martingale in stetiger Zeit
 - Stopzeiten
 - Quadratische Variation
- Stochastisches Ito-Integral bzgl. stetiger Semimartingale
- Ito-Kalkül
 - Ito-Doebelin Formel
 - Stochastische Exponentiale
 - Satz von Girsanov
 - Martingaldarstellung
2.1 Stochastik

- Black-Scholes Finanzmarkt
 - Arbitrage und äquivalente Martingalmaße
 - Optionen und No-Arbitragepreise
 - Vollständigkeit
- Portfolio Optimierung
- Bonds, Forwards und Zinsstrukturmodelle

Empfehlungen

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Generalisierte Regressionsmodelle (MATHST09) [M-MATH-102906]

Verantwortung: Bernhard Klar

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Mathematische Methoden/Stochastik
Mathematische Methoden/Wahlbereich Mathematische Methoden/Stochastik
Wahlpflichtfach
Zusatzleistungen

Leistungspunkte Modulturnus Dauer

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teileistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105870</td>
<td>Generalisierte Regressionsmodelle (S. 895)</td>
<td>4</td>
<td>Bernhard Klar, Norbert Henze</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 20 min).

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Die Studierenden

- kennen die wichtigsten Regressionsmodelle und deren Eigenschaften,
- können die Anwendbarkeit dieser Modelle beurteilen und die Ergebnisse interpretieren,
- sind in der Lage, die Modelle zur Analyse komplexerer Datensätze einzusetzen.

Inhalt
Die Vorlesung behandelt grundlegende Modelle der Statistik, die es ermöglichen, Zusammenhänge zwischen Größen zu erfassen. Themen sind:

- Lineare Regressionsmodelle
- Modelldiagnostik
- Multikollinearität
- Variablen-Selektion
- Verallgemeinerte Kleinste-Quadrate-Methode
- Nichtlineare Regressionsmodelle
- Parameterschätzung
- Asymptotische Normalität der Maximum-Likelihood-Schätzer
- Regressionsmodelle für Zähldaten
- Verallgemeinerte lineare Modelle
Parameterschätzung
Modelldiagnose
Überdispersion und Quasi-Likelihood

Empfehlungen
Die Inhalte des Moduls "Statistik" werden benötigt.

Arbeitsaufwand
Präsenzzeit: 45 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 75 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Markovsche Entscheidungsprozesse (MATHST11) [M-MATH-102907]

Verantwortung: Nicole Bäuerle

Einrichtung: KIT-Fakultät für Mathematik
Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Stochastik
Mathematische Methoden/Wahlbereich Mathematische Methoden/Stochastik
Wahlpflichtfach
Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105921</td>
<td>Markovsche Entscheidungsprozesse (S. 933)</td>
<td>5</td>
<td>Nicole Bäuerle</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 20 min).

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen können

- Die mathematischen Grundlagen der Markovschen Entscheidungsprozesse nennen und Lösungsverfahren anwenden,
- stochastische, dynamische Optimierungsprobleme als Markovschen Entscheidungsprozess formulieren,
- selbstorganisiert und reflexiv arbeiten.

Inhalt

- MDPs mit endlichem Horizont
 - Die Bellman Gleichung
 - Strukturierte Probleme
 - Anwendungsbeispiele

- MDPs mit unendlichem Horizont
 - kontrahierende MDPs
 - positive MDPs
 - Howards Politikverbesserung
 - Lösung durch lineare Programme

- Stopp-Probleme
 - endlicher und unendlicher Horizont
 - One-step-look-ahead-Regel

Empfehlungen
Das Modul “Wahrscheinlichkeitstheorie” sollte bereits absolviert sein. Das Modul “Markovsche Ketten” ist hilfreich.
Arbeitsaufwand
Gesamter Arbeitsaufwand: 150 Stunden
Präsenzzeit: 60 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 90 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Mathematische Statistik (MATHST15) [M-MATH-102909]

Verantwortung: Bernhard Klar

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung:
Mathematische Methoden/Stochastik
Mathematische Methoden/Wahlbereich Mathematische Methoden/Stochastik
Wahlpflichtfach
Zusatzleistungen

Leistungspunkte: 4
Modulturnus: Unregelmäßig
Dauer: 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105872</td>
<td>Mathematische Statistik (S. 939)</td>
<td>4</td>
<td>Bernhard Klar, Norbert Henze</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 20 min).

Voraussetzungen
Keine

Qualifikationsziele
Die Studierenden
- kennen die grundlegenden Konzepte der mathematischen Statistik,
- können diese bei einfachen Fragestellungen und Beispielen eigenständig anwenden,
- kennen spezifische probabilistische Techniken und können damit Schätz- und Test-Verfahren mathematisch analyseren.

Inhalt
Die Vorlesung behandelt grundlegende Konzepte der mathematischen Statistik, insbesondere die finite Optimalitätstheorie von Schätzern und Tests. Themen sind:
- Optimale erwartungstreue Schätzer
- Beste lineare erwartungstreue Schätzer
- Cramér-Rao-Schranke in Exponentialfamilien
- Suffizienz und Vollständigkeit
- Satz von Lehmann-Scheffé
- Neyman-Pearson-Tests
- Optimale unverfälschte Tests

Empfehlungen
Die Inhalte des Moduls “Wahrscheinlichkeitstheorie” werden benötigt. Das Modul “Statistik” ist hilfreich.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 120 Stunden
Präsenzzeit: 45 Stunden
Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 75 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Nichtparametrische Statistik (MATHST16) [M-MATH-102910]

Verantwortung: Norbert Henze

Einrichtung: KIT-Fakultät für Mathematik

Curricula Verankerung: Mathematische Methoden/Stochastik
Mathematische Methoden/Wahlbereich Mathematische Methoden/Stochastik
Wahlpflichtfach
Zusatzleistungen

Leistungspunkte 4
Modulturnus Unregelmäßig
Dauer 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105873</td>
<td>Nichtparametrische Statistik (S. 952)</td>
<td>4</td>
<td>Bernhard Klar, Norbert Henze</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 20 min).

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele

- Absolventinnen und Absolventen können verschiedene nichtparametrische statistische Testmethoden an Hand folgender Beispiele erklären und gegen parametrische Methoden abgrenzen:
 - Einstichproben-Lage-Problem
 - Zweistichproben-Lage-Problem
- Sie können die Effizienz verschiedener Tests mittels asymptotischer Methoden vergleichen.
- Sie können verschiedene Abhängigkeitsmaße nennen und gegeneinander abgrenzen.
- Sie können verschiedene nichtparametrische Schätzmethoden an Hand folgender Beispiele nennen und erklären:
 - Dichteschätzung
 - Nichtparametrische Regression

Inhalt

- Ordnungsstatistiken und Quantilschätzung
- Rang-Statistiken
- Abhängigkeitsmaße
- Nichtparametrische Dichte- und Regressionsschätzung
Empfehlungen
Die Inhalte des Moduls 'Wahrscheinlichkeitsrechnung' werden benötigt. Das Modul 'Asymptotische Stochastik' ist hilfreich.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 120 Stunden
Präsenzzeit: 45 Stunden
• Lehrveranstaltung einschließlich studienbegleitender Modulprüfung
Selbststudium: 75 Stunden
• Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
• Bearbeitung von Übungsaufgaben
• Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
• Vorbereitung auf die studienbegleitende Modulprüfung
M Modul: Perkolation (MATHST13) [M-MATH-102905]

Verantwortung: Günter Last
Einrichtung: KIT-Fakultät für Mathematik
Curriculare Verankerung: Wahlpflicht
Bestandteil von: Mathematische Methoden/Stochastik
Mathematische Methoden/Wahlbereich Mathematische Methoden/Stochastik
Wahlpflichtfach
Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105869</td>
<td>Perkolation (S. 979)</td>
<td>6</td>
<td>Günter Last</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 30 min).

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Die Studierenden
- kennen grundlegende Modelle der diskreten und stetigen Perkolation,
- erwerben die Fähigkeit, spezifische probabilistische und graphentheoretische Methoden zur Analyse dieser Modelle einzusetzen,
- können selbstorganisiert und reflexiv arbeiten.

Inhalt
- Kanten- und Knoten-Perkolation auf Graphen
- Satz von Harris-Kesten
- Asymptotik der Clustergröße im sub- und superkritischen Fall
- Eindeutigkeit des unendlichen Clusters im quasitransitiven Fall
- Perkolation auf dem Gilbert-Graphen
- Stetige Perkolation

Empfehlungen
Das Modul Wahrscheinlichkeitstheorie sollte bereits belegt worden sein.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 180 Stunden
Präsenzzeit: 60 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung
Selbststudium: 120 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Räumliche Stochastik (MATHST14) [M-MATH-102903]

Verantwortung: Günter Last

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Mathematische Methoden/Stochastik
Mathematische Methoden/Wahlbereich Mathematische Methoden/Stochastik
Wahlpflichtfach
Zusatzleistungen

Leistungspunkte 8
Modulturnus Jedes Wintersemester
Dauer 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
<th>Pflichtbestandteile</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105867</td>
<td>8</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Räumliche Stochastik (S. 996)</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 30 min).

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Die Studierenden kennen grundlegende räumliche stochastische Prozesse. Dabei verstehen sie nicht nur allgemeine Verteilungseigenschaften, sondern können auch konkrete Modelle (Poissonscher Prozess, Gaußsche Zufallsfelder) beschreiben und anwenden. Sie können ferner selbstorganisiert und reflexiv arbeiten.

Inhalt

- Punktprozesse
- Zufällige Maße
- Poissonprozess
- Gaußsche Punktprozesse
- Palmsehe Verteilung
- Räumlicher Ergodensatz
- Spektraltheorie zufälliger Felder
- Gaußsche Felder

Empfehlungen
Die Inhalte des Moduls Wahrscheinlichkeitstheorie werden zum Teil benötigt.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
• Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
• Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Steinsche Methode (MATHST24) [M-MATH-102946]

Verantwortung: Matthias Schulte

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung:
- Mathematische Methoden/Stochastik
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Stochastik
- Wahlpflichtfach
- Zusatzleistungen

Leistungspunkte: 5

Modulturnus: Unregelmäßig

Dauer: 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulteilnehmer</th>
<th>Leistungspunkte</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105914</td>
<td>Steinsche Methode (S. 1044)</td>
<td>5 Matthias Schulte</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 20 min).

Voraussetzungen

Keine

Qualifikationsziele

Absolventinnen und Absolventen können
- die Grundlagen der Steinschen Methode und ihrer Anwendungen auf ausgewählte Probleme nennen und erörtern,
- können zentrale Grenzwertsätze und Poissonsche Grenzwertsätze mit Hilfe der Steinschen Methode beweisen,
- selbstorganisiert und reflexiv arbeiten.

Inhalt

- Steinsche Gleichungen für die uni- und multivariate Normalverteilung sowie für die Poisson-Verteilung
- Kopplungen (Zero Bias und Size Bias)
- Austauschbare Paare
- lokale Abhängigkeiten und Abhängigkeitsgraphen
- Anwendungen der o.g. Techniken auf ausgewählte Probleme wie z.B. Zufallsgraphen

Empfehlungen

Die Inhalte des Moduls "Wahrscheinlichkeitstheorie" werden benötigt.

Arbeitsaufwand

Gesamter Arbeitsaufwand: 150 Stunden

Präsenzzeit: 60 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 90 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Steuerung stochastischer Prozesse (MATHST12) [M-MATH-102908]

Verantwortung: Nicole Bäuerle

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Mathematische Methoden/Stochastik

Bestandteil von: Mathematische Methoden/Stochastik

Leistungspunkte 4

Modulturnus Unregelmäßig

Dauer 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105871</td>
<td>Steuerung stochastischer Prozesse (S. 1045)</td>
<td>4</td>
<td>Nicole Bäuerle</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 20 min).

Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Absolventinnen und Absolventen können

- Die mathematischen Grundlagen der Stochastischen Steuerung nennen und Lösungsverfahren anwenden,
- Zeitstetige, stochastische, dynamische Optimierungsprobleme als stochastisches Steuerproblem formulieren,
- selbstorganisiert und reflexiv arbeiten.

Inhalt

- Verifikationstechnik, Hamilton-Jacobi-Bellman Gleichung
- Viskositätslösung
- Singuläre Steuerung
- Feynman-Kac Darstellungen
- Anwendungsbeispiele aus der Finanz- und Versicherungsmathematik

Empfehlungen

Arbeitsaufwand

Gesamter Arbeitsaufwand: 120 Stunden
Präsenzzeit: 45 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung
Selbststudium: 75 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Stochastische Evolutionsgleichungen (MATHAN40) [M-MATH-102942]

Verantwortung: Lutz Weis
Einrichtung: KIT-Fakultät für Mathematik
Curriculare Verankerung: Mathematische Methoden/Stochastik
Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Analysis
Mathematische Methoden/Wahlbereich Mathematische Methoden/Analysis
Mathematische Methoden/Wahlbereich Mathematische Methoden/Stochastik
Wahlpflichtfach
Zusatzeleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105910</td>
<td>Stochastische Evolutionsgleichungen (S. 1053)</td>
<td>8</td>
<td>Lutz Weis</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung von ca. 30 Minuten Dauer.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Die Studenten können stochastische Störungen von PDE’s als stochastische partielle Differentialgleichungen modellieren. Sie kennen grundlegende Existenzaussagen für stochastische PDE und wesentliche qualitative Eigenschaften ihrer Lösungen. Sie verstehen das Zusammenspiel analytischer und stochastischer Methoden (Fernique), insbesondere beherrschen sie Methoden der stochastischen Analysis und die Besonderheiten, die bei der stochastischen Integration Banachraumwertiger Prozesse auftreten.

Inhalt
- Gauß’sche Maße auf Banachräumen, Satz von Fernique
- Wiener Prozesse auf Banachräumen und die Loeve- Kahunen Darstellung
- Banachraumwertige Martingale und die UMD- Eigenschaft eines Banachraumes
- Ito- Integrale für Prozesse in UMD-Räumen und Burkholder-Gundy Ungleichungen, Decoupling
- Modellierung stochastischer Störungen von PDE’s
- Existenz- Eindeutigkeits-Aussagen und Regularitäts-Aussagen für parabolische stochastische Differentialgleichungen
- Stochastische Wärmeleitungs-Gleichung.
- Beispiele für stochastische Schrödinger- und Wärmeleitungs-Gleichungen.

Empfehlungen
Folgende Module sollten bereits belegt worden sein:
Wahrscheinlichkeitstheorie, Spektraltheorie.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Stochastische Geometrie (MATHST06) [M-MATH-102865]

Verantwortung: Daniel Hug

Einrichtung: KIT-Fakultät für Mathematik
Wahlpflicht

Curriculare Verankerung:
Mathematische Methoden/Stochastik
Mathematische Methoden/Wahlbereich Mathematische Methoden/Algebra und Geometrie
Mathematische Methoden/Wahlbereich Mathematische Methoden/Stochastik
Wahlpflichtfach
Zusatzleistungen

Leistungspunkte: 8
Modulturnus: Jedes Sommersemester
Dauer: 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105840</td>
<td>Stochastische Geometrie (S. 1054)</td>
<td>8</td>
<td>Günter Last, Daniel Hug</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 30 min).

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Die Studierenden

- kennen die grundlegenden geometrischen Modelle und Kenngrößen der Stochastischen Geometrie,
- sind mit Eigenschaften von Poissonprozessen geometrischer Objekte vertraut,
- kennen exemplarisch Anwendungen von Modellen der Stochastischen Geometrie,
- können reflexiv und selbstorganisiert arbeiten.

Inhalt

- Zufällige Mengen
- Geometrische Punktprozesse
- Stationarität und Isotropie
- Keim-Korn-Modelle
- Boolesche Modelle
- Grundlagen der Integralgeometrie
- Geometrische Dichten und Kenngrößen
- Zufällige Mosaike

Empfehlungen
Die Inhalte des Moduls Räumliche Stochastik werden zum Teil benötigt.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung
Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung

Modul: Vorhersagen: Theorie und Praxis (MATHST28) [M-MATH-102956]

Verantwortung: Tilmann Gneiting

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Stochastik
Mathematische Methoden/Wahlbereich Mathematische Methoden/Stochastik
Wahlpflichtfach
Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Unregelmäßig</td>
<td>2 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105928</td>
<td>Vorhersagen: Theorie und Praxis (S. 1074)</td>
<td>8</td>
<td>Tilmann Gneiting</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 30 Minuten.

Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Absolventinnen und Absolventen können

- grundlegende Begriffe der maß- und wahrscheinlichkeitstheoretisch begründeten Theorie der Vorhersage nennen und an Beispielen verdeutlichen
- grundlegende Begriffe der entscheidungstheoretisch begründeten Evaluierung von Vorhersagen nennen und an Beispielen verdeutlichen
- Regressionsverfahren für Vorhersagen adaptieren, interpretieren und implementieren
- prinzipielle Vorgehensweisen bei der Erstellung und Evaluierung meteorologischer und ökonomischer Prognosen erläutern
- in Simulationsstudien und Fallbeispielen Vorhersage- und Evaluierungsverfahren selbständig entwickeln und programmieren

Inhalt

- Fallstudien aus Meteorologie und Ökonomie
- Punktvorhersagen und Wahrscheinlichkeitsvorhersagen
- Vorhersageräume, Kalibration und Schärfe
- Proper scoring rules und consistent scoring functions
- Aggregation von Vorhersagen
- prädiktive Aspekte von Regressionsverfahren
Empfehlungen
Die Inhalte des Moduls "Wahrscheinlichkeitstheorie" werden benötigt. Das Modul "Statistik" ist hilfreich.

Anmerkung
- Turnus: jedes zweite Jahr, beginnend Wintersemester 16/17
- Unterrichtssprache: Englisch

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzzeit: 90 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Wahrscheinlichkeitstheorie und kombinatorische Optimierung (MATHST27) [M-MATH-102947]

Verantwortung: Daniel Hug
Einrichtung: KIT-Fakultät für Mathematik
Curriculare Verankerung: Wahlpflicht
Bestandteil von: Mathematische Methoden/Stochastik
Mathematische Methoden/Wahlbereich Mathematische Methoden/Stochastik
Wahlpflichtfach
Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105923</td>
<td>Wahrscheinlichkeitstheorie und kombinatorische Optimierung (S. 1081)</td>
<td>8</td>
<td>Günter Last, Daniel Hug</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 30 min).

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen
- kennen die behandelten Fragestellungen der kombinatorischen Optimierung und können diese erläutern,
- kennen typische Methoden zur probabilistischen Analyse von Algorithmen und kombinatorischen Optimierungsproblemen und können diese zur Lösung von konkreten Optimierungsproblemen einsetzen,
- können selbstorganisiert und reflexiv arbeiten.

Inhalt
- das Problem langer gemeinsamer Teilfolgen,
- Packungsprobleme,
- das euklidische Problem des Handlungsreisenden,
- minimale euklidische Paarungen,
- minimale euklidische Spannbäume.
Für die Analyse von Problemen dieser Art wurden Techniken und Konzepte entwickelt, die in der Vorlesung vorgestellt und angewendet werden. Hierzu gehören

- Konzentrationsungleichungen und Konzentration von Maßen,
- Subadditivität und Superadditivität,
- Martingalmethoden,
- Isoperimetrie,
- Entropie.

Empfehlungen

Die Inhalte des Moduls "Wahrscheinlichkeitstheorie" werden benötigt.

Arbeitsaufwand

Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
M Modul: Zeitreihenanalyse (MATHST18) [M-MATH-102911]

Verantwortung: Bernhard Klar

Einrichtung: KIT-Fakultät für Mathematik
Curriculare Verankerung: Wahlpflicht
Bestandteil von: Mathematische Methoden/Stochastik
Mathematische Methoden/Wahlbereich Mathematische Methoden/Stochastik
Wahlpflichtfach
Zusatzleistungen

Leistungspunkte Modulturnus Dauer
4 Jedes Sommersemester 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105874</td>
<td>Zeitreihenanalyse (S. 1088)</td>
<td>4</td>
<td>Bernhard Klar, Norbert Henze</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 20 min).

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Die Studierenden

- kennen und verstehen die Standardmodelle der Zeitreihenanalyse,
- kennen exemplarisch statistische Methoden zur Modellwahl und Modellvalidierung,
- wenden Modelle und Methoden der Vorlesung eigenständig auf reale und simulierte Daten an,
- kennen spezifische mathematische Techniken und können damit Zeitreihenmodelle analysieren.

Inhalt
Die Vorlesung behandelt die grundlegenden Begriffe der klassischen Zeitreihenanalyse:

- Stationäre Zeitreihen
- Trends und Saisonalitäten
- Autokorrelation
- Autoregressive Modelle
- ARMA-Modelle
- Parameterschätzung
- Vorhersage
- Spektraldichte und Periodogramm
Empfehlungen
Die Inhalte des Moduls “Wahrscheinlichkeitsrechnung” werden benötigt. Das Modul “Statistik” ist hilfreich.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 120 Stunden
Präsenzzeit: 45 Stunden
 - Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 75 Stunden
 - Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
 - Bearbeitung von Übungsaufgaben
 - Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
 - Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Zufällige Graphen (MATHST29) [M-MATH-102951]

Verantwortung: Matthias Schulte
Einrichtung: KIT-Fakultät für Mathematik
Curriculare Verankerung: Wahlpflicht
Bestandteil von: Mathematische Methoden/Stochastik
Mathematische Methoden/Wahlbereich Mathematische Methoden/Stochastik
Wahlpflichtfach
Zusatzleistungen

Leistungspunkte: 6
Modulturnus: Unregelmäßig
Dauer: 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105929</td>
<td>Zufällige Graphen (S. 1089)</td>
<td>6</td>
<td>Matthias Schulte</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 25 Minuten.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Die Studierenden

- kennen die grundlegenden Modelle für zufällige Graphen und deren Eigenschaften,
- sind mit probabilistischen Techniken zur Untersuchung zufälliger Graphen vertraut,
- können selbstorganisiert und reflexiv arbeiten.

Inhalt

- Erdös-Renyi-Graphen
- Konfigurationsmodelle
- Preferential-Attachment-Graphen
- Geometrische zufällige Graphen

Empfehlungen
Die Inhalte des Moduls "Wahrscheinlichkeitstheorie" werden benötigt.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 180 Stunden
Präsenzzeit: 60 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 120 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
• Bearbeitung von Übungsaufgaben
• Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
• Vorbereitung auf die studienbegleitende Modulprüfung
2.2 Analysis oder Angewandte und Numerische Mathematik, Optimierung

2.2.1 Analysis

Modul: Computerunterstützte analytische Methoden für Rand- und Eigenwertprobleme (MATHAN11) [M-MATH-102883]

Verantwortung: Michael Plum

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von:
- Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung
- Analysis
- Wahlbereich Mathematische Methoden/Analysis
- Wahlpflichtfach
- Zusatzleistungen

Leistungspunkte: 8

Modulturnus: Unregelmäßig

Dauer: 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105854</td>
<td>Computerunterstützte analytische Methoden für Rand- und Eigenwertprobleme (S. 850)</td>
<td>8</td>
<td>Michael Plum</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 20 min).

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele

Inhalt

Empfehlungen
- Klassische Methoden für partielle Differentialgleichungen
- Rand- und Eigenwertprobleme
- Funktionalanalysis

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

Wirtschaftsmathematik (M.Sc.)
Modulhandbuch mit Stand 04.08.2016 für Wintersemester 16/17

66
Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
Bearbeitung von Übungsaufgaben
Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Dynamische Systeme (MATHAN43) [M-MATH-103080]

Verantwortung: Jens Rottmann-Matthes

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung
Mathematische Methoden/Wahlbereich Mathematische Methoden/Analysis
Wahlpflichtfach
Zusatzleistungen

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
<th>Sprache</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

Kennung	Teilleistung	LP	Verantwortung
T-MATH-106114 | Dynamische Systeme (S. 861) | 8 | Jens Rottmann-Matthes |

Erfolgskontrolle(n)
Prüfung: mündliche Prüfung (ca. 30 Min)

Modulnote
Notenbildung: Note der Prüfung.

Voraussetzungen
keine

Qualifikationsziele
Absolventinnen und Absolventen können
- die Bedeutung Dynamischer Systeme an Hand von Beispielen erläutern,
- die Konzepte eines zeitdiskreten und zeitkontinuierlichen dynamischen Systems zueinander in Beziehung setzen,
- wichtige Methoden zur Analyse dynamischer Systeme beschreiben und mit ihrer Hilfe das asymptotische Verhalten von Lösungen in der Nähe von Gleichgewichten für verschiedene dynamische Systeme analysieren,
- das Verhalten invarianter Mengen unter Diskretisierung beschreiben.

Inhalt
- Beispiele endlich- und unendlich-dimensionaler Dynamischer Systeme
- Fixpunkte, periodische Orbits, Limesmengen
- Invariante Mengen
- Attraktoren
- Ober- und Unterhalbstetigkeit von Attraktoren
- Stabile und instabile Mannigfaltigkeiten
- Zentrumsmannigfaltigkeiten

Empfehlungen
Analysis 1-3, Funktionalanalysis

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung
Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Evolutionsgleichungen (MATHAN12) [M-MATH-102872]

Verantwortung: Roland Schnaubelt

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von:
- Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Analysis
- Wahlpflichtfach
- Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105844</td>
<td>Evolutionsgleichungen (S. 878)</td>
<td>8</td>
<td>Roland Schnaubelt, Lutz Weis</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung von ca. 30 Minuten.

Modulnote

Die Modulnote ist die Note der Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Inhalt

stark stetige Operatorhalbgruppen und ihre Erzeuger,
Erzeugungssätze und Wohlgestelltheit,
analytische Halbgruppen,
inhomogene und semilineare Cauchyprobleme,
Störungstheorie,
Einführung in Stabilitäts- und Spektraltheorie von Operatorhalbgruppen,
Anwendungen auf partielle Differentialgleichungen

Anmerkung

Turnus: Alle zwei Jahre.

Arbeitsaufwand

Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Fourieranalysis (MATHAN14) [M-MATH-102873]

Verantwortung: Lutz Weis

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung:
- Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Analysis
- Wahlpflichtfach
- Zusatzleistungen

Leistungspunkte: 8
Modulturnus: Unregelmäßig
Dauer: 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105845</td>
<td>Fourieranalysis (S. 890)</td>
<td>8</td>
<td>Roland Schnaubelt, Lutz Weis</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung von 120 Minuten.

Modulnote
Die Modulnote ist die Note der Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Die Studenten kennen die Darstellung von (quadrat-)integrierbaren Funktionen durch Fourierreihen, die Konvergenztheorie dieser Reihen sowie den Zusammenhang zwischen Glattheit der Funktion und dem Abfall der Fourierkoeffizienten und können dies an einfachen Beispielen demonstrieren. Eigenschaften der Fouriertransformation beherrschen sie im Rahmen der Lebesgueräume und der Distributionen. Anhand expliziter Lösungen für die Wärmeleitungs-, die Wellen- und die Schrödingergleichung erkennen sie die Bedeutung der Fourieranalysis für die angewandte Mathematik. Sie beherrschen die grundlegenden Beschränktheitsaussagen für singuläre Integrale, z.B. für die Hilberttransformation. Dabei erkennen sie die Bedeutung und Anwendbarkeit von Interpolationsmethoden und Fourierreproduktoren.

Inhalt
- Fourier Reihen
- Die Fourier Transformation auf L1 und L2
- Temperierte Distributionen und ihre Fourier Transformation
- Explizite Lösungen der Wärmeleitungs-, Schrödinger- und Wellengleichung im Rn
- Hilbert Transformation
- Der Interpolationssatz von Marcinkiewicz
- Singuläre Integraloperatoren
- Der Fourier Multiplikatorensatz von Mihlin

Empfehlungen
Das Modul “Funktionalanalysis” sollte bereits belegt worden sein.

Anmerkung
Turnus: Alle zwei Jahre.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
• Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

• Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
• Bearbeitung von Übungsaufgaben
• Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
• Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Funktionalanalysis (MATHAN05) [M-MATH-101320]

Verantwortung: Roland Schnaubelt

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung:
- Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Analysis
- Wahlpflichtfach

Leistungspunkte 8

Modulturnus Jedes Wintersemester

Dauer 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-102255</td>
<td>Funktionalanalysis (S. 891)</td>
<td>8</td>
<td>Michael Plum, Christoph Schmoeger, Wolfgang Reichel, Gerd Herzog, Dirk Hundertmark, Roland Schnaubelt, Lutz Weis, Tobias Lamm</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung von 120 Minuten.

Modulnote
Die Modulnote ist die Note der Prüfung.

Voraussetzungen
Keine

Qualifikationsziele

Inhalt
- Metrische Räume (topologische Grundbegriffe, Kompaktheit)
- Stetige lineare Operatoren auf Banachräumen (Prinzip der gleichmäßigen Beschränktheit, Homomorphiesatz)
- Dualräume mit Darstellungssätzen, Sätze von Hahn-Banach und Banach-Alaoglu, schwache Konvergenz, Reflexivität
- Fouriertransformation, Satz von Plancherel, schwache Ableitung, Sobolevräume in L^2, partielle Differentialgleichungen mit konstanten Koeffizienten

Empfehlungen
Folgende Module sollten bereits belegt worden sein:
- Lineare Algebra 1+2
- Analysis 1-3

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
• Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

• Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
• Bearbeitung von Übungsaufgaben
• Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
• Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Integralgleichungen (MATHAN07) [M-MATH-102874]

Verantwortung: Frank Hettlich

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung:
- Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung
- Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung
- Wahlbereich Mathematische Methoden/Analysis
- Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung
- Wahlpflichtfach

Zusatzleistungen
- Leistungspunkte: 8
- Modulturnus: Unregelmäßig
- Dauer: 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105834</td>
<td>Integralgleichungen (S. 914)</td>
<td>8</td>
<td>Tilo Arens, Andreas Kirsch, Frank Hettlich</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 30min.).

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Die Studierenden können Integralgleichungen klassifizieren und hinsichtlich Existenz und Eindeutigkeit mittels Methoden der Störungstheorie und der Fredholmtheorie untersuchen. Beweisideen der Herleitung der Fredholmtheorie sowie der Störungstheorie insbesondere bei Faltungsintegralgleichungen können sie beschreiben und erläutern. Darüberhinaus können die Studierenden klassische Randwertprobleme zu gewöhnlichen linearen Differentialgleichungen und zur Potentialtheorie durch Integralgleichungen formulieren und analysieren.

Inhalt
- Riesz- und Fredholmtheorie
- Fredholmsche und Volterrasche Integralgleichungen
- Anwendungen in der Potentialtheorie
- Faltungsgleichungen

Empfehlungen
Folgende Module sollten bereits belegt worden sein:
- Lineare Algebra 1+2
- Analysis 1-3

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
MATHEMATISCHE METHODEN Analysis oder Angewandte und Numerische Mathematik, Optimierung

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Inverse Probleme (MATHNM06) [M-MATH-102890]

Verantwortung:	Andreas Kirsch
Einrichtung:	KIT-Fakultät für Mathematik
Curriculare Verankerung:	Wahlpflicht
Bestandteil von:	Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105835</td>
<td>Inverse Probleme (S. 917)</td>
<td>8</td>
<td>Andreas Rieder, Tilo Arens, Andreas Kirsch, Frank Hettlich</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung von ca. 30 Minuten Dauer.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele

Inhalt
- Lineare Gleichungen 1. Art
- Schlecht gestellte Probleme
- Regularisierungstheorie
- Tikhonov Regularisierung bei linearen Gleichungen
- Iterative Regularisierungsverfahren
- Beispiele schlecht gestellter Probleme

Empfehlungen
Folgende Module sollten bereits belegt worden sein:
- Lineare Algebra 1+2
- Analysis 1-3
- Funktionalanalysis

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Klassische Methoden für partielle Differentialgleichungen (MATHAN08) [M-MATH-102870]

Verantwortung: Michael Plum
Einrichtung: KIT-Fakultät für Mathematik
Curriculare Verankerung: Wahlpflicht
Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105832</td>
<td>Klassische Methoden für partielle Differentialgleichungen</td>
<td>8</td>
<td>Michael Plum, Wolfgang Reichel, Jens Rottmann-Matthes, Dirk Hundertmark, Roland Schnaubelt, Lutz Weis, Tobias Lamm</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer schriftlichen Gesamtprüfung (120 min).

Modulnote
Die Modulnote ist die Note der Prüfung.

Voraussetzungen
Keine

Qualifikationsziele

Inhalt
- Beispiele partieller Differentialgleichungen
- Wellengleichung
- Laplace- und Poisson-Gleichung
- Wärmeleitungsgleichung
- Klassische Lösungsmethoden

Empfehlungen
Analysis 1+2+3
Lineare Algebra 1+2

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung
Selbststudium: 150 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Komplexe Analysis (MATHAN16) [M-MATH-102878]

Verantwortung: Christoph Schmoeger

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung:
Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung
Mathematische Methoden/Wahlbereich Mathematische Methoden/Analysis
Wahlpflichtfach
Zusatzleistungen

Leistungspunkte 8 Modulturnus Unregelmäßig Dauer 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105849</td>
<td>Komplexe Analysis (S. 922)</td>
<td>8</td>
<td>Michael Plum, Christoph Schmoeger, Wolfgang Reichel,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gerd Herzog, Roland Schnaubelt, Lutz Weis</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung Funktionentheorie II erfolgt in Form einer mündlichen Gesamtprüfung (ca. 30 min)

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen können die Gründzüge der unten genannten Inhalte nennen, erörtern und anwenden.

Inhalt
- unendliche Produkte
- Satz von Mittag-Leffler
- Satz von Montel
- Riemannscher Abbildungssatz
- Konforme Abbildungen
- schlichte Funktionen
- Automorphismen spezieller Gebiete
- harmonische Funktionen
- Schwarzsches Spiegelungsprinzip
- reguläre und singuläre Punkte von Potenzreihen

Empfehlungen
Folgende Module sollten bereits belegt worden sein:
Funktionentheorie

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: L2-Invarianten (MATHAG38) [M-MATH-102952]

Verantwortung: Holger Kammeyer

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung:
- Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Analysis
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Algebra und Geometrie
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Analysis
- Wahlpflichtfach
- Zusatzleistungen

Leistungspunkte: 5

Modulturnus: Unregelmäßig

Dauer: 1 Semester

Kennung Teilleistung LP Verantwortung

| T-MATH-105924 | L2-Invarianten (S. 927) | 5 | Holger Kammeyer, Roman Sauer |

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung von ca. 25 Minuten.

Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Absolventinnen und Absolventen
- verstehen Motivation und Umsetzung der Definitionen von L2-Invarianten,
- kennen Methodik und Werkzeuge, sie in einfachen Beispielen zu berechnen,
- wissen um die Relevanz der L2-Invarianten in verschiedenen mathematischen Gebieten und können sie in diesen Zusammenhängen einsetzen.

Inhalt

- Hilbertmoduln und von-Neumann-Dimension
- L2-Betti-Zahlen von CW-Komplexen und Gruppen
- Novikov-Shubin-Invarianten
- Fuglede-Kadison-Determinante und L2-Torsion

Empfehlungen

Inhalte der Module “Einführung in Geometrie und Topologie” bzw. “Elementare Geometrie” (Fundamentalgruppe und Überlagerungen) sowie “Algebraische Topologie” (CW-Komplexe, Kettenkomplexe, Homologie) werden benötigt.

Arbeitsaufwand

Gesamter Arbeitsaufwand: 150 Stunden

- Präsenzzeit: 60 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 90 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Maxwellgleichungen (MATHAN28) [M-MATH-102885]

Verantwortung: Andreas Kirsch

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung:
- Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung
- Analysis oder Angewandte und Numerische Mathematik, Optimierung
- Analysis

Bestandteil von:
- Mathematische Methoden/ Analysis oder Angewandte und Numerische Mathematik, Optimierung
- Analysis
- Angewandte und Numerische Mathematik, Optimierung
- Wahlpflichtfach
- Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

Kennung	Teilleistung	LP	Verantwortung
T-MATH-105856 | Maxwellgleichungen (S. 942) | 8 | Tilo Arens, Andreas Kirsch, Frank Hettlich |

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung von ca. 30 Minuten Dauer.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Die Studierenden sind in der Lage, die mathematischen Fragestellungen aus der Theorie der Maxwellschen Gleichungen an Beispielen zu erläutern.
Sie können die Hauptsätze wiedergeben, beweisen, auf Spezialfälle anwenden und mit den Eigenschaften einfacherer Differentialgleichungen (z. B. der Helmholtzgleichung) vergleichen.

Inhalt
Spezielle Beispiele von Lösungen der Maxwellgleichungen, Eigenschaften der Lösungen (z. B. Darstellungssätze), Spezialfälle (E-Mode, H-Mode), Randwertaufgaben

Empfehlungen
Erwünscht sind grundlegende Kenntnisse aus der Funktionalanalysis

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzaufwand: 90 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Optimierung in Banachräumen (MATHNM32) [M-MATH-102924]

Verantwortung: Andreas Kirsch

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von:
- Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung
- Analysis
- Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung
- Analysis
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Analysis
- Mathematische Methoden/Analysis
- Wahlbereich Mathematische Methoden
- Wahlbereich Mathematische Methoden
- Wahlbereich Mathematische Methoden

Leistungspunkte: 8
Modulturnus: Unregelmäßig
Dauer: 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105893</td>
<td>Optimierung in Banachräumen (S. 970)</td>
<td>8</td>
<td>Andreas Kirsch</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 30 Minuten.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Die Studierenden sind in der Lage, Eigenschaften endlichdimensionaler Optimierungsprobleme auf unendlichdimensionale Fälle zu übertragen und diese auf Probleme der Approximationstheorie, der Variationsrechnung und der optimalen Steuerungstheorie anzuwenden. Sie können die Hauptsätze wiedergeben, beweisen und anhand von Beispielen erläutern.

Inhalt
Funktionalanalytische Grundlagen (insbes. Trennungssätze konvexer Mengen, Eigenschaften konvexer Funktionen, Differenzierbarkeitsbegriffe), Dualitätstheorie linearer und konvexer Probleme, differenzierbare Optimierungsaufgaben (Lagrangeschne Multiplikatorenregel), hinreichende Optimalitätsbedingungen, Existenzaussagen, Anwendungen in der Approximationstheorie, der Variationsrechnung und der optimalen Steuerungstheorie.

Empfehlungen
Erwünscht sind grundlegende Kenntnisse aus der Funktionalanalyse

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
• Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
• Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Potentialtheorie (MATHAN20) [M-MATH-102879]

Verantwortung: Andreas Kirsch

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von:
- Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung
- Analysis oder Angewandte und Numerische Mathematik, Optimierung
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Analysis
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung
- Wahlpflichtfach

Zusatzleistungen

Leistungspunkte: 8
Modulturnus: Unregelmäßig
Dauer: 1 Semester

Pflichtbestandteile

Kennung	Teilleistung	LP	Verantwortung
T-MATH-105850 | Potentialtheorie (S. 981) | 8 | Tilo Arens, Wolfgang Reichel, Andreas Kirsch, Frank Hettlich

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung (ca. 30 Min).

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Die Studierenden sind in der Lage, die Begriffe der Potentialtheorie in der Theorie und an Beispielen zu erläutern. Sie können die Hauptsätze wiedergeben, beweisen, anhand von Beispielen verdeutlichen, auf Spezialfälle reduzieren und auf verwandte Fragestellungen anwenden.

Inhalt
Eigenschaften harmonischer Funktionen, Existenz und Eindeutigkeit der Randwertaufgaben für die Laplace- und Poisson-gleichung, Greensche Funktion für die Kugel, Kugelflächenfunktionen, Flächenpotentiale, räumliche Potentiale

Empfehlungen
Erwünscht sind grundlegende Kenntnisse aus der Funktionalanalyse

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung

Wirtschaftsmathematik (M.Sc.)
Modulhandbuch mit Stand 04.08.2016 für Wintersemester 16/17
M

Modul: Rand- und Eigenwertprobleme (MATHAN09) [M-MATH-102871]

Verantwortung: Wolfgang Reichel

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung
Mathematische Methoden/Wahlbereich Mathematische Methoden/Analysis
Wahlpflichtfach
Zusatzleistungen

Leistungspunkte Modulturnus Dauer
8 Jedes Sommersemester 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105833</td>
<td>Rand- und Eigenwertprobleme (S. 995)</td>
<td>8</td>
<td>Michael Plum, Wolfgang Reichel, Jens Rottmann-Matthes, Dirk Hundertmark, Roland Schnaubelt, Lutz Weis, Tobias Lamm</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 30 min).

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen können
- die Bedeutung von Rand- und Eigenwertproblemen innerhalb der Mathematik und/oder Physik beurteilen und an Hand von Beispielen illustrieren,
- qualitative Eigenschaften von Lösungen beschreiben,
- mit Hilfe funktionalanalytischer Methoden die Existenz von Lösungen von Randwertproblemen beweisen,

Inhalt
- Beispiele von Rand- und Eigenwertproblemen
- Maximumprinzipien für Gleichungen 2. Ordnung
- Funktionenräume, z.B. Sobolev-Räume
- Schwache Formulierung linearer elliptischer Gleichungen 2. Ordnung
- Existenz- und Regularitätstheorie elliptischer Gleichungen
- Eigenwerttheorie für schwach formulierte elliptische Eigenwertprobleme
Empfehlungen
Folgende Module sollten bereits belegt worden sein:

- Lineare Algebra 1+2
- Analysis 1-3

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Sobolevräume (MATHAN37) [M-MATH-102926]

Verantwortung: Andreas Kirsch
Einrichtung: KIT-Fakultät für Mathematik
Curriculare Verankerung:
Bestandteil von:

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105896</td>
<td>Sobolevräume (S. 1024)</td>
<td>5</td>
<td>Andreas Kirsch</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung von ca. 20 Minuten Dauer.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Die Studierenden können die Bedeutung der Sobolevräume in der Theorie partieller Differentialgleichungen erläutern. Sie sind in der Lage, die wichtigsten Eigenschaften wiederzugeben und zu beweisen.

Inhalt
Definition der Sobolevräume für skalare und vektorwertige Funktionen für Lipschitzgebiete, Fortsetzungs- und Spursätze, kompakte Einbettungen, Helmholtzzerlegung, einfache Randwertprobleme

Empfehlungen
Basisvorlesungen der Mathematik oder HM I-III

Arbeitsaufwand
Gesamter Arbeitsaufwand: 150 Stunden
Präsenzzeit: 60 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 90 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Spektraltheorie [M-MATH-101768]

Verantwortung: Lutz Weis

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung:
- Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung
- Wahlbereich Mathematische Methoden/Analysis
- Wahlbereich Mathematische Methoden/Wahlbereich Mathematische Methoden/Analysis
- Wahlpflichtfach
- Zusatzleistungen

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
<th>Sprache</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

Kennung Teilleistung LP Verantwortung

T-MATH-103414 Spektraltheorie - Prüfung (S. 1031) 8 Christoph Schmoeger, Gerd Herzog, Peer Kunstmann, Roland Schnaubelt, Lutz Weis

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung von ca. 30 Minuten.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele

Inhalt
- Abgeschlossene Operatoren auf Banachräumen
- Spektrum und Resolvente
- Kompakte Operatoren und Fredholmsche Alternative
- Funktionalalkalkül von Dunford, Spektralprojektionen
- Unbeschränkte selbstadjungierte Operatoren auf Hilberträumen
- Spektralsatz
- Durch Formen definierte Operatoren
- Sektorielle Operatoren
- Anwendungen auf partielle Differentialgleichungen

Empfehlungen
Folgende Module sollten bereits belegt worden sein:
- Lineare Algebra 1+2
- Analysis 1-3
Funktionalanalysis

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Steuerungstheorie (MATHAN18) [M-MATH-102941]

Verantwortung: Roland Schnaubelt

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung:
- Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Analysis
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Analysis

Bestandteil von:
- Wahlpflicht
- Bestandteil von Mathematische Methoden/Wahlbereich Mathematische Methoden/Analysis

Leistungspunkte
- 6

Modulturnus
- Unregelmäßig

Dauer
- 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105909</td>
<td>Steuerungstheorie (S. 1046)</td>
<td>6</td>
<td>Roland Schnaubelt, Lutz Weis</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
- Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung von ca. 20 Minuten.

Modulnote
- Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
- Keine

Qualifikationsziele
- Die Studierenden können die zentralen Konzepte der Behandlung kontrollierter linearer Differentialgleichungssysteme (Steuerbarkeit, Beobachtbarkeit, Stabilisierbarkeit und Entdeckbarkeit) und die zugehörigen Charakterisierungen erläutern und in Beispielen anwenden. Sie sind in der Lage die Grundzüge der Theorie der Transferfunktionen und der Realisierungstheorie zu beschreiben. Die Lösung des quadratischen optimalen Kontrollproblems können sie diskutieren und auf die Feedback Synthese anwenden. Sie können die Grundbegriffe der Steuerungstheorie samt der zugehörigen Kriterien auch für nichtlineare System beschreiben und auf Beispiele anwenden.

Inhalt
- Kontrollierte lineare Differentialgleichungssysteme: Steuerbarkeit und Beobachtbarkeit, Stabilisierbarkeit und Entdeckbarkeit, Transferfunktionen, Realisierungstheorie, Quadratische optimale Kontrolle, Feedback-Synthese
- Nichtlineare Kontrolltheorie: Grundbegriffe, Kriterien via Linearisierung, Lie Klammern und Lyapunov Funktionen

Arbeitsaufwand
- Gesamter Arbeitsaufwand: 180 Stunden
- Präsenzzeit: 60 Stunden
 - Lehrveranstaltung einschließlich studienbegleitender Modulprüfung
- Selbststudium: 120 Stunden
 - Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
 - Bearbeitung von Übungsaufgaben
 - Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
 - Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Stochastische Differentialgleichungen (MATHAN24) [M-MATH-102881]

Verantwortung: Lutz Weis

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung

Bestandteil von: Mathematische Methoden/Wahlbereich Mathematische Methoden/Analysis

Leistungspunkte: 8

Modulturnus: Unregelmäßig

Dauer: 1 Semester

Pflichtbestandteile

Kennung	Teilleistung	LP	Verantwortung
T-MATH-105852 | Stochastische Differentialgleichungen (S. 1049) | 8 | Roland Schnaubelt, Lutz Weis

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung von ca. 30 Minuten.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Die Studenten beherrschen die stochastischen Methoden, die den stochastischen Differentialgleichungen zu Grunde liegen, z.B. die Brownsche Bewegung, Martingale und Martingalungleichungen. Sie kennen die Konstruktion stochastischer Integrale und sie können die Itô-Formel formulieren und auf konkrete Beispiele anwenden. Sie können stochastische Differentialgleichungen auf Existenz, Eindeutigkeit und Stabilität untersuchen und erkennen dabei das Zusammenspiel analytischer und stochastischer Methoden. Sie sind in der Lage, die allgemeine Theorie auf konkrete Gleichungen aus den Naturwissenschaften und den Wirtschaftswissenschaften anzuwenden.

Inhalt
- Brownsche Bewegung
- Martingale und Martingalungleichungen
- Stochastische Integrale und Itô-Formel
- Existenz- und Eindeutigkeitssätze für Systeme von stochastischen Differentialgleichungen
- Störungs- und Stabilitätstheorie
- Anwendung auf Gleichungen der Finanzmathematik, Physik und technische Systeme
- Zusammenhang mit Diffusionsgleichungen und Potentialtheorie

Empfehlungen
Das Modul "Funktionalanalysis" sollte bereits belegt worden sein.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Stochastische Evolutionsgleichungen (MATHAN40) [M-MATH-102942]

Verantwortung: Lutz Weis

Eintrichtung: KIT-Fakultät für Mathematik
Wahlpflicht

Curriculare Verankerung:
Mathematische Methoden/Stochastik
Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung
Mathematische Methoden/Wahlbereich Mathematische Methoden/Analysis
Mathematische Methoden/Wahlbereich Mathematische Methoden/Stochastik
Wahlpflichtfach
Zusatzleistungen

Leistungspunkte Modulturnus Dauer
8 Unregelmäßig 1 Semester

Pflichtbestandteile

Kennung Teilleistung LP Verantwortung
T-MATH-105910 Stochastische Evolutionsgleichungen (S. 1053) 8 Lutz Weis

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung von ca. 30 Minuten Dauer.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Die Studenten können stochastische Störungen von PDE´s als stochastische partielle Differentialgleichungen modellieren. Sie kennen grundlegende Existenzaussagen für stochastische PDE und wesentliche qualitative Eigenschaften ihrer Lösungen. Sie verstehen das Zusammenspiel analytischer und stochastischer Methoden (Fernique), insbesondere beherrschen sie Methoden der stochastischen Analysis und die Besonderheiten, die bei der stochastischen Integration Banachraumwertiger Prozesse auftreten.

Inhalt
- Gauß’sche Maße auf Banachräumen, Satz von Fernique
- Wiener Prozesse auf Banachräumen und die Loeve- Kahunen Darstellung
- Banachraumwertige Martingale und die UMD- Eigenschaft eines Banachraumes
- Ito- Integrale für Prozesse in UMD-Räumen und Burkholder-Gundy Ungleichungen, Decoupling
- Modellierung stochastischer Störungen von PDE´s
- Existenz- Eindeutigkeits-Aussagen und Regularitäts-Aussagen für parabolische stochastische Differentialgleichungen
- Stochastische Wärmeleitungsgleichung.
- Beispiele für stochastische Schrödinger- und Wärmeleitungsgleichungen.

Empfehlungen
Folgende Module sollten bereits belegt worden sein:
Wahrscheinlichkeitstheorie, Spektraltheorie.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Variationsrechnung (MATHAN25) [M-MATH-102882]

Verantwortung: Wolfgang Reichel

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung

Mathematische Methoden/Wahlbereich Mathematische Methoden/Analysis

Wahlpflichtfach

Zusatzleistungen

Leistungspunkte: 8

Modulturnus: Unregelmäßig

Dauer: 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105853</td>
<td>Variationsrechnung (S. 1069)</td>
<td>8</td>
<td>Michael Plum, Wolfgang Reichel, Andreas Kirsch, Tobias Lamm</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 30 min).

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen können

- die Bedeutung von Variationsproblemen in Bezug auf ihre Anwendungen in den Natur- bzw. Ingenieurswissenschaften oder der Geometrie beurteilen und an Hand von Beispielen illustrieren,
- eigenständig variationelle Probleme formulieren,
- die spezifischen Schwierigkeiten innerhalb der Variationsrechnung erkennen,
- konkrete, prototypische Probleme analysieren und lösen,
- Techniken einsetzen, um die Existenz von Lösungen gewisser Klassen variationeller Probleme zu beweisen, und in Spezialfällen diese Lösungen berechnen.

Inhalt

- eindimensionale Variationsprobleme
- Euler-Lagrange-Gleichung
- notwendige und hinreichende Kriterien
- mehrdimensionale Variationsprobleme
- direkte Methoden der Variationsrechnung
- Existenz kritischer Punkte von Funktionalen
Empfehlungen
Funktionalanalysis
Klassische Methoden für partielle Differentialgleichungen
Rand- und Eigenwertprobleme

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Wandernde Wellen (MATHAN38) [M-MATH-102927]

Verantwortung: Jens Rottmann-Matthes

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung:
- Wahlpflicht
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Analysis
- Wahlpflichtfach
- Zusatzleistungen

Bestandteil von:
- Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung
- Analysis
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Analysis

Leistungspunkte: 6
Modulturnus: Unregelmäßig
Dauer: 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105897</td>
<td>Wandernde Wellen (S. 1082)</td>
<td>6</td>
<td>Jens Rottmann-Matthes</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung von ca. 30 Minuten Dauer am Ende des Semesters.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Die Studierenden kennen die grundlegenden, aktuellen analytische und numerische Methoden zur Untersuchung wandernder Wellen. Sie sind in der Lage, diese auf ähnliche Problemstellungen anzuwenden.

Inhalt
- Beispiele für partielle Differentialgleichungen mit wandernden Wellen Lösungen
- Stabilitätsanalyse wandernder Wellen
- Analyse der spektralen Stabilität, unter anderem Evansfunktionstechniken
- Lineare Stabilität
- Nichtlineare Stabilität
- Techniken zur Approximation und numerischen Untersuchung

Empfehlungen
Zu einem besseren Verständnis ist Vorwissen aus den folgenden Vorlesungen hilfreich, aber nicht erforderlich: Funktionalanalysis, Spektraltheorie, Dynamische Systeme, Numerische Methoden für Differentialgleichungen

Arbeitsaufwand
Gesamter Arbeitsaufwand: 180 Stunden
Präsenzzeit: 60 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 120 Stunden
Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
Bearbeitung von Übungsaufgaben
Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
Vorbereitung auf die studienbegleitende Modulprüfung
2.2.2 Angewandte und Numerische Mathematik, Optimierung

Modul: Adaptive Finite Elemente Methoden (MATHNM19) [M-MATH-102900]

Verantwortung: Willy Dörfler
Einrichtung: KIT-Fakultät für Mathematik
Curriculare Verankerung: Wahlpflicht
Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung
Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung
Wahlpflichtfach
Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105898</td>
<td>Adaptive Finite Elemente Methoden (S. 823)</td>
<td>6</td>
<td>Willy Dörfler</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 25 Minuten.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen können

- die Notwendigkeit adaptiver Methoden darstellen
- die grundlegenden Methoden, Techniken und Algorithmen der Behandlung elliptischer Randwertprobleme mit adaptiven Finiten Elementen erklären
- Konzepte der Modellierung mit partiellen Differentialgleichungen wiedergeben
- Einfache Randwertaufgaben mit adaptiven Finiten Elementen numerisch lösen

Inhalt

- Notwendigkeit adaptiver Methoden
- Residuenfehlerschätzer
- Aspekte der Implementierung
- Optimalität der adaptiven Methode
- Funktionalfehlerschätzer
- hpFinite Elemente
Empfehlungen

Arbeitsaufwand
Gesamter Arbeitsaufwand: 180 Stunden
Präsenzzeit: 60 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 120 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Advanced Inverse Problems: Nonlinearity and Banach Spaces (MATH-NM44) [M-MATH-102955]

Verantwortung: Andreas Rieder

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Angewandte und Numerische Mathematik, Optimierung

Leistungspunkte: 5

Modulturnus: Unregelmäßig

Dauer: 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105927</td>
<td>Advanced Inverse Problems: Nonlinearity and Banach Spaces (S. 825)</td>
<td>5</td>
<td>Andreas Rieder</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 20 Minuten.

Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Inhalt

Inexakte Newton-Verfahren in Hilbert-Räumen,
Approximative Inverse in Banach-Räumen,
Tikhonov-Regularisierung mit konvexem Strafterm,
Kaczmarz-Newton Verfahren in Banach-Räumen

Empfehlungen

Inverse Probleme, Funktionalanalysis

Arbeitsaufwand

Gesamter Arbeitsaufwand: 150 Stunden
Präsenzzeit: 60 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 90 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche

Wirtschaftsmathematik (M.Sc.)

Modulhandbuch mit Stand 04.08.2016 für Wintersemester 16/17
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Bildgebende Verfahren in der Medizintechnik (MATHNM15) [M-MATH-102896]

Verantwortung: Andreas Rieder

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Angewandte und Numerische Mathematik, Optimierung

Leistungspunkte 8

Modulturnus Unregelmäßig

Dauer 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105861</td>
<td>Bildgebende Verfahren in der Medizintechnik (S. 841)</td>
<td>8</td>
<td>Andreas Rieder</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 30 Minuten.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele

Inhalt
- Varianten der Computer-Tomographie (Röntgen-, Impedanz-, etc.)
- Eigenschaften der Radon-Transformation
- Abtastung und Auflösung
- Schlechtgestelltheit und Regularisierung
- Rekonstruktionsalgorithmen

Empfehlungen
Das Modul “Funktionalanalysis” ist hilfreich.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung
Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Compressive Sensing (MATHNM37) [M-MATH-102935]

Verantwortung: Andreas Rieder

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von:
- Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung
- Wahlpflichtfach
- Zusatzleistungen

Leistungspunkte: 5

Modulturnus: Unregelmäßig

Dauer: 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Leistungspunkte</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105894</td>
<td>5</td>
<td>Andreas Rieder</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 20 Minuten.

Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Inhalt

- Was ist Compressive Sensing und wo kommt es zum Einsatz
- Dünnbesetzte Lösungen unterbestimmter Gleichungssysteme
- Grundlegende Algorithmen
- Restricted Isometry Property
- Dünnbesetzte Lösungen unterbestimmter Gleichungssysteme mit Zufallsmatrizen

Empfehlungen

Arbeitsaufwand

Gesamter Arbeitsaufwand: 150 Stunden

- Präsenzzeit: 60 Stunden
 - Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 90 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
Bearbeitung von Übungsaufgaben
Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Einführung in das Wissenschaftliche Rechnen (MATHNM05) [M-MATH-102889]

Verantwortung: Tobias Jahnke, Willy Dörfler
Einrichtung: KIT-Fakultät für Mathematik
Curriculare Verankerung: Wahlpflicht
Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Angewandte und Numerische Mathematik, Optimierung
Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik
Wahlpflichtfach
Zusatzleistungen

Leistungspunkte: 8
Modulturnus: Jedes Sommersemester
Dauer: 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105837</td>
<td>Einführung in das Wissenschaftliche Rechnen (S. 868)</td>
<td>8</td>
<td>Andreas Rieder, Tobias Jahnke, Marlis Hochbruck, Willy Dörfler, Christian Wieners</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 30 Minuten.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen können

- die Verzahnung aller Aspekte des Wissenschaftlichen Rechnens an einfachen Beispielen entwickeln: von der Modellbildung über die algorithmische Umsetzung bis zur Stabilitäts- und Fehleranalyse.
- Konzepte der Modellierung mit Differentialgleichungen erklären
- Einfache Anwendungsbeispiele algorithmisch umsetzen, den Code evaluieren und die Ergebnisse darstellen und diskutieren.

Inhalt

- Numerische Methoden für Anfangswertaufgaben, Randwertaufgaben und Anfangsrandwertaufgaben (Finite Differenzen, Finite Elemente)
- Modellierung mit Differentialgleichungen
- Algorithmische Umsetzung von Anwendungsbeispielen
- Präsentation der Ergebnisse wissenschaftlicher Rechnungen
Empfehlungen

Anmerkung
3 Stunden Vorlesung und 3 Stunden Praktikum

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Einführung in Matlab und numerische Algorithmen (MATHNM43) [M-MATH-102945]

Verantwortung: Daniel Weiß
Einrichtung: KIT-Fakultät für Mathematik
Curriculare Verankerung: Wahlpflicht
Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung

Leistungspunkte Modulturnus Dauer
5 Unregelmäßig 1 Semester

Kennung Teilleistung LP Verantwortung
T-MATH-105913 Einführung in Matlab und numerische Algorithmen (S. 870) 5 Christian Wieners, Daniel Weiß

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 75 Minuten.

Modulnote
Die Modulnote ist die Note der schriftlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen können

- grundlegende numerische Algorithmen auch in Hinblick auf die Implementierung verstehen und in der Programmier-
 umgebung Matlab effizient programmieren.
- vorhandene Tools und Toolboxen numerischer Algorithmen, welche in Matlab bereits implementiert sind, benutzen
 und in ihrer Funktionsweise verstehen.
- Matlab als Schnittstelle zu anderen Programmiersprachen und zu anderer mathematischer Software nutzen.

Inhalt

- Matlab als Programmierumgebung:
 1. Programmierung
 2. Debugging
 3. Visualisierung
 - Funktionsweise elementarer Matlab-Funktionen
 - Verschiedene Toolboxen von Matlab, z.B. PDE-Toolbox
 - Spezielle Speicherformate
- Parallelisierung

Empfehlungen

Arbeitsaufwand
Gesamter Arbeitsaufwand: 150 Stunden
Präsenzzeit: 60 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 90 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Einführung in Partikuläre Strömungen (MATHNM41) [M-MATH-102943]

Verantwortung: Willy Dörfler

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung:
- Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung
- Wahlpflichtfach
- Zusatzleistungen

Leistungspunkte: 3
Modulturnus: Einmalig
Dauer: 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105911</td>
<td>Einführung in Partikuläre Strömungen (S. 871)</td>
<td>3</td>
<td>Willy Dörfler</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 20 Minuten.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen können

- die grundlegenden Modelle der mathematischen Beschreibung von Strömungen erklären
- Konzepte der Modellierung teilchenbehafter Strömung erklären
- verstehen die numerischen Ansätze zur Berechnung solcher Strömungen

Inhalt

- Mathematische Beschreibung von Strömungen
- Modelle zur Beschreibung von Teilchen in einer Strömung
- Bewegung starrer Körper in einer Strömung
- Bewegung starrer Körper in einer viskosen Strömung
- Einbeziehung verschiedener Kräfte zwischen Strömung und Partikel, zum Beispiel bei ionischen Stömungen

Empfehlungen
Grundlagenkenntnisse in der numerischen Behandlung von Differentialgleichungen, in numerischer Strömungsmechanik und in einer Programmiersprache.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 90 Stunden
Präsenzzeit: 30 Stunden
Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 60 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Finite Elemente Methoden (MATHNM07) [M-MATH-102891]

Verantwortung: Willy Dörfler, Christian Wieners
Einrichtung: KIT-Fakultät für Mathematik
Curriculare Verankerung: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung
Bestandteil von: Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung

Leistungspunkte 8
Modulturnus Jedes Wintersemester
Dauer 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105857</td>
<td>Finite Elemente Methoden (S. 889)</td>
<td>8</td>
<td>Andreas Rieder, Tobias Jahnke, Marlis Hochbruck, Willy Dörfler, Christian Wieners</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 30 Minuten.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen können
- die grundlegenden Methoden, Techniken und Algorithmen der Behandlung elliptischer Randwertprobleme mit Finiten Elementen erklären (insbesondere die Stabilität, Konvergenz und Komplexität der Diskretisierungen)
- Konzepte der Modellierung mit partiellen Differentialgleichungen wiedergeben
- Einfache Randwertaufgaben mit Finiten Elementen numerisch lösen

Inhalt
- Theorie der Finiten Elemente für elliptische Randwertaufgaben zweiter Ordnung im IRⁿ
- Grundlegende Konzepte der Implementierung
- Elliptische Eigenwertprobleme
- Gemischte Methoden

Empfehlungen
Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
 • Lehrveranstaltung einschließlich studienbegleitender Modulprüfung
Selbststudium: 150 Stunden
 • Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
 • Bearbeitung von Übungsaufgaben
 • Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
 • Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Geometrische numerische Integration (MATHNM31) [M-MATH-102921]

Verantwortung:
Tobias Jahnke

Einrichtung:
KIT-Fakultät für Mathematik

Curriculare Verankerung:
Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung
Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung
Wahlpflichtfach
Zusatzleistungen

Leistungspunkte
6

Modulturnus
Unregelmäßig

Dauer
1 Semester

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kennung</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>T-MATH-105919</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Mündliche Prüfung im Umfang von ca. 20 Minuten.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele

Inhalt
- Newton’sche Bewegungsgleichung, Lagrange-Gleichungen, Hamiltonsysteme
- Eigenschaften von Hamiltonsystemen: symplektischer Fluss, Energieerhaltung, weitere Erhaltungsgrößen
- Symplektische numerische Verfahren: symplektisches Euler-Verfahren, Störmer-Verlet-Verfahren, symplektische (partitionierte) Runge-Kutta-Verfahren
- Konstruktion von symplektischen Verfahren, z.B. durch Komposition und Splitting
- Backward error analysis und Energieerhaltung über lange Zeitintervalle

In der danach noch verbleibenden Zeit können weiterführende Themen behandelt werden wie z.B.
- KAM-Theorie und lineares Fehlerwachstum
- Verfahren auf Mannigfaltigkeiten (Magnus-Verfahren, Liegruppenmethoden)
- Mechanische Systeme mit Zwangsbedingungen

Wirtschaftsmathematik (M.Sc.)
Modulhandbuch mit Stand 04.08.2016 für Wintersemester 16/17
Trigonometrische Verfahren für oszillatorische Probleme
Modulierte Fourierentwicklungen

Empfehlungen

Anmerkung
Turnus: Mindestens alle zwei Jahre

Arbeitsaufwand
Präsenzzeit: 60 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 120 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Integralgleichungen (MATHAN07) [M-MATH-102874]

Verantwortung: Frank Hettlich

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung:

Bestandteil von:
- Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung
- Analysis

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105834</td>
<td>Integralgleichungen (S. 914)</td>
<td>8</td>
<td>Tilo Arens, Andreas Kirsch, Frank Hettlich</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 30min.).

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Die Studierenden können Integralgleichungen klassifizieren und hinsichtlich Existenz und Eindeutigkeit mittels Methoden der Störungstheorie und der Fredholmtheorie untersuchen. Beweisideen der Herleitung der Fredholmtheorie sowie der Störungstheorie insbesondere bei Faltungsintegralgleichungen können sie beschreiben und erläutern. Darüberhinaus können die Studierenden klassische Randwertprobleme zu gewöhnlichen linearen Differentialgleichungen und zur Potentialtheorie durch Integralgleichungen formulieren und analysieren.

Inhalt
- Riesz- und Fredholmtheorie
- Fredholmsche und Volterrasche Integralgleichungen
- Anwendungen in der Potentialtheorie
- Faltungsungleichungen

Empfehlungen
Folgende Module sollten bereits belegt worden sein:
- Lineare Algebra 1+2
- Analysis 1-3

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
• Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

• Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
• Bearbeitung von Übungsaufgaben
• Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
• Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Inverse Probleme (MATHNM06) [M-MATH-102890]

Verantwortung: Andreas Kirsch

Einrichtung: KIT-Fakultät für Mathematik

Wahlpflicht

Curriculare Verankerung:
- Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Analysis
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung

Bestandteil von:
- Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung
- Wahlbereich Mathematische Methoden/Wahlpflicht

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105835</td>
<td>Inverse Probleme (S. 917)</td>
<td>8</td>
<td>Andreas Rieder, Tilo Arens, Andreas Kirsch, Frank Hettlich</td>
</tr>
</tbody>
</table>

Leistungspunkte
- Modulanote: 8
- Modulturnus: Jedes Wintersemester
- Dauer: 1 Semester

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung von ca. 30 Minuten Dauer.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele

Inhalt
- Lineare Gleichungen 1. Art
- Schlecht gestellte Probleme
- Regularisierungstheorie
- Tikhonov Regularisierung bei linearen Gleichungen
- Iterative Regularisierungsverfahren
- Beispiele schlecht gestellter Probleme

Empfehlungen
Folgende Module sollten bereits belegt worden sein:
- Lineare Algebra 1+2
- Analysis 1-3
- Funktionalanalyse

Arbeitsaufwand
- Gesamter Arbeitsaufwand: 240 Stunden
- Präsenzzeit: 90 Stunden

Wirtschaftsmathematik (M.Sc.)

Modulhandbuch mit Stand 04.08.2016 für Wintersemester 16/17
MATHEMATISCHE METHODEN Analysis oder Angewandte und Numerische Mathematik, Optimierung

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Mathematische Methoden in Signal- und Bildverarbeitung (MATHNM16) [M-MATH-102897]

Verantwortung: Andreas Rieder
Einrichtung: KIT-Fakultät für Mathematik
Curriculare Verankerung: Wahlpflicht
Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung

Leistungspunkte 8 Modulturnus Unregelmäßig Dauer 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105862</td>
<td>Mathematische Methoden in Signal- und Bildverarbeitung (S. 937)</td>
<td>8</td>
<td>Andreas Rieder</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 30 Minuten.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen kennen die wesentlichen mathematischen Werkzeuge der Signal- und Bildverarbeitung sowie deren Eigenschaften. Sie sind in der Lage, diese Werkzeuge adäquat anzuwenden, die erhaltenen Resultate zu hinterfragen und zu beurteilen.

Inhalt
- Digitale und analoge Systeme
- Integrale Fourier-Transformation
- Abtastung und Auflösung
- Diskrete und schnelle Fourier-Transformation
- Nichtuniforme Abtastung
- Anisotrope Diffusionsfilter
- Variationsmethoden

Empfehlungen
Das Modul "Funktionalanalyse" ist hilfreich.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
• Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

• Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
• Bearbeitung von Übungsaufgaben
• Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
• Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Mathematische Modellierung und Simulation in der Praxis (MATHNM27) [M-MATH-102929]

Verantwortung: Gudrun Thäter

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Angewandte und Numerische Mathematik, Optimierung
Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung
Wahlpflichtfach
Zusatzleistungen

Leistungspunkte: 4
Modulturnus: Unregelmäßig
Dauer: 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105889</td>
<td>Mathematische Modellierung und Simulation in der Praxis (S. 938)</td>
<td>4</td>
<td>Gudrun Thäter</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 20 Minuten.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen können

- Projektorientiert arbeiten,
- Überblickswissen verknüpfen,
- Typische Modellansätze weiterentwickeln

Inhalt
Mathematisches Denken (als Modellieren) und mathematische Techniken (als Handwerkszeug) treffen auf Anwendungsprobleme wie:

- Differenzengleichungen
- Bevölkerungsmodelle
- Verkehrsflussmodelle
- Wachstumsmodelle
- Spieltheorie
- Chaos
- Probleme aus der Mechanik
Empfehlungen
Analysis I-III, Numerische Mathematik 1,2 sowie Numerische Methoden für differentialgleichungen bzw. vergleichbare HM-Vorlesungen.

Anmerkung
Die Veranstaltung findet immer auf Englisch statt.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 120 Stunden
Präsenzzeit: 45 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 75 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Matrixfunktionen (MATHNM39) [M-MATH-102937]

Verantwortung: Volker Grimm
Einrichtung: KIT-Fakultät für Mathematik
Curriculare Verankerung: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung
Bestandteil von: Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105906</td>
<td>Matrixfunktionen (S. 941)</td>
<td>8</td>
<td>Volker Grimm</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 30 Minuten.
Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.
Voraussetzungen
Keine

Qualifikationsziele

Inhalt
Definition von Matrixfunktionen
Approximation an Matrixfunktionen für große Matrixen
Krylov-Verfahren und rationale Krylov-Verfahren
Anwendung auf die numerische Lösung partieller Differentialgleichungen

Empfehlungen
Numerische Mathematik 1 und 2

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung
Selbststudium: 150 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Maxwellgleichungen (MATHAN28) [M-MATH-102885]

Verantwortung: Andreas Kirsch

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von:
- Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung
- Analysis

Leistungspunkte: 8
Modulturnus: Unregelmäßig
Dauer: 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105856</td>
<td>Maxwellgleichungen (S. 942)</td>
<td>8</td>
<td>Tilo Arens, Andreas Kirsch, Frank Hettlich</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung von ca. 30 Minuten Dauer.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Die Studierenden sind in der Lage, die mathematischen Fragestellungen aus der Theorie der Maxwellschen Gleichungen an Beispielen zu erläutern.
Sie können die Hauptsätze wiedergeben, beweisen, auf Spezialfälle anwenden und mit den Eigenschaften einfacherer Differentialgleichungen (z.B. der Helmholtzgleichung) vergleichen.

Inhalt
Spezielle Beispiele von Lösungen der Maxwellgleichungen, Eigenschaften der Lösungen (z. B. Darstellungssätze), Spezialfälle (E-Mode, H-Mode), Randwertaufgaben

Empfehlungen
Erwünscht sind grundlegende Kenntnisse aus der Funktionalanalyse

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Numerische Fortsetzungsmethoden (MATHNM42) [M-MATH-102944]

Verantwortung: Jens Rottmann-Matthes
Einrichtung: KIT-Fakultät für Mathematik
Curriculare Verankerung:
Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Angewandte und Numerische Mathematik, Optimierung
Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung
Wahlpflichtfach
Zusatzleistungen

Leistungspunkte 5
Modulturnus Unregelmäßig
Dauer 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105912</td>
<td>Numerische Fortsetzungsmethoden (S. 953)</td>
<td>5</td>
<td>Jens Rottmann-Matthes</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 20-30min.).

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen können
- grundlegende Verfahren zur Parameterfortsetzung und Bestimmung von Verzweigungspunkten beschreiben und anwenden,
- die benutzten numerischen Algorithmen analysieren,
- selbstständig Verzweigungsdiagramme in konkreten Fällen mit den numerischen Algorithmen erzeugen und interpretieren.

Inhalt
- Beispiele parameterabhängiger Differentialgleichungen
- Prädiktor-Korrektorverfahren zur Parameterfortsetzung
- Detektion von Umkehrpunkten
- Detektion einfacher Verzweigungspunkte
- Newtonverfahren in der Nähe von Verzweigungspunkten

Empfehlungen
Gute Kenntnisse der Linearen Algebra, Analysis, Numerik I und gewöhnlichen Differentialgleichungen

Arbeitsaufwand
Gesamter Arbeitsaufwand: 150 Stunden
Präsenzeit: 60 Stunden
Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 90 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Numerische Methoden für Differentialgleichungen (MATHNM03) [M-MATH-102888]

Verantwortung: Tobias Jahnke, Willy Dörfler
Einrichtung: KIT-Fakultät für Mathematik
Curriculare Verankerung: Wahlpflicht
Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung

Leistungspunkte

<table>
<thead>
<tr>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Kennung

<table>
<thead>
<tr>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105836 Numerische Methoden für Differentialgleichungen (S. 954)</td>
<td>8</td>
<td>Andreas Rieder, Tobias Jahnke, Marlis Hochbruck, Willy Dörfler, Christian Wieners</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Absolventinnen und Absolventen können

- die grundlegenden Methoden, Techniken und Algorithmen zur Behandlung von Differentialgleichungen nennen, erörtern und anwenden (insbesondere die Stabilität, Konvergenz und Komplexität der numerischen Verfahren)
- Konzepte der Modellierung mit Differentialgleichungen wiedergeben
- Differentialgleichungen numerisch lösen

Inhalt

- Numerische Methoden für Anfangswertaufgaben (Runge-Kutta-Verfahren, Mehrschrittverfahren, Ordnung, Stabilität, steife Probleme)
- Numerische Methoden für Randwertaufgaben (Finite-Differenzen/Finite-Elemente-Verfahren für elliptische Gleichungen zweiter Ordnung)
- Numerische Methoden für Anfangsrandwertaufgaben (Finite-Differenzen/Finite-Elemente-Verfahren für Parabolische Gleichungen und Hyperbolische Gleichungen)

Empfehlungen

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Numerische Methoden für hyperbolische Gleichungen (MATHNM28) [M-MATH-102915]

Verantwortung: Willy Dörfler

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung

Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung

Wahlpflichtfach

Zusatzleistungen

Leistungspunkte 6

Modulturnus Unregelmäßig

Dauer 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105900</td>
<td>Numerische Methoden für hyperbolische Gleichungen (S. 955)</td>
<td>6</td>
<td>Willy Dörfler</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 25 Minuten.

Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Absolventinnen und Absolventen können

- die grundlegenden Methoden, Techniken und Algorithmen der Behandlung
- hyperbolischer Anfangswertprobleme erklären
- Konzepte der Modellierung mit hyperbolischen Differentialgleichungen wiedergeben
- Einfache skalare oder vektorwertige hyperbolische Gleichungen numerisch lösen

Inhalt

- Modellierung mit Erhaltungsgleichungen
- Schocks, Verdünnungswellen und schwache Lösungen
- Aspekte der Existenz und Regularitätstheorie skalarer Probleme
- Diskretisierung von skalaren Erhaltungsgleichungen
- Eigenschaften und Diskretisierung hyperbolischer Systeme

Empfehlungen

Grundlagenkenntnisse in Finite Element Methoden, in einer Programmiersprache und der Analysis von Randwertproblemen werden benötigt. Kenntnisse in
Funktionalanalysis sind hilfreich.

Arbeitsaufwand
Präsenzzeit: 60 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 120 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Numerische Methoden für Integralgleichungen (MATHNM29) [M-MATH-102930]

Verantwortung: Tilo Arens
Einrichtung: KIT-Fakultät für Mathematik

Verantwortung:

Erstellt:

Einrichtung:

Verantwortung:

Modulturnus:

Dauer:

Leistungspunkte:

8

Modulturnus:

Unregelmäßig

Dauer:

1 Semester

Pflichtbestandteile

Leistungspunkte

8

Modulturnus

Unregelmäßig

Dauer

1 Semester

Pflichtbestandteile

Kennung

Teilleistung

LP

Verantwortung

T-MATH-105901

Numerische Methoden für Integralgleichungen

(S. 956)

8

Tilo Arens, Andreas Kirsch, Frank Hettlich

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 30 min.). Durch die erfolgreiche Teilnahme am Übungsbetrieb kann ein Bonus erworben werden. Liegt die Note der mündlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note um eine Notenstufe (0,3 oder 0,4).

Modulnote

Die Modulnote ist die Note der mündlichen Prüfung, ggf. modifiziert durch den Bonus aus dem Übungsbetrieb.

Voraussetzungen

Keine

Qualifikationsziele

Inhalt

- Randintegraloperatoren
- Interpolation
- Quadraturformeln
- Approximation durch degenerierte Kernfunktionen
- Nyström-Verfahren
- Projektionsverfahren

Empfehlungen

Numerische Mathematik 1
Integralgleichungen

Wirtschaftsmathematik (M.Sc.)

Modulhandbuch mit Stand 04.08.2016 für Wintersemester 16/17

140
Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Numerische Methoden für zeitabhängige partielle Differentialgleichungen (MATHMWNM20) [M-MATH-102928]

Verantwortung: Marlis Hochbruck
Einrichtung: KIT-Fakultät für Mathematik
Curriculare Verankerung: Wahlpflicht
Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung

Leistungspunkte: 8
Modulturnus: Unregelmäßig
Dauer: 1 Semester

Pflichtbestandteile

Kennung	Teilleistung
T-MATH-105899| Numerische Methoden für zeitabhängige partielle Differentialgleichungen (S. 957) |

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 30 Minuten.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele

Inhalt
- Runge-Kutta-Verfahren und Exponentielle Integratoren für lineare, semilineare und quasilineare Evolutionsgleichungen
- Zeitintegration für hochoszillatorische Probleme, z. B. exponentielle Integratoren, Magnus-Methoden, trigonometrische Integratoren

Empfehlungen
Numerische Methoden für Differentialgleichungen, Einführung in das Wissenschaftliche Rechnen

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
Bearbeitung von Übungsaufgaben
Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Numerische Methoden in der Elektrodynamik (MATHNM13) [M-MATH-102894]

Verantwortung: Willy Dörfler
Einrichtung: KIT-Fakultät für Mathematik
Curriculare Verankerung: Wahlpflicht
Bestandteil von:
Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung
Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung
Wahlpflichtfach
Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105860</td>
<td>Numerische Methoden in der Elektrodynamik (S. 958)</td>
<td>6</td>
<td>Andreas Rieder, Tobias Jahnke, Marlis Hochbruck, Willy Dörfler, Christian Wieners</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 25 Minuten.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen
- können elektrostatische oder -dynamische Effekte mit mathematischen Modellen beschreiben,
- erkennen die grundlegenden Probleme der korrekten Approximation,
- können stabile Diskretisierungen der Maxwellgleichungen angeben.

Inhalt
- Die Maxwell Gleichungen, Modellierung
- Rand- und Übergangsbedingungen
- Analytische Hilfsmittel
- Das Quellenproblem
- Das Eigenwertproblem
- Finite Elemente für die Maxwell-Gleichungen
- Interpolationsabschätzungen
Empfehlungen
Grundkenntnisse in der Analysis von Randwertproblemen und der Finite Elemente Methode.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 180 Stunden
Präsenzzeit: 60 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 120 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Numerische Methoden in der Finanzmathematik (MATHNM18) [M-MATH-102901]

Verantwortung: Tobias Jahnke

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung

Zusatzleistungen

Leistungspunkte 8

Modulturnus Unregelmäßig

Dauer 1 Semester

Pflichtbestandteile

Kennung

Teilleistung

LP

Verantwortung

T-MATH-105865 Numerische Methoden in der Finanzmathematik (S. 959) 8 Tobias Jahnke

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 30 Minuten.

Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Inhalt

Modellierung:

- Optionen, Arbitrage und andere Grundbegriffe
- Wiener-Prozess, Ito-Integral, Ito-Formel
- Black-Scholes-Gleichung und Black-Scholes-Formel

Numerische Verfahren:

- Binomialbaumverfahren
- Erzeugung von Pseudo-Zufallszahlen, Monte-Carlo-Methode, Quasi-Monte-Carlo-Methode
- Numerische Verfahren für stochastische Differentialgleichungen
- Finite-Differenzen-Verfahren für eindimensionale Black-Scholes-Gleichungen
- Bewertung von amerikanischen Optionen
Empfehlungen
Grundlegende Inhalte des Moduls „Wahrscheinlichkeitstheorie“ und Grundkenntnisse über gewöhnliche Differentialgleichungen sowie Programmierkenntnisse in MATLAB werden benötigt.

Anmerkung
Wird jedes 4. Semester angeboten, jeweils im Wintersemester.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
 • Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden
 • Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
 • Bearbeitung von Übungsaufgaben
 • Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
 • Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Numerische Methoden in der Finanzmathematik II (MATHNM26) [M-MATH-102914]

Verantwortung: Tobias Jahnke
Einrichtung: KIT-Fakultät für Mathematik
Curriculare Verankerung: Wahlpflicht
Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Angewandte und Numerische Mathematik, Optimierung/Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung/Wahlpflichtfach/Zusatzleistungen

Leistungspunkte 8 Modulturnus Unregelmäßig Dauer 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105880</td>
<td>Numerische Methoden in der Finanzmathematik II (S. 960)</td>
<td>8</td>
<td>Tobias Jahnke</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 30 Minuten.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Im Mittelpunkt der Vorlesung steht die Bewertung von Optionen durch numerische Verfahren, wobei die Kenntnisse aus Teil 1 der Vorlesung erweitert und vertieft werden. Absolventinnen und Absolventen kennen nicht nur grundlegende, sondern auch raffiniertere numerische Verfahren zur Lösung von stochastischen bzw. partiellen Differentialgleichungen und hochdimensionalen Problemen. Sie können diese Verfahren nicht nur implementieren und zur Bewertung von verschiedenen Optionen anwenden, sondern auch die Stabilität und Konvergenz der Verfahren analysieren und durch theoretische Resultate erklären.

Inhalt
- Multi-Level Monte-Carlo-Methoden
- Historische, implizite und lokale Volatilität
- Sprung-Diffusions-Prozesse und Integro-Differentialgleichungen,
- Lösung von Black-Scholes-Gleichungen mit der Methode der Finiten Elemente
- Dünnättermethoden (Sparse Grids) für die Bewertung von Basketoptionen

Empfehlungen
Empfehlungen: Grundlegende Inhalte des Moduls “Numerische Methoden in der Finanzmathematik” und Programmierkenntnisse (möglichst in MATLAB) werden benötigt.

Anmerkung
Arbeitsaufwand
Präsenzzeit: 90 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
M Modul: Numerische Methoden in der Strömungsmechanik (MATHNM34) [M-MATH-102932]

Verantwortung: Gudrun Thäter, Willy Dörfler
Einrichtung: KIT-Fakultät für Mathematik
Curriculare Verankerung: Wahlpflicht
Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung

Leistungspunkte 4
Modulturnus Unregelmäßig
Dauer 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105902</td>
<td>Numerische Methoden in der Strömungsmechanik (S. 961)</td>
<td>4</td>
<td>Gudrun Thäter, Willy Dörfler</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 20 Minuten.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Studierende können die Modellierung und die physikalischen Annahmen erläutern, die zu den Navier-Stokes Gleichungen führen. Sie können die Finite Elemente Methode auf die Strömungsrechnung anwenden und insbesondere mit der Inkompressibilität numerisch umgehen. Sie können die Konvergenz und Stabilität der Verfahren erläutern und begründen.

Inhalt
- Modellbildung und Herleitung der Navier-Stokes Gleichungen
- Mathematische und physikalische Repräsentation von Energie und Spannung
- Analytische und numerische Behandlung des Stokes-Problemes
- Stabilitäts- und Konvergenztheorie
- Lax-Milgram Theorem, Céa-Lemma und Sattelpunkttheorie
- Numerische Behandlung der stationären nichtlinearen Gleichung
- Numerische Verfahren für das instationäre Problem
- Turbulenzmodelle

Empfehlungen
Arbeitsaufwand
Gesamter Arbeitsaufwand: 120 Stunden
Präsenzzzeit: 45 Stunden
 • Lehrveranstaltung einschließlich studienbegleitender Modulprüfung
Selbststudium: 75 Stunden
 • Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
 • Bearbeitung von Übungsaufgaben
 • Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
 • Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Numerische Optimierungsmethoden (MATHNM25) [M-MATH-102892]

Verantwortung: Christian Wieners
Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung:
- Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung
- Mathematische Methoden/Wahlbereich Mathematische Methoden/ Angewandte und Numerische Mathematik, Optimierung

Bestandteil von:
- Wahlpflicht
- Zusatzleistungen

Leistungspunkte: 8
Modulturnus: Unregelmäßig
Dauer: 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105858</td>
<td>Numerische Optimierungsmethoden (S. 962)</td>
<td>8</td>
<td>Andreas Rieder, Tobias Jahnke, Marlis Hochbruck, Willy Dörfler, Christian Wieners</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n):
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 30 Minuten.

Modulnote:
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen:
Keine

Qualifikationsziele:
Absolventinnen und Absolventen können
- verschiedene numerische Verfahren für restringierte und unrestringierte Optimierungsprobleme beschreiben.
- Aussagen über lokale und globale Konvergenz erklären
- exemplarische Anwendungen skizzieren

Inhalt:
- Allgemeine unrestringierte Minimierungsverfahren
- Newton-Verfahren
- Inexakte Newton-Verfahren
- Quasi-Newton-Verfahren
- Nichtlineare cg-Verfahren
- Trust-Region-Verfahren
- Innere-Punkte-Verfahren
- Penalty-Verfahren
Aktive-Mengen Strategien
- SQP-Verfahren
- Nicht-glatte Optimierung

Empfehlungen
Optimierungstheorie

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Numerische Verfahren für die Maxwellgleichungen (MATHNM33) [M-MATH-102931]

Verantwortung: Tobias Jahnke
Einrichtung: KIT-Fakultät für Mathematik
Curriculare Verankerung: Wahlpflicht
Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung

Wahlbereich Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung
Wahlpflichtfach
Zusatzleistungen

Leistungspunkte 6 Modulturnus Unregelmäßig Dauer 1 Semester

Pflichtbestandteile

Kennenheit	Teilleistung	LP	Verantwortung
T-MATH-105920 | Numerische Verfahren für die Maxwellgleichungen (S. 963) | 6 | Tobias Jahnke

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 20 Minuten.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele

Inhalt
- Maxwellgleichungen: Integral- und Differentialform, Materialgesetze, Randbedingungen, Wohlgestelltheit
- Raumdiskretisierung (z.B. finite Differenzen, konforme oder nichtkonforme finite Elemente)
- Zeitintegration (z.B Splitting-Verfahren, (lokal)-implizite Verfahren, exponentielle Integratoren)

Empfehlungen
Grundkenntnisse über gewöhnliche und/oder partielle Differentialgleichungen
Das Modul “Numerische Methoden für Differentialgleichungen” sollte besucht worden sein.

Anmerkung
Turnus: Mindestens alle zwei Jahre

Arbeitsaufwand
Gesamter Arbeitsaufwand: 180 Stunden
Präsenzzeit: 60 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung
Selbststudium: 120 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Operatorfunktionen (MATHNM38) [M-MATH-102936]

Verantwortung: Volker Grimm

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung:
- Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung
- Wahlpflichtfach
- Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105905</td>
<td>Operatorfunktionen (S. 969)</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 20 Minuten.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele

Inhalt
- Definition von Operatorfunktionen
- Stark stetige und analytische Halbgruppen
- Feste rationale Approximationen an Operatorfunktionen
- Rationale Krylov-Verfahren zur Approximation von Operatorfunktionen
- Anwendungen in der Numerik von Evolutionsgleichungen

Empfehlungen
- Numerische Mathematik 1 und 2, Funktionalanalysis

Arbeitsaufwand
Gesamter Arbeitsaufwand: 180 Stunden
Präsenzzeit: 60 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 120 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Optimierung in Banachräumen (MATHNM32) [M-MATH-102924]

Verantwortung: Andreas Kirsch
Einrichtung: KIT-Fakultät für Mathematik
Curriculare Verankerung: Wahlpflicht
Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung
Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105893</td>
<td>Optimierung in Banachräumen (S. 970)</td>
<td>8</td>
<td>Andreas Kirsch</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 30 Minuten.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Die Studierenden sind in der Lage, Eigenschaften endlichdimensionaler Optimierungsprobleme auf unendlichdimensionale Fälle zu übertragen und diese auf Probleme der Approximationstheorie, der Variationsrechnung und der optimalen Steuerungstheorie anzuwenden. Sie können die Hauptsätze wiedergeben, beweisen und anhand von Beispielen erläutern.

Inhalt

Empfehlungen
Erwünscht sind grundlegende Kenntnisse aus der Funktionalanalyse

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
• Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
• Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Optimierung und optimale Kontrolle bei Differentialgleichungen (MATH-NM09) [M-MATH-102899]

Verantwortung: Christian Wieners
Einrichtung: KIT-Fakultät für Mathematik
Curriculare Verankerung: Wahlpflicht
Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung

Leistungspunkte: 4
Modulturnus: Unregelmäßig
Dauer: 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105864</td>
<td>Optimierung und optimale Kontrolle bei Differentialgleichungen (S. 972)</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 20 Minuten.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen können
- den Überblick zur Modellierung mit optimaler Kontrolle gewinnen
- erlangen Kenntnisse zum funktionalanalytischen Rahmen
- Lösungsverfahren auf elliptische und parabolische Kontrollprobleme anwenden

Inhalt
- Einleitung und Motivation
- Linear-quadratische elliptische Probleme
- Parabolische Probleme
- Steuerung semilinearer elliptischer Gleichungen
- semilineare parabolische Kontrollprobleme

Arbeitsaufwand
Gesamter Arbeitsaufwand: 120 Stunden
Präsenzzeit: 45 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Wirtschaftsmathematik (M.Sc.)
Modulhandbuch mit Stand 04.08.2016 für Wintersemester 16/17
Selbststudium: 75 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Potentialtheorie (MATHAN20) [M-MATH-102879]

Verantwortung: Andreas Kirsch
Einrichtung: KIT-Fakultät für Mathematik
Curriculare Verankerung: Wahlpflicht
Bestandteil von:
- Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung
- Analysis oder Angewandte und Numerische Mathematik, Optimierung
- Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung
- Wahlbereich Mathematische Methoden/Analysis
- Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung
- Wahlpflichtfach
- Zusatzleistungen

Leistungspunkte
Modulturnus
Dauer

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105850</td>
<td>Potentialtheorie (S. 981)</td>
<td>8</td>
<td>Tilo Arens, Wolfgang Reichel, Andreas Kirsch, Frank Hettlich</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung (ca. 30 Min).

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Die Studierenden sind in der Lage, die Begriffe der Potentialtheorie in der Theorie und an Beispielen zu erläutern. Sie können die Hauptsätze wiedergeben, beweisen, anhand von Beispielen verdeutlichen, auf Spezialfälle reduzieren und auf verwandte Fragestellungen anwenden.

Inhalt
Eigenschaften harmonischer Funktionen, Existenz und Eindeutigkeit der Randwertaufgaben für die Laplace- und Poisson-gleichung, Greensche Funktion für die Kugel, Kugelflächenfunktionen, Flächenpotentiale, räumliche Potentiale

Empfehlungen
Erwünscht sind grundlegende Kenntnisse aus der Funktionalanalysis

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung
Selbststudium: 150 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Projektorientiertes Softwarepraktikum (MATHNM40) [M-MATH-102938]

Verantwortung: Gudrun Thäter

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung:
- Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung
- Wahlpflichtfach

Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105907</td>
<td>Projektorientiertes Softwarepraktikum (S. 990)</td>
<td>4</td>
<td>Gudrun Thäter</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Zu jedem Projekt fertigen die Studierenden eine schriftliche Ausarbeitung im Umfang von in der Regel 10-15 Seiten an, die benotet wird. Die Gesamtnote wird als Durchschnitt der Teilnoten bestimmt.

Modulnote
Die Modulnote ist das Mittel aus den Teilnoten der Projekte.

Voraussetzungen
Keine

Qualifikationsziele

Inhalt
Vorlesungsanteil: Einführung in Modellbildung und Simulationen, Wiederholung zugehöriger numerischer Verfahren, Einführung in zugehörige Software

Eigene Gruppenarbeit: Bearbeitung von 1-2 Projekten in denen Modellbildung, Diskretisierung, Simulation und Auswertung (z.B. Visualisierung) für konkrete Themen aus dem Katalog durchgeführt werden. Der Katalog umfasst z.B:
- Solving the Poisson equation: Diffusion im Rechteckgebiet;
- Incompressible Navier-Stokes equations: Strömung im Kanal;
- Applying an Inexact Newton Method in HiFlow3: Nutzen nichtlinearer Tools;
- Distributed Control Problem for Poisson Equation: Backofensteuerung;
- Stabilization Schemes for Advection Dominated Steady Convection-Diffusion

Empfehlungen
Kenntnisse einer Programmiersprache
Grundkenntnisse in der Analysis von Randwertproblemen, der numerischen Methoden für Differentialgleichungen und der Finite Elemente Methode.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 120 Stunden

Wirtschaftsmathematik (M.Sc.)
Modulhandbuch mit Stand 04.08.2016 für Wintersemester 16/17

162
Präsenzzeit: 60 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 60 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Sobolevräume (MATHAN37) [M-MATH-102926]

Verantwortung: Andreas Kirsch

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung:
- Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung
- Analysis oder Angewandte und Numerische Mathematik, Optimierung
- Analysis
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Analysis
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung
- Wahlpflichtfach
- Zusatzleistungen

Leistungspunkte: 5
Modulturnus: Unregelmäßig
Dauer: 1 Semester

Pflichtbestandteile

Kennung	Teilleistung	LP	Verantwortung
T-MATH-105896 | Sobolevräume (S. 1024) | 5 | Andreas Kirsch

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung von ca. 20 Minuten Dauer.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Die Studierenden können die Bedeutung der Sobolevräume in der Theorie partiell Differentialgleichungen erläutern. Sie sind in der Lage, die wichtigsten Eigenschaften wiederzugeben und zu beweisen.

Inhalt
Definition der Sobolevräume für skalare und vektorwertige Funktionen für Lipschitzgebiete, Fortsetzungs- und Spursätze, kompakte Einbettungen, Helmholtzzerlegung, einfache Randwertprobleme

Empfehlungen
Basisvorlesungen der Mathematik oder HM I-III

Arbeitsaufwand
Gesamter Arbeitsaufwand: 150 Stunden
Präsenzzeit: 60 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 90 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung

Wirtschaftsmathematik (M.Sc.)
Modulhandbuch mit Stand 04.08.2016 für Wintersemester 16/17
Modul: Spezielle Themen der numerischen linearen Algebra (MATHNM30) [M-MATH-102920]

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105891</td>
<td>Spezielle Themen der numerischen linearen Algebra (S. 1038)</td>
<td>8</td>
<td>Marlis Hochbruck</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Mündliche Prüfung im Umfang von ca. 30 Minuten.

Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Inhalt

- Direkte Verfahren für dünn besetzte Gleichungssysteme
- Krylov-Verfahren zur Lösung großer linearer Gleichungssysteme und Eigenwertprobleme
- Matrixfunktionen

Empfehlungen

Numerische Mathematik 1 und 2

Arbeitsaufwand

Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
• Bearbeitung von Übungsaufgaben
• Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
• Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Wavelets (MATHNM14) [M-MATH-102895]

Verantwortung: Andreas Rieder
Einrichtung: KIT-Fakultät für Mathematik
Curriculare Verankerung: Wahlpflicht
Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kennung</td>
</tr>
<tr>
<td>T-MATH-105838</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 30 Minuten.

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen können
- die funktionalanalytischen Grundlagen der kontinuierlichen und diskreten Wavelet-Transformation nennen, erörtern und analysieren.
- die Wavelet-Transformation als Analysewerkzeug in der Signal- und Bildverarbeitung anwenden sowie die erzielten Ergebnisse bewerten.
- Designaspekte von Wavelet-Systemen erläutern.

Inhalt
- Gefensterte Fourier-Transformation
- Integrale Wavelet-Transformation
- Wavelet-Frames
- Wavelet-Basen
- Schnelle Wavelet-Transformation
- Konstruktion orthogonaler und bi-orthogonaler Wavelets
- Anwendungen in Signal- und Bildverarbeitung

Empfehlungen
Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
2.3 Wahlbereich Mathematische Methoden

2.3.1 Algebra und Geometrie

<table>
<thead>
<tr>
<th>Modul: Algebra (MATHAG05) [M-MATH-101315]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verantwortung: Frank Herrlich</td>
</tr>
<tr>
<td>Einrichtung: KIT-Fakultät für Mathematik</td>
</tr>
<tr>
<td>Curriculare Verankerung: Wahlpflicht</td>
</tr>
</tbody>
</table>

Bestandteil von: Mathematische Methoden/Wahlbereich Mathematische Methoden/Algebra und Geometrie

Wahlpflichtfach

Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-102253</td>
<td>Algebra (S. 827)</td>
<td>8</td>
<td>Frank Herrlich, Stefan Kühnlein, Claus-Günther Schmidt</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 30 min.)

Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Absolventinnen und Absolventen können

- wesentliche Konzepte der Algebra nennen und erörtern,
- den Aufbau der Galoistheorie nachvollziehen und ihre Aussagen auf konkrete Fragestellungen anwenden,
- grundlegende Resultate über Bewertungsringe und ganze Ringerweiterungen nennen und zueinander in Beziehung setzen,
- und sind darauf vorbereitet, eine Abschlussarbeit im Bereich Algebra zu schreiben

Inhalt

- **Körper**: algebraische Körpererweiterungen, Galoistheorie, Einheitswurzeln und Kreisteilung, Lösen von Gleichungen durch Radikale
- **Bewertungen**: Beträge, Bewertungsringe
- **Ringtheorie**: Tensorprodukt von Moduln, ganze Ringerweiterungen, Normalisierung, noethersche Ringe, Hilbertscher Basissatz

Empfehlungen

Folgende Module sollten bereits belegt worden sein:

- Lineare Algebra
- Einführung in Algebra und Zahlentheorie

Wirtschaftsmathematik (M.Sc.)

Modulhandbuch mit Stand 04.08.2016 für Wintersemester 16/17
Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Algebraische Geometrie [M-MATH-101724]

Verantwortung: Frank Herrlich

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Wahlbereich Mathematische Methoden/Algebra und Geometrie
Wahlpﬂichtfach
Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-103340</td>
<td>Algebraische Geometrie (S. 828)</td>
<td>8</td>
<td>Frank Herrlich, Stefan Kühnlein</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung von ca. 30 Minuten Dauer.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Absolventen und Absolventinnen können
- grundlegende Konzepte der Theorie der algebraischen Varietäten nennen und erörtern,
- Hilfsmittel aus der Algebra, insbesondere der Theorie der Polynomringe, auf geometrische Fragestellungen anwenden,
- wichtige Resultate der klassischen algebraischen Geometrie erläutern und auf Beispiele anwenden,
- und sind darauf vorbereitet, Forschungsarbeiten aus der algebraischen Geometrie zu lesen und eine Abschlussarbeit in diesem Bereich zu schreiben.

Inhalt
- Hilbertscher Nullstellensatz
- affine und projektive Varietäten
- Morphismen und rationale Abbildungen
- nichtsinguläre Varietäten
- algebraische Kurven
- Satz von Riemann-Roch

Empfehlungen
Folgende Module sollten bereits belegt worden sein:
Einführung in Algebra und Zahlentheorie
Algebra

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
M Modul: Algebraische Topologie (MATHAG34) [M-MATH-102948]

Verantwortung: Roman Sauer

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Mathematische Methoden/Wahlbereich Mathematische Methoden/Algebra und Geometrie

Wahlpflichtfach

Zusatzleistungen

Leistungspunkte Modulturnus Dauer
8 Unregelmäßig 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105915</td>
<td>Algebraische Topologie (S. 829)</td>
<td>8</td>
<td>Holger Kammeyer, Roman Sauer</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Schriftliche Prüfung im Umfang von 120 min.

Modulnote
Notenbildung: Note der Prüfung

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen

- können die Homologie grundlegender Beispielsräume berechnen,
- beherrschen elementare Techniken der homologischen Algebra (Diagrammjagd),
- können selbstorganisiert und reflexiv arbeiten

Inhalt

- CW-Komplexe
- Satz von Seifert und van Kampen
- Homotopiegruppen
- Singuläre Homologie und Kohomologie
- Grundzüge der homologischen Algebra (Projektive Auflösung, Tor, Ext)

Empfehlungen

Anmerkung

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Algebraische Topologie II (MATHAG41) [M-MATH-102953]

Verantwortung: Roman Sauer

Einrichtung: KIT-Fakultät für Mathematik
Curriculare Verankerung: Wahlpflicht
Bestandteil von: Mathematische Methoden/Wahlbereich Mathematische Methoden/Algebra und Geometrie Wahlpflichtfach Zusatzleistungen

Leistungspunkte Modulturnus Dauer
8 Unregelmäßig 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105926</td>
<td>Algebraische Topologie II (S. 830)</td>
<td>8</td>
<td>Roman Sauer</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Schriftliche Prüfung im Umfang von 120 min.

Modulnote
Die Modulnote ist die Note der Prüfung.
Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen

- können die Kohomologieringe grundlegender Beispielsräume berechnen,
- beherrschen grundlegende Techniken der homologischen Algebra,
- können selbstorganisiert und reflexiv arbeiten

Inhalt

- Singuläre Kohomologie
- Produktstrukturen in der Kohomologie
- Universelle Koeffiziententheoreme der homologischen Algebra
- Poincare Dualität

Empfehlungen

Anmerkung
Turnus: Alle zwei Jahre.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung
Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Algebraische Zahlentheorie [M-MATH-101725]

Verantwortung: Claus-Günther Schmidt

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Mathematische Methoden/Wahlbereich Mathematische Methoden/Algebra und Geometrie

Bestandteil von: Wahlpflichtfach Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

Kennenleistung	LP	Verantwortung
T-MATH-103346 | 8 | Stefan Kühnlein, Claus-Günther Schmidt |

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 30 min.)

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen
- verstehen grundlegende Strukturen und Denkweisen der Algebraischen Zahlentheorie,
- erkennen die Bedeutung der abstrakten Begriffsbildungen für konkrete Fragestellungen,
- sind grundsätzlich in der Lage, aktuelle Forschungsarbeiten zu lesen und eine Abschlussarbeit auf dem Gebiet der Algebraischen Zahlentheorie zu schreiben.

Inhalt
- Algebraische Zahlkörper: Ganzheitsringe, Minkowskitheorie, Klassengruppe und Dirichletscher Einheitensatz
- Erweiterung von Zahlkörpern: Verzweigungstheorie, Galoistheoretische Fragestellungen
- Lokale Körper: Satz von Ostrowski, Bewertungstheorie, Lemma von Hensel, Erweiterungen lokaler Körper

Empfehlungen
Die Inhalte des Moduls „Algebra“ werden vorausgesetzt.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Die Riemannsche Zeta-Funktion (MATHAG45) [M-MATH-102960]

Verantwortung: Fabian Januszewski

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlbereich Mathematische Methoden

Bestandteil von: Mathematische Methoden/Wahlbereich Mathematische Methoden/Algebra und Geometrie

Zusatzleistungen

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105934</td>
<td>Die Riemannsche Zeta-Funktion (S. 858)</td>
<td>4</td>
<td>Fabian Januszewski</td>
</tr>
</tbody>
</table>

Erfolgskontroll(en)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung von ca. 20 Minuten Dauer.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Die Studierenden kennen die fundamentalen Eigenschaften der Riemannschen Zeta-Funktion, insbesondere als Prototyp allgemeiner LFunktionen (Euler-Produkt, meromorphe Fortsetzung, Funktionalgleichung). Weiterhin können die Studierenden aus den Eigenschaften der Zeta-Funktion den Primzahlsatz ableiten und die Relevanz der Riemannschen Vermutung für die Verteilung der Primzahlen erklären.

Inhalt
- Definition und Konvergenz, Euler-Produkt-Entwicklung
- Analytische Fortsetzung und Funktionalgleichung
- Anwendungen auf den Primzahlsatz, Riemannsche Vermutung

Empfehlungen
Das Modul “Einführung in Algebra Zahlentheorie” sollte bereits belegt worden sein.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 120 Stunden
Präsenzzeit: 45 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 75 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Differentialgeometrie (MATHAG04) [M-MATH-101317]

Verantwortung: Wilderich Tuschmann

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlbereich Mathematische Methoden/Algebra und Geometrie

Bestandteil von: Mathematische Methoden/Wahlbereich Mathematische Methoden/Algebra und Geometrie

Wahlpflichtfach

Zusatzleistungen

Leistungspunkte	Modulturnus	Dauer
8 | Jedes Wintersemester | 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-102275</td>
<td>Differentialgeometrie (S. 859)</td>
<td>8</td>
<td>Wilderich Tuschmann, Enrico Leuzinger, Sebastian Grensing</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung von 120 Minuten Dauer.

Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Absolventinnen und Absolventen

- können grundlegende Aussagen und Techniken der modernen Differentialgeometrie näher erörtern und anwenden,
- sind mit exemplarischen Anwendungen der Differentialgeometrie vertraut,
- können weiterführende Seminare und Vorlesungen im Bereich der Differentialgeometrie und Topologie besuchen.

Inhalt

Mannigfaltigkeiten
Tensoren
Riemannsche Metriken
Lineare Zusammenhänge
Kovariante Ableitung
Parallelverschiebung
Geodätische
Krümmungstensor und Krümmungsbegriffe

Optional:

Bündel
Differentialformen
Satz von Stokes

Empfehlungen

Folgende Module sollten bereits belegt worden sein:
Lineare Algebra I, II
Analysis I, II
Einführung in Geometrie und Topologie bzw. Elementare Geometrie

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Einführung in die geometrische Maßtheorie (MATHAG35) [M-MATH-102949]

Verantwortung: Steffen Winter

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlbereich Mathematische Methoden

Bestandteil von: Mathematische Methoden/Wahlbereich Mathematische Methoden/Algebra und Geometrie
Zusatzleistungen

Leistungspunkte	Modulturnus	Dauer
6 | Unregelmäßig | 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105918</td>
<td>Einführung in die geometrische Maßtheorie (S. 869)</td>
<td>6</td>
<td>Steffen Winter</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung von ca. 20 Minuten.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Die Studierenden
- kennen grundlegende Aussagen und Beweistechniken der geometrischen Maßtheorie,
- sind mit exemplarischen Anwendungen von Methoden der geometrischen Maßtheorie vertraut und wenden diese an,
- können reflexiv und selbstorganisiert arbeiten.

Inhalt
- Maß und Integral
- Überdeckungssätze
- Hausdorff-Maße
- Differentiation von Maßen
- Lipschitzfunktionen und Rektifizierbarkeit
- Flächen- und Koflächenformel
- Ströme
- Anwendungen

Empfehlungen
Folgende Module sollten bereits belegt worden sein:
Lineare Algebra 1+2, Analysis 1-3

Arbeitsaufwand
Gesamter Arbeitsaufwand: 180 Stunden
Präsenzzeit: 60 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 120 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Extremale Graphentheorie (MATHAG42) [M-MATH-102957]

Verantwortung: Maria Aksenovich

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlbereich Mathematische Methoden

Bestandteil von: Mathematische Methoden/Wahlbereich Mathematische Methoden/Algebra und Geometrie

Wahlpflichtfach

Zusatzleistungen

Leistungspunkte

<table>
<thead>
<tr>
<th>Modulturnus</th>
<th>Dauer</th>
<th>Sprache</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unregelmäßig</td>
<td>1 Semester</td>
<td>Englisch</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105931</td>
<td>Extremale Graphentheorie (S. 881)</td>
<td>8</td>
<td>Maria Aksenovich, Torsten Ueckerdt</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 30 min.)

Modulnote

Die Modulnote ist die Note der Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Inhalt

Empfehlungen

Grundkenntnisse in lineare Algebra, Analysis und Graphentheorie sind empfohlen.

Anmerkung

Unterrichtssprache: Englisch

Arbeitsaufwand

Gesamter Arbeitsaufwand: 240 Stunden

- Präsenzzeit: 90 Stunden
 - Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

- Selbststudium: 150 Stunden
 - Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Geometrie der Schemata (MATHAG11) [M-MATH-102866]

Verantwortung: Frank Herrlich

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlbereich Mathematische Methoden

Bestandteil von: Mathematische Methoden/Wahlbereich Mathematische Methoden/Algebra und Geometrie

Leistungspunkte 8

Modulturnus Unregelmäßig

Dauer 1 Semester

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105841</td>
<td>Geometrie der Schemata (S. 896)</td>
<td>8</td>
<td>Frank Herrlich, Stefan Kühnlein</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 30 min.)

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Absolventen und Absolventinnen können

- das Konzept der algebraischen Schemata erläutern und in Zusammenhang mit algebraischen Varietäten bringen,
- grundlegende Eigenschaften von Schemata nennen und erörtern,
- mit Garben auf Schemata umgehen und Eigenschaften von Garben untersuchen,
- und sind grundsätzlich in der Lage, Forschungsarbeiten zur algebraischen Geometrie zu lesen und eine Abschlussarbeit in diesem Bereich anzufertigen.

Inhalt
- Garben von Moduln
- affine Schemata
- Varietäten und Schemata
- Morphismen zwischen Schemata
- kohärente und quasikohärente Garben
- Kohomologie von Garben

Empfehlungen
Folgende Module sollten bereits belegt worden sein:
- Algebra
- Algebraische Geometrie

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
• Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

• Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
• Bearbeitung von Übungsaufgaben
• Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
• Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Geometrische Gruppentheorie (MATHAG12) [M-MATH-102867]

Verantwortung: Roman Sauer

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Wahlbereich Mathematische Methoden/Algebra und Geometrie

Wahlpflichtfach

Zusatzleistungen

Leistungspunkte 8

Modulturnus Unregelmäßig

Dauer 1 Semester

Pflichtbestandteile

Kennen-Teilleistung LP Verantwortung
T-MATH-105842 Geometrische Gruppentheorie (S. 897) 8 Frank Herrlich, Gabriele Link, Petra Schwer, Wilderich Tuschmann, Enrico Leuzinger, Roman Sauer

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer schriftlichen Gesamtprüfung von 120 min.

Modulnote
Die Modulnote ist die Note der Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen

- erkennen Wechselwirkungen zwischen Geometrie und Gruppentheorie,
- verstehen grundlegende Strukturen und Techniken der Geometrischen Gruppentheorie und können diese nennen, diskutieren und anwenden,
- kennen und verstehen Konzepte und Resultate aus der Grobgeometrie,
- sind darauf vorbereitet, aktuelle Forschungsarbeiten aus dem Bereich der Geometrischen Gruppentheorie zu lesen.

Inhalt

- Endlich erzeugte Gruppen und Gruppenpräsentationen
- Cayley-Graphen und Gruppenaktionen
- Quasi-Isometrien von metrischen Räumen, quasi-isometrische Invarianten und der Satz von Schwarz-Milnor
- Beispielklassen für Gruppen, z.B. hyperbolische Gruppen, Fuchssche Gruppen, amenable Gruppen, Zopfgruppen, Thompson-Gruppe

Empfehlungen

Anmerkung

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Globale Differentialgeometrie (MATHAG27) [M-MATH-102912]

Verantwortung: Wilderich Tuschmann

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Mathematische Methoden/Wahlbereich Mathematische Methoden/Algebra und Geometrie

Bestandteil von: Wahlpflichtfach

Zusatzleistungen

Leistungspunkte Modulturnus Dauer
8 Unregelmäßig 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105885</td>
<td>Globale Differentialgeometrie (S. 900)</td>
<td>8</td>
<td>Wilderich Tuschmann, Sebastian Grensing</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 30 Minuten.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen

- haben ein tieferes Verständnis exemplarischer Konzepte und Methoden der Globalen Differentialgeometrie und Riemannschen Geometrie erworben,
- sind auf eigenständige Forschung und weiterführende Seminare im Gebiet der Differentialgeometrie vorbereitet.

Inhalt
- Existenz- und Hindernissätze für Metriken mit besonderen Eigenschaften
- Geometrische Endlichkeits- und Klassifikationsresultate
- Geometrische Limiten
- Gromov-Hausdorff- und Lipschitz-Konvergenz Riemannscher Mannigfaltigkeiten

Empfehlungen
Empfehlenswert sind Vorkenntnisse im Rahmen der Vorlesungen „Einführung in Geometrie und Topologie“ bzw. „Elementare Geometrie“ und „Differentialgeometrie“.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung

Wirtschaftsmathematik (M.Sc.)
Modulhandbuch mit Stand 04.08.2016 für Wintersemester 16/17
Verantwortung: Maria Aksenovich

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Wahlbereich Mathematische Methoden/Algebra und Geometrie

Wahlpflichtfach

Zusatzleistungen

Leistungspunkte: 8

Modulturnus: Unregelmäßig

Dauer: 1 Semester

Sprache: Englisch

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-102273</td>
<td>Graphentheorie (S. 905)</td>
<td>8</td>
<td>Maria Aksenovich, Torsten Ueckerdt</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form einer schriftlichen Prüfung (3h).

Durch die erfolgreiche Teilnahme am Übungsbetrieb kann ein Bonus erworben werden. Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note um eine Notenstufe (0,3 oder 0,4). Der Bonus gilt nur für ein Jahr nachdem er erworben wurde.

Modulnote

Die Modulnote ist Note der Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Inhalt

Empfehlungen

Grundkenntnisse in lineare Algebra und Analysis sind empfohlen.

Anmerkung

- Turnus: jedes zweite Jahr im Wintersemester
- Unterrichtssprache: Englisch

Arbeitsaufwand

Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
2.3 Wahlbereich Mathematische Methoden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Gruppenwirkungen in der Riemannschen Geometrie (MATHAG40) [M-MATH-102954]

Verantwortung: Wilderich Tuschmann

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Wahlbereich Mathematische Methoden/Algebra und Geometrie

Wahlpflichtfach

Zusatzleistungen

Leistungspunkte 5

Modulturnus Unregelmäßig

Dauer 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105925</td>
<td>Gruppenwirkungen in der Riemannschen Geometrie</td>
<td>5</td>
<td>Wilderich Tuschmann</td>
</tr>
<tr>
<td></td>
<td>(S. 906)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung von ca. 20 Minuten.

Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Absolventinnen und Absolventen
- verstehen grundlegende Fragestellungen aus der Theorie der Gruppenwirkungen auf Riemannschen Mannigfaltigkeiten,
- erkennen die Relevanz der Gruppenwirkungen für Probleme in der Riemannschen Geometrie,
- sind grundsätzlich in der Lage, aktuelle Forschungsergebnisse zu lesen und eine Abschlussarbeit auf dem Gebiet der Gruppenwirkungen auf Riemannschen Mannigfaltigkeiten zu schreiben.

Inhalt

Gruppenwirkungen
- Isotropiegruppen, Bahnen, Bahnenraum.
- Scheibensatz.
- Homogene Räume, Kohomogenität-Eins-Mannigfaltigkeiten.

Geometrie der Bahnenräume
- Elementare Alexandrov-Geometrie.
- Positive Krümmung und Abstandsfunction.

Krümmung und Gruppenwirkungen
- Der Satz von Hsiang-Kleiner und seine Verallgemeinerungen.
- Symmetrierang von Mannigfaltigkeiten mit positiver Krümmung.
Empfehlungen
Die Inhalte des Moduls “Differentialgeometrie” werden empfohlen.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 150 Stunden
Präsenzzeit: 60 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 90 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Homotopietheorie (MATHAG44) [M-MATH-102959]

Verantwortung: Roman Sauer
Einrichtung: KIT-Fakultät für Mathematik
Curriculare Verankerung: Wahlbereich Mathematische Methoden
Bestandteil von: Mathematische Methoden/Wahlbereich Mathematische Methoden/Algebra und Geometrie

Leistungspunkte Modulturnus Dauer Sprache
8 Unregelmäßig 1 Semester Deutsch

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105933</td>
<td>Homotopietheorie (S. 907)</td>
<td>8</td>
<td>Roman Sauer</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Mündliche Prüfung im Umfang von ca. 25 min.

Modulnote
Notenbildung: Note der Prüfung

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen
- können Homotopiegruppen und Kohomologiealgebren grundlegender Beispielsräume berechnen
- beherrschen fortgeschrittene Techniken der homologischen Algebra
- können selbstorganisiert und reflexiv arbeiten

Inhalt
- Bordismustheorie
- höhere Homotopiegruppen
- Spektralsequenzen

Empfehlungen

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Kombinatorik (MATHAG37) [M-MATH-102950]

Verantwortung: Maria Aksenovich

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung:
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Algebra und Geometrie
- Wahlpflichtfach
- Zusatzleistungen

Leistungspunkte: 8
Modulturnus: Unregelmäßig
Dauer: 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105916</td>
<td>Kombinatorik (S. 920)</td>
<td>8</td>
<td>Maria Aksenovich, Torsten Ueckerdt</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer schriftlichen Prüfung (3h).
Durch die erfolgreiche Teilnahme am Übungsbetrieb kann ein Bonus erworben werden. Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note um eine Notenstufe (0,3 oder 0,4). Der Bonus gilt nur für ein Jahr nachdem er erworben wurde.

Modulnote
Die Modulnote ist Note der schriftlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Die Studierenden können grundlegende Begriffe und Techniken der Kombinatorik nennen, erörtern und anwenden. Sie können kombinatorische Probleme analysieren, strukturieren und formal beschreiben.
Die Studierenden können
Resultate und Methoden, wie das Inklusions-Exklusions-Prinzip, Erzeugendenfunktionen oder Young Tableaux, sowie die in den Beweisen entwickelten Ideen, auf kombinatorische Probleme anwenden. Insbesondere sind sie in der Lage, die Anzahl der geordneten und ungeordneten Arrangements gegebener Größe zu bestimmen oder die Existenz solcher Arrangements zu beweisen oder zu widerlegen. Die Studierenden sind fähig, Methoden aus dem Bereich der Kombinatorik zu verstehen und kritisch zu beurteilen. Desweiteren können die Studierenden in englischer Fachsprache kommunizieren.

Inhalt

Empfehlungen
Grundkenntnisse in lineare Algebra und Analysis sind empfohlen.

Anmerkung
- Turnus: jedes zweite Jahr im Sommersemester
- Unterrichtssprache: Englisch

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Kombinatorik in der Ebene (MATHAG28) [M-MATH-102925]

Verantwortung: Maria Aksenovich

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Mathematische Methoden/Wahlbereich Mathematische Methoden/Algebra und Geometrie

Bestandteil von: Wahlpflichtfach

Zusatzleistungen

Leistungspunkte

<table>
<thead>
<tr>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105895</td>
<td>Kombinatorik in der Ebene (S. 921)</td>
<td>7</td>
<td>Maria Aksenovich, Torsten Ueckerdt</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 30 min.)

Modulnote
Notenbildung: Note der Prüfung

Voraussetzungen
Keine

Qualifikationsziele

Inhalt

Empfehlungen
Grundkenntnisse in linearer Algebra, Kombinatorik und Graphentheorie sind empfohlen.

Anmerkung
Unterrichtssprache: Englisch

Arbeitsaufwand
Gesamter Arbeitsaufwand: 210 Stunden
Präsenzzeit: 75 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 135 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
• Bearbeitung von Übungsaufgaben
• Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
• Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Konvexe Geometrie (MATHAG07) [M-MATH-102864]

Verantwortung: Daniel Hug
Einrichtung: KIT-Fakultät für Mathematik
Curriculare Verankerung: Mathematische Methoden/Wahlbereich Mathematische Methoden/Algebra und Geometrie
Bestandteil von: Wahlpflichtfach

Relevante Informationen:
- Modulturnus: Unregelmäßig
- Dauer: 1 Semester

Leistungspunkte: 8

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105831</td>
<td>Konvexe Geometrie (S. 924)</td>
<td>8</td>
<td>Daniel Hug</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 30 min).

Modulnote
Notenbildung: Note der Prüfung

Voraussetzungen
Keine

Qualifikationsziele
Die Studierenden

- kennen grundlegende kombinatorische, geometrische und analytische Eigenschaften von konvexen Mengen und konvexen Funktionen und wenden diese auf verwandte Problemstellungen an,
- sind mit grundlegenden geometrischen und analytischen Ungleichungen für Funktionale konvexer Mengen und ihren Anwendungen auf geometrische Extremalprobleme vertraut und können zentrale Beweisideen und Beweistechniken angeben,
- kennen ausgewählte Integralformeln für konvexe Mengen und die hierfür erforderlichen Grundlagen über invariante Maße.
- können selbstorganisiert und reflexiv arbeiten

Inhalt
1. Konvexe Mengen
 1.1. Kombinatorische Eigenschaften
 1.2. Trennungs- und Stützeigenschaften
 1.3. Extremale Darstellungen
2. Konvexe Funktionen
 2.1. Grundlegende Eigenschaften
 2.2. Regularität
 2.3. Stützfunktion
 3. Brunn-Minkowski-Theorie
 3.1. Hausdorff-Metrik
 3.2. Volumen und Oberfläche
 3.3. Gemischte Volumina
 3.4. Geometrische Ungleichungen
 3.5. Oberflächenmaße
 3.6. Projektionsfunktionen
4. Integralgeometrische Formeln

Wirtschaftsmathematik (M.Sc.)
Modulhandbuch mit Stand 04.08.2016 für Wintersemester 16/17
4.1. Invariante Maße
4.2. Projektions- und Schnittformeln

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: L2-Invarianten (MATHAG38) [M-MATH-102952]

Verantwortung: Holger Kammeyer
Einrichtung: KIT-Fakultät für Mathematik
Curriculare Verankerung: Wahlpflicht
Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Analysis
Mathematische Methoden/Wahlbereich Mathematische Methoden/Algebra und Geometrie
Mathematische Methoden/Wahlbereich Mathematische Methoden/Analysis
Wahlpflichtfach
Zusatzleistungen

Leistungspunkte 5
Modulturnus Unregelmäßig
Dauer 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105924</td>
<td>L2-Invarianten (S. 927)</td>
<td>5</td>
<td>Holger Kammeyer, Roman Sauer</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung von ca. 25 Minuten.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen
-verstehen Motivation und Umsetzung der Definitionen von L2-Invarianten,
-kennen Methodik und Werkzeuge, sie in einfachen Beispielen zu berechnen,
-wissen um die Relevanz der L2-Invarianten in verschiedenen mathematischen Gebieten und können sie in diesen Zusammenhängen einsetzen.

Inhalt
-Hilbertmoduln und von-Neumann-Dimension
-L2-Betti-Zahlen von CW-Komplexen und Gruppen
-Novikov-Shubin-Invarianten
-Fuglede-Kadison-Determinante und L2-Torsion

Empfehlungen
Inhalte der Module “Einführung in Geometrie und Topologie” bzw. “Elementare Geometrie” (Fundamentalgruppe und Überlagerungen) sowie “Algebraische Topologie” (CW-Komplexe, Kettenkomplexe, Homologie) werden benötigt.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 150 Stunden
Präsenzzeit: 60 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 90 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Spin-Mannigfaltigkeiten, alpha-Invariante und positive Skalarkrümmung (MA-THAG43) [M-MATH-102958]

Verantwortung: Wilderich Tuschmann

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Wahlbereich Mathematische Methoden/Algebra und Geometrie

Wahlpflichtfach

Zusatzleistungen

Leistungspunkte: 5

Modulturnus: Unregelmäßig

Dauer: 1 Semester

Sprache: Deutsch

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105932</td>
<td>Spin-Mannigfaltigkeiten, alpha-Invariante und positive Skalarkrümmung (S. 1039)</td>
<td>5</td>
<td>Stephan Klaus, Wilderich Tuschmann</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung von ca. 20 Minuten.

Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Absolventinnen und Absolventen

- verstehen grundlegende Fragestellungen aus der Theorie der Spin-Geometrie und Riemannschen Mannigfaltigkeiten mit positiver Skalarkrümmung;
- erkennen die Relevanz der charakteristischen Klassen und Bordismustheorien für Probleme in der Differentialgeometrie und Riemannschen Geometrie;
- sind grundsätzlich in der Lage, aktuelle Forschungsarbeiten zu lesen und eine Abschlussarbeit auf dem Gebiet der Spin-Geometrie und Riemannschen Mannigfaltigkeiten mit positiver Skalarkrümmung zu schreiben.

Inhalt

Empfehlungen

Folgende Module sollten bereits belegt worden sein:

Differentialgeometrie und Globale Differentialgeometrie, Algebraische Topologie

Arbeitsaufwand

Gesamter Arbeitsaufwand: 150 Stunden

Präsenzzeit: 60 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung
Selbststudium: 90 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Stochastische Geometrie (MATHST06) [M-MATH-102865]

Verantwortung: Daniel Hug

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung:
- Mathematische Methoden/Stochastik
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Algebra und Geometrie
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Stochastik
- Wahlpflichtfach
- Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105840</td>
<td>Stochastische Geometrie (S. 1054)</td>
<td>8</td>
<td>Günter Last, Daniel Hug</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 30 min).

Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden

- kennen die grundlegenden geometrischen Modelle und Kenngrößen der Stochastischen Geometrie,
- sind mit Eigenschaften von Poissonprozessen geometrischer Objekte vertraut,
- kennen exemplarisch Anwendungen von Modellen der Stochastischen Geometrie,
- können reflexiv und selbstorganisiert arbeiten.

Inhalt

- Zufällige Mengen
- Geometrische Punktprozesse
- Stationarität und Isotropie
- Keim-Korn-Modelle
- Boolesche Modelle
- Grundlagen der Integralgeometrie
- Geometrische Dichten und Kenngrößen
- Zufällige Mosaike

Empfehlungen

Die Inhalte des Moduls Räumliche Stochastik werden zum Teil benötigt.

Arbeitsaufwand

Gesamter Arbeitsaufwand: 240 Stunden

Präsenzzeit: 90 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung
Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Vergleichsgeometrie (MATHAG30) [M-MATH-102940]

Verantwortung: Wilderich Tuschmann

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Mathematische Methoden/Wahlbereich Mathematische Methoden/Algebra und Geometrie

Bestandteil von: Wahlpflichtfach

Zusatzleistungen

Leistungspunkte

5

Modulturnus

Unregelmäßig

Dauer

1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105917</td>
<td>Vergleichsgeometrie (S. 1070)</td>
<td>5</td>
<td>Wilderich Tuschmann</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung von ca. 20 Minuten.

Modulnote

Die Modulnote ist Note der mündlichen Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Absolventinnen und Absolventen haben ein tieferes Verständnis exemplarischer Konzepte und Methoden der Vergleichsgeometrie, einem Teilgebiet der modernen Differentialgeometrie und Riemannschen Geometrie erworben und sind auf eigenständige Forschung und weiterführende Seminare im Gebiet der Differentialgeometrie vorbereitet.

Inhalt

The course provides a thorough introduction to comparison theory in Riemannian geometry:

What can be said about a complete Riemannian manifold when (mainly lower) bounds for the sectional or Ricci curvature are given? Starting from the comparison theory for the Riccati ODE which describes the evolution of the principal curvatures of equidistant hypersurfaces, we discuss the global estimates for volume and length given by Bishop-Gromov and Toponogov. An application is Gromov’s estimate of the number of generators of the fundamental group and the Betti numbers when lower curvature bounds are given. Using convexity arguments, we prove the “soul theorem” of Cheeger and Gromoll and the sphere theorem of Berger and Klingenberg for nonnegative curvature. If lower Ricci curvature bounds are given we exploit subharmonicity instead of convexity and show the rigidity theorems of Myers-Cheng and the splitting theorem of Cheeger and Gromoll. The Bishop-Gromov inequality shows polynomial growth of finitely generated subgroups of the fundamental group of a space with nonnegative Ricci curvature (Milnor). We also discuss briefly Bochner’s method.

Empfehlungen

Vorlesung ‘Differentialgeometrie’.

Arbeitsaufwand

Gesamter Arbeitsaufwand: 150 Stunden

Präsenzzeit: 60 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 90 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
• Vorbereitung auf die studienbegleitende Modulprüfung
2.3.2 Analysis

Modul: Computerunterstützte analytische Methoden für Rand- und Eigenwertprobleme (MATHAN11) [M-MATH-102883]

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Verantwortung: Michael Plum

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von:
- Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Analysis
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Analysis
- Wahlpflichtfach
- Zusatzleistungen

Kennung Teilleistung LP Verantwortung

| T-MATH-105854 | Computerunterstützte analytische Methoden für Rand- und Eigenwertprobleme (S. 850) | 8 | Michael Plum |

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 20 min).

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele

Inhalt

Empfehlungen
- Klassische Methoden für partielle Differentialgleichungen
- Rand- und Eigenwertprobleme
- Funktionalanalysis

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
2.3 Wahlbereich Mathematische Methoden

- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Dynamische Systeme (MATHAN43) [M-MATH-103080]

Verantwortung: Jens Rottmann-Matthes

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Analysis
Mathematische Methoden/Wahlbereich Mathematische Methoden/Analysis
Wahlpflichtfach
Zusatzleistungen

Leistungspunkte: 8
Modulturnus: Unregelmäßig
Dauer: 1 Semester
Sprache: Deutsch

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-106114</td>
<td>Dynamische Systeme (S. 861)</td>
<td>8</td>
<td>Jens Rottmann-Matthes</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Prüfung: mündliche Prüfung (ca. 30 Min)

Modulnote
Notenbildung: Note der Prüfung.

Voraussetzungen
keine

Qualifikationsziele
Absolventinnen und Absolventen können
- die Bedeutung Dynamischer Systeme an Hand von Beispielen erläutern,
- die Konzepte eines zeitdiskreten und zeitkontinuierlichen dynamischen Systems zueinander in Beziehung setzen,
- wichtige Methoden zur Analyse dynamischer Systeme beschreiben und mit ihrer Hilfe das asymptotische Verhalten von Lösungen in der Nähe von Gleichgewichten für verschiedene dynamische Systeme analysieren,
- das Verhalten invarianter Mengen unter Diskretisierung beschreiben.

Inhalt
- Beispiele endlich- und unendlich-dimensionaler Dynamischer Systeme
- Fixpunkte, periodische Orbits, Limesmengen
- Invariante Mengen
- Attraktoren
- Ober- und Unterhalbstetigkeit von Attraktoren
- Stabile und instabile Mannigfaltigkeiten
- Zentrumsmannigfaltigkeiten

Empfehlungen
Analysis 1-3, Funktionalanalysis

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung
Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
M

Modul: Evolutionsgleichungen (MATHAN12) [M-MATH-102872]

Verantwortung: Roland Schnaubelt

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Analysis
Mathematische Methoden/Wahlbereich Mathematische Methoden/Analysis
Wahlpflichtfach
Zusatzeleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105844</td>
<td>Evolutionsgleichungen (S. 878)</td>
<td>8</td>
<td>Roland Schnaubelt, Lutz Weis</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung von ca. 30 Minuten.

Modulnote

Die Modulnote ist die Note der Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Inhalt

stark stetige Operatorhalbgruppen und ihre Erzeuger,
Erzeugungssätze und Wohlgestelltheit,
amalytische Halbgruppen,
inhomogene und semilineare Cauchyprobleme,
Störungstheorie,
Einführung in Stabilitäts- und Spektraltheorie von Operatorhalbgruppen,
Anwendungen auf partielle Differentialgleichungen

Anmerkung

Turnus: Alle zwei Jahre.

Arbeitsaufwand

Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung
Selbststudium: 150 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Fourieranalysis (MATHAN14) [M-MATH-102873]

Verantwortung: Lutz Weis

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung:
- Wahlbereich Mathematische Methoden
- Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Analysis
- Wahlbereich Mathematische Methoden/Analysis
- Wahlpflichtfach
- Zusatzleistungen

Leistungspunkte: 8 Modulturnus: Unregelmäßig Dauer: 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105845</td>
<td>Fourieranalysis (S. 890)</td>
<td>8</td>
<td>Roland Schnaubelt, Lutz Weis</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung von 120 Minuten.

Modulnote
Die Modulnote ist die Note der Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Die Studenten kennen die Darstellung von (quadrat-)integrierbaren Funktionen durch Fourierreihen, die Konvergenztheorie dieser Reihen sowie den Zusammenhang zwischen Glattheit der Funktion und dem Abfall der Fourierkoeffizienten und können dies an einfachen Beispielen demonstrieren. Eigenschaften der Fouriertransformation beherrschen sie im Rahmen der Lebesgueräume und der Distributionen. Anhand expliziter Lösungen für die Wärmeleitungs-, die Wellen- und die Schrödingergleichung erkennen sie die Bedeutung der Fourieranalyse für die angewandte Mathematik. Sie beherrschen die grundlegenden Beschränktheitsaussagen für singuläre Integrale, z.B. für die Hilberttransformation. Dabei erkennen sie die Bedeutung und Anwendbarkeit von Interpolationsmethoden und Fouriermultiplikatorensätzen.

Inhalt
- Fourier Reihen
- Die Fourier Transformation auf L1 und L2
- Temperierte Distributionen und ihre Fourier Transformation
- Expizite Lösungen der Wärmeleitungs-, Schrödinger- und Wellengleichung im Rn
- Hilbert Transformation
- Der Interpolationssatz von Marcinkiewicz
- Singuläre Integraloperatoren
- Der Fourier Multiplikatorensatz von Mihlin

Empfehlungen
Das Modul "Funktionalanalyse“ sollte bereits belegt worden sein.

Anmerkung
Turnus: Alle zwei Jahre.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden

Wirtschaftsmathematik (M.Sc.)
Modulhandbuch mit Stand 04.08.2016 für Wintersemester 16/17
2.3 Wahlbereich Mathematische Methoden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Funktionalanalysis (MATHAN05) [M-MATH-101320]

Verantwortung: Roland Schnaubelt

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung:

Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Analysis
Mathematische Methoden/Wahlbereich Mathematische Methoden/Analysis
Wahlpflichtfach

Zusatzleistungen

Leistungspunkte: 8
Modulturnus: Jedes Wintersemester
Dauer: 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-102255</td>
<td>Funktionalanalysis (S. 891)</td>
<td>8</td>
<td>Michael Plum, Christoph Schmoeger, Wolfgang Reichel, Gerd Herzog, Dirk Hundertmark, Roland Schnaubelt, Lutz Weis, Tobias Lamm</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung von 120 Minuten.

Modulnote

Die Modulnote ist die Note der Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Inhalt

- Metrische Räume (topologische Grundbegriffe, Kompaktheit)
- Stetige lineare Operatoren auf Banachräumen (Prinzip der gleichmäßigen Beschränktheit, Homomorphiesatz)
- Dualräume mit Darstellungssätzen, Sätze von Hahn-Banach und Banach-Alaoglu, schwache Konvergenz, Reflexivität
- Fouriertransformation, Satz von Plancherel, schwache Ableitung, Sobolevräume in L^2, partielle Differentialgleichungen mit konstanten Koeffizienten

Empfehlungen

Folgende Module sollten bereits belegt worden sein:

Lineare Algebra 1+2
Analysis 1-3

Arbeitsaufwand

Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Integralgleichungen (MATHAN07) [M-MATH-102874]

Verantwortung: Frank Hettlich

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlbereich Mathematische Methoden

Bestandteil von:
- Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Analysis
- Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Analysis
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung
- Wahlpflichtfach
- Zusatzleistungen

Leistungspunkte: 8

Modulturnus: Unregelmäßig

Dauer: 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105834</td>
<td>Integralgleichungen (S. 914)</td>
<td>8</td>
<td>Tilo Arens, Andreas Kirsch, Frank Hettlich</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 30min.).

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Die Studierenden können Integralgleichungen klassifizieren und hinsichtlich Existenz und Eindeutigkeit mittels Methoden der Störungstheorie und der Fredholmtheorie untersuchen. Beweisideen der Herleitung der Fredholmtheorie sowie der Störungstheorie insbesondere bei Faltungsintegralgleichungen können sie beschreiben und erläutern. Darüberhinaus können die Studierenden klassische Randwertprobleme zu gewöhnlichen linearen Differentialgleichungen und zur Potentialtheorie durch Integralgleichungen formulieren und analysieren.

Inhalt
- Riesz- und Fredholmtheorie
- Fredholmsche und Volterrasche Integralgleichungen
- Anwendungen in der Potentialtheorie
- Faltungsgleichungen

Empfehlungen
Folgende Module sollten bereits belegt worden sein:
- Lineare Algebra 1+2
- Analysis 1-3

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
• Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

• Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
• Bearbeitung von Übungsaufgaben
• Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
• Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Inverse Probleme (MATHNM06) [M-MATH-102890]

Verantwortung: Andreas Kirsch

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung:
- Wahlpflicht

Bestandteil von:
- Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Analysis
- Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Analysis
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung

Zusatzleistungen

Leistungspunkte Modulturnus Dauer
8 Jedes Wintersemester 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105835</td>
<td>Inverse Probleme (S. 917)</td>
<td>8</td>
<td>Andreas Rieder, Tilo Arens, Andreas Kirsch, Frank Hettlich</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung von ca. 30 Minuten Dauer.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele

Inhalt
- Lineare Gleichungen 1. Art
- Schlecht gestellte Probleme
- Regularisierungstheorie
- Tikhono Regularisierung bei linearen Gleichungen
- Iterative Regularisierungsverfahren
- Beispiele schlecht gestellter Probleme

Empfehlungen
Folgende Module sollten bereits belegt worden sein:
- Lineare Algebra 1+2
- Analysis 1-3
- Funktionalanalyse

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Klassische Methoden für partielle Differentialgleichungen (MATHAN08) [M-MATH-102870]

Verantwortung: Michael Plum

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Analysis
Mathematische Methoden/Wahlbereich Mathematische Methoden/Analysis
Wahlpflichtfach
Zusatzleistungen

Leistungspunkte	Modulturnus	Dauer
8 | Jedes Wintersemester | 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105832</td>
<td>Klassische Methoden für partielle Differentialgleichungen (S. 918)</td>
<td>8</td>
<td>Michael Plum, Wolfgang Reichel, Jens Rottmann-Matthes, Dirk Hundertmark, Roland Schnaubelt, Lutz Weis, Tobias Lamm</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer schriftlichen Gesamtprüfung (120 min).

Modulnote
Die Modulnote ist die Note der Prüfung.

Voraussetzungen
Keine

Qualifikationsziele

Inhalt
- Beispiele partieller Differentialgleichungen
- Wellengleichung
- Laplace- und Poisson-Gleichung
- Wärmeleitungsgleichung
- Klassische Lösungsmethoden

Empfehlungen
Analysis 1+2+3
Lineare Algebra 1+2

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung
Selbststudium: 150 Stunden
Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
Bearbeitung von Übungsaufgaben
Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Komplexe Analysis (MATHAN16) [M-MATH-102878]

Verantwortung: Christoph Schmoeger

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Analysis
Mathematische Methoden/Wahlbereich Mathematische Methoden/Analysis
Wahlpflichtfach
Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105849</td>
<td>Komplexe Analysis (S. 922)</td>
<td>8</td>
<td>Michael Plum, Christoph Schmoeger, Wolfgang Reichel, Gerd Herzog, Roland Schnaubelt, Lutz Weis</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung Funktionentheorie II erfolgt in Form einer mündlichen Gesamtprüfung (ca. 30 min)

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen können die Grundsätze der unten genannten Inhalte nennen, erörtern und anwenden.

Inhalt
- unendliche Produkte
- Satz von Mittag-Leffler
- Satz von Montel
- Riemannscher Abbildungssatz
- Konforme Abbildungen
- schlichte Funktionen
- Automorphismen spezieller Gebiete
- harmonische Funktionen
- Schwarzschees Spiegelungsprinzip
- reguläre und singuläre Punkte von Potenzreihen

Empfehlungen
Folgende Module sollten bereits belegt worden sein:
Funktionentheorie

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: L2-Invarianten (MATHAG38) [M-MATH-102952]

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105924</td>
<td>L2-Invarianten (S. 927)</td>
<td>5</td>
<td>Holger Kammeyer, Roman Sauerer</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung von ca. 25 Minuten.

Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Absolventinnen und Absolventen
- verstehen Motivation und Umsetzung der Definitionen von L2-Invarianten,
- kennen Methodik und Werkzeuge, sie in einfachen Beispielen zu berechnen,
- wissen um die Relevanz der L2-Invarianten in verschiedenen mathematischen Gebieten und können sie in diesen Zusammenhängen einsetzen.

Inhalt

- Hilbertmoduln und von-Neumann-Dimension
- L2-Betti-Zahlen von CW-Komplexen und Gruppen
- Novikov-Shubin-Invarianten
- Fuglede-Kadison-Determinante und L2-Torsion

Empfehlungen

Inhalte der Module “Einführung in Geometrie und Topologie” bzw. “Elementare Geometrie” (Fundamentalgruppe und Überlagerungen) sowie “Algebraische Topologie” (CW-Komplexe, Kettenkomplexe, Homologie) werden benötigt.

Arbeitsaufwand

Gesamter Arbeitsaufwand: 150 Stunden
Präsenzzeit: 60 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 90 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Maxwellgleichungen (MATHAN28) [M-MATH-102885]

Verantwortung: Andreas Kirsch

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von:
- Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Analysis
- Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Analysis
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung
- Wahlpflichtfach
- Zusatzleistungen

Leistungspunkte 8
Modulturnus Unregelmäßig
Dauer 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105856</td>
<td>Maxwellgleichungen (S. 942)</td>
<td>8</td>
<td>Tilo Arens, Andreas Kirsch, Frank Hettlich</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung von ca. 30 Minuten Dauer.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Die Studierenden sind in der Lage, die mathematischen Fragestellungen aus der Theorie der Maxwellschen Gleichungen an Beispielen zu erläutern.

Sie können die Hauptsätze wiedergeben, beweisen, auf Spezialfälle anwenden und mit den Eigenschaften einfacherer Differentialgleichungen (z.B. der Helmholtzgleichung) vergleichen.

Inhalt
Spezielle Beispiele von Lösungen der Maxwellgleichungen, Eigenschaften der Lösungen (z. B. Darstellungssätze), Spezialfälle (E-Mode, H-Mode), Randwertaufgaben

Empfehlungen
Erwünscht sind grundlegende Kenntnisse aus der Funktionalanalysis

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
• Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Optimierung in Banachräumen (MATHNM32) [M-MATH-102924]

Verantwortung: Andreas Kirsch

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Analysis
Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Analyse
Mathematische Methoden/Wahlbereich Mathematische Methoden/Analysis
Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung
Wahlpflichtfach
Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

Kennung	Teilleistung	LP	Verantwortung
T-MATH-105893 | Optimierung in Banachräumen (S. 970) | 8 | Andreas Kirsch |

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 30 Minuten.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Die Studierenden sind in der Lage, Eigenschaften endlichdimensionaler Optimierungsprobleme auf unendlichdimensionale Fälle zu übertragen und diese auf Probleme der Approximationstheorie, der Variationsrechnung und der optimalen Steuerungstheorie anzuwenden. Sie können die Hauptsätze wiedergeben, beweisen und anhand von Beispielen erläutern.

Inhalt

Empfehlungen
Erwünscht sind grundlegende Kenntnisse aus der Funktionalanalysis

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
M Modul: Potentialtheorie (MATHAN20) [M-MATH-102879]

Verantwortung: Andreas Kirsch

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Analysis
Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung
Mathematische Methoden/Wahlbereich Mathematische Methoden/Analysis
Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung
Wahlpflichtfach
Zusatzleistungen

Leistungspunkte 8
Modulturnus Unregelmäßig
Dauer 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105850</td>
<td>Potentialtheorie (S. 981)</td>
<td>8</td>
<td>Tilo Arens, Wolfgang Reichel, Andreas Kirsch, Frank Hettlich</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n) Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung (ca. 30 Min).

Modulnote Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen Keine

Qualifikationsziele Die Studierenden sind in der Lage, die Begriffe der Potentialtheorie in der Theorie und an Beispielen zu erläutern. Sie können die Hauptsätze wiedergeben, beweisen, anhand von Beispielen verdeutlichen, auf Spezialfälle reduzieren und auf verwandte Fragestellungen anwenden.

Inhalt Eigenschaften harmonischer Funktionen, Existenz und Eindeutigkeit der Randwertaufgaben für die Laplace- und Poisson-gleichung, Greensche Funktion für die Kugel, Kugelflächenfunktionen, Flächenpotentiale, räumliche Potentiale

Empfehlungen Erwünscht sind grundlegende Kenntnisse aus der Funktionalanalysis

Arbeitsaufwand Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Rand- und Eigenwertprobleme (MATHAN09) [M-MATH-102871]

Verantwortung: Wolfgang Reichel

Einrichtung: KIT-Fakultät für Mathematik

Wahlpflicht

Curriculare Verankerung:

Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Analysis
Mathematische Methoden/Wahlbereich Mathematische Methoden/Analysis
Wahlpflichtfach
Zusatzleistungen

Leistungspunkte 8

Modulturnus Jedes Sommersemester

Dauer 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105833</td>
<td>Rand- und Eigenwertprobleme (S. 995)</td>
<td>8</td>
<td>Michael Plum, Wolfgang Reichel, Jens Rottmann-Matthes, Dirk Hundertmark, Roland Schnaubelt, Lutz Weis, Tobias Lamm</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 30 min).

Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Absolventinnen und Absolventen können

- die Bedeutung von Rand- und Eigenwertproblemen innerhalb der Mathematik und/oder Physik beurteilen und an Hand von Beispielen illustrieren,
- qualitative Eigenschaften von Lösungen beschreiben,
- mit Hilfe funktionalanalytischer Methoden die Existenz von Lösungen von Randwertproblemen beweisen,

Inhalt

- Beispiele von Rand- und Eigenwertproblemen
- Maximumprinzipien für Gleichungen 2. Ordnung
- Funktionenräume, z.B. Sobolev-Räume
- Schwache Formulierung linearer elliptischer Gleichungen 2. Ordnung
- Existenz- und Regularitätstheorie elliptischer Gleichungen
- Eigenwerttheorie für schwach formulierte elliptische Eigenwertprobleme
Empfehlungen
Folgende Module sollten bereits belegt worden sein:

- Lineare Algebra 1+2
- Analysis 1-3

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
M Modul: Sobolevräume (MATHAN37) [M-MATH-102926]

Verantwortung: Andreas Kirsch

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von:
- Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Analysis
- Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Analysis
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung
- Wahlpflichtfach

Zusatzleistungen
- Leistungspunkte: 5
- Modulturnus: Unregelmäßig
- Dauer: 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105896</td>
<td>Sobolevräume (S. 1024)</td>
<td>5</td>
<td>Andreas Kirsch</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung von ca. 20 Minuten Dauer.

Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden können die Bedeutung der Sobolevräume in der Theorie partieller Differentialgleichungen erläutern. Sie sind in der Lage, die wichtigsten Eigenschaften wiederzugeben und zu beweisen.

Inhalt

Definition der Sobolevräume für skalare und vektorwertige Funktionen für Lipschitzgebiete, Fortsetzungs- und Spursätze, kompakte Einbettungen, Helmholtzzzerlegung, einfache Randwertprobleme

Empfehlungen

Basisvorlesungen der Mathematik oder HM I-III

Arbeitsaufwand

Gesamter Arbeitsaufwand: 150 Stunden

- Präsenzzeit: 60 Stunden
 - Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 90 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung

Wirtschaftsmathematik (M.Sc.)

Modulhandbuch mit Stand 04.08.2016 für Wintersemester 16/17
Modul: Spektraltheorie [M-MATH-101768]

Verantwortung: Lutz Weis

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Analysis
Mathematische Methoden/Wahlbereich Mathematische Methoden/Analysis
Wahlpflichtfach
Zusatzleistungen

Leistungspunkte: 8
Modulturnus: Jedes Sommersemester
Dauer: 1 Semester
Sprache: Deutsch

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-103414</td>
<td>Spektraltheorie - Prüfung (S. 1031)</td>
<td>8</td>
<td>Christoph Schmoeger, Gerd Herzog, Peer Kunstmann, Roland Schnaubelt, Lutz Weis</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung von ca. 30 Minuten.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele

Inhalt
- Abgeschlossene Operatoren auf Banachräumen
- Spektrum und Resolvente
- Kompakte Operatoren und Fredholm’sche Alternative
- Funktionalkalkül von Dunford, Spektralprojektionen
- Unbeschränkte selbstadjungierte Operatoren auf Hilberträumen
- Spektralsatz
- Durch Formen definierte Operatoren
- Sektorielle Operatoren
- Anwendungen auf partielle Differentialgleichungen

Empfehlungen
Folgende Module sollten bereits belegt worden sein:
- Lineare Algebra 1+2
- Analysis 1-3
Funktionalanalysis

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Steuerungstheorie (MATHAN18) [M-MATH-102941]

Verantwortung: Roland Schnaubelt

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung:
- Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Analysis
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Analysis
- Wahlpflichtfach
- Zusatzleistungen

Leistungspunkte: 6

Modulturnus: Unregelmäßig

Dauer: 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105909</td>
<td>Steuerungstheorie (S. 1046)</td>
<td>6</td>
<td>Roland Schnaubelt, Lutz Weis</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung von ca. 20 Minuten.

Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden können die zentralen Konzepte der Behandlung kontrollierter linearer Differentialgleichungssysteme (Steuerbarkeit, Beobachtbarkeit, Stabilisierbarkeit und Entdeckbarkeit) und die zugehörigen Charakterisierungen erläutern und in Beispielen anwenden. Sie sind in der Lage die Grundzüge der Theorie der Transferfunktionen und der Realisierungstheorie zu beschreiben. Die Lösung des quadratischen optimalen Kontrollproblems können sie diskutieren und auf die Feedback Synthese anwenden. Sie können die Grundbegriffe der Steuerungstheorie samt der zugehörigen Kriterien auch für nichtlineare System beschreiben und auf Beispiele anwenden.

Inhalt

- Kontrollierte lineare Differentialgleichungssysteme: Steuerbarkeit und Beobachtbarkeit, Stabilisierbarkeit und Entdeckbarkeit, Transferfunktionen, Realisierungstheorie,
- Quadratische optimale Kontrolle, Feedback-Synthese
- Nichtlineare Kontrolltheorie: Grundbegriffe, Kriterien via Linearisierung, Lie Klammern und Lyapunov Funktionen

Arbeitsaufwand

Gesamter Arbeitsaufwand: 180 Stunden

- Präsenzzeit: 60 Stunden
 - Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 120 Stunden

- Vertiefung der Stduieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Stochastische Differentialgleichungen (MATHAN24) [M-MATH-102881]

Verantwortung: Lutz Weis

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflcht

Bestandteil von:
- Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Analysis
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Analysis
- Wahlpflichtfach
- Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105852</td>
<td>Stochastische Differentialgleichungen (S. 1049)</td>
<td>8</td>
<td>Roland Schnaubelt, Lutz Weis</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung von ca. 30 Minuten.

Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Die Studenten beherrschen die stochastischen Methoden, die den stochastischen Differentialgleichungen zu Grunde liegen, z.B. die Brownsche Bewegung, Martingale und Martingalgleichungen. Sie kennen die Konstruktion stochastischer Integrale und sie können die Itô-Formel formulieren und auf konkrete Beispiele anwenden. Sie können stochastische Differentialgleichungen auf Existenz, Eindeutigkeit und Stabilität untersuchen und erkennen dabei das Zusammenspiel analytischer und stochastischer Methoden. Sie sind in der Lage, die allgemeine Theorie auf konkrete Gleichungen aus den Naturwissenschaften und den Wirtschaftswissenschaften anzuwenden.

Inhalt

- Brownsche Bewegung
- Martingale und Martingalungleichungen
- Stochastische Integrale und Itô-Formel
- Existenz- und Eindeutigkeitssätze für Systeme von stochastischen Differentialgleichungen
- Störungs- und Stabilitätstheorie
- Anwendung auf Gleichungen der Finanzmathematik, Physik und technische Systeme
- Zusammenhang mit Diffusionsgleichungen und Potentialtheorie

Empfehlungen

Das Modul “Funktionalanalysis” sollte bereits belegt worden sein.

Arbeitsaufwand

Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Stochastische Evolutionsgleichungen (MATHAN40) [M-MATH-102942]

Verantwortung: Lutz Weis

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Mathematische Methoden/Stochastik
Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Analysis
Mathematische Methoden/Wahlbereich Mathematische Methoden/Analysis
Mathematische Methoden/Wahlbereich Mathematische Methoden/Stochastik
Wahlpflichtfach
Zusatzleistungen

Leistungspunkte Modulturnus Dauer
8 Unregelmäßig 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105910</td>
<td>Stochastische Evolutionsgleichungen (S. 1053)</td>
<td>8</td>
<td>Lutz Weis</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung von ca. 30 Minuten Dauer.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Die Studenten können stochastische Störungen von PDE’s als stochastische partielle Differentialgleichungen modellieren. Sie kennen grundlegende Existenzaussagen für stochastische PDE und wesentliche qualitative Eigenschaften ihrer Lösungen. Sie verstehen das Zusammenspiel analytischer und stochastischer Methoden (Fernique), insbesondere beherrschen sie Methoden der stochastischen Analysis und die Besonderheiten, die bei der stochastischen Integration Banachraumwertiger Prozesse auftreten.

Inhalt
- Gauß’sche Maße auf Banachräumen, Satz von Fernique
- Wiener Prozesse auf Banachräumen und die Loève- Kahunen Darstellung
- Banachraumwertige Martingale und die UMD- Eigenschaft eines Banachraumes
- Ito- Integrale für Prozesse in UMD-Räumen und Burkholder-Gundy Ungleihungen, Decoupling
- Modellierung stochastischer Störungen von PDE’s
- Existenz- Eindeutigkeits-Aussagen und Regularitäts-Aussagen für parabolische stochastische Differentialgleichungen
- Stochastische Wärmeleitungsungleichung.
- Beispiele für stochastische Schrödinger- und Wärmeleitungsgleichungen.

Empfehlungen
Folgende Module sollten bereits belegt worden sein:
Wahrscheinlichkeitstheorie, Spektraltheorie.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Variationsrechnung (MATHAN25) [M-MATH-102882]

Verantwortung: Wolfgang Reichel

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Analysis
Mathematische Methoden/Wahlbereich Mathematische Methoden/Analysis
Wahlpflichtfach
Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105853</td>
<td>Variationsrechnung (S. 1069)</td>
<td>8</td>
<td>Michael Plum, Wolfgang Reichel, Andreas Kirsch, Tobias Lamm</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 30 min).

Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Absolventinnen und Absolventen können

- die Bedeutung von Variationsproblemen in Bezug auf ihre Anwendungen in den Natur- bzw. Ingenieurswissenschaften oder der Geometrie beurteilen und an Hand von Beispielen illustrieren,
- eigenständig variationelle Probleme formulieren,
- die spezifischen Schwierigkeiten innerhalb der Variationsrechnung erkennen,
- konkrete, prototypische Probleme analysieren und lösen,
- Techniken einsetzen, um die Existenz von Lösungen gewisser Klassen variationeller Probleme zu beweisen, und in Spezialfällen diese Lösungen berechnen.

Inhalt

- eindimensionale Variationsprobleme
- Euler-Lagrange-Gleichung
- notwendige und hinreichende Kriterien
- mehrdimensionale Variationsprobleme
- direkte Methoden der Variationsrechnung
- Existenz kritischer Punkte von Funktionalen
Empfehlungen
Funktionalanalysis
Klassische Methoden für partielle Differentialgleichungen
Rand- und Eigenwertprobleme

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Wandernde Wellen (MATHAN38) [M-MATH-102927]

Verantwortung: Jens Rottmann-Matthes

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung:
- Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Analysis
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Analysis
- Wahlpflichtfach
- Zusatzleistungen

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105897</td>
<td>Wandernde Wellen (S. 1082)</td>
<td>6</td>
<td>Jens Rottmann-Matthes</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung von ca. 30 Minuten Dauer am Ende des Semesters.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Die Studierenden kennen die grundlegenden, aktuellen analytische und numerische Methoden zur Untersuchung wandernder Wellen. Sie sind in der Lage, diese auf ähnliche Problemstellungen anzuwenden.

Inhalt
- Beispiele für partielle Differentialgleichungen mit wandernden Wellen Lösungen
- Stabilitätsanalyse wandernder Wellen
- Analyse der spektralen Stabilität, unter anderem Evansfunktionstechniken
- Lineare Stabilität
- Nichtlineare Stabilität
- Techniken zur Approximation und numerischen Untersuchung

Empfehlungen
Zu einem besseren Verständnis ist Vorwissen aus den folgenden Vorlesungen hilfreich, aber nicht erforderlich: Funktionalanalyse, Spektraltheorie, Dynamische Systeme, Numerische Methoden für Differentialgleichungen

Arbeitsaufwand
Gesamter Arbeitsaufwand: 180 Stunden
Präsenzzeit: 60 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 120 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
2.3.3 Angewandte und Numerische Mathematik, Optimierung

Modul: Adaptive Finite Elemente Methoden (MATHNM19) [M-MATH-102900]

M

Verantwortung: Willy Dörfler

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpfocht

Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung
Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung
Wahlpfocht
Zusatzleistungen

Leistungspunkte 6

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105898</td>
<td>Adaptive Finite Elemente Methoden (S. 823)</td>
<td>6</td>
<td>Willy Dörfler</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 25 Minuten.

Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Absolventinnen und Absolventen können

- die Notwendigkeit adaptiver Methoden darstellen
- die grundlegenden Methoden, Techniken und Algorithmen der Behandlung elliptischer Randwertprobleme mit Adaptiven Finiten Elementen erklären
- Konzepte der Modellierung mit partiellen Differentialgleichungen wiedergeben
- Einfache Randwertaufgaben mit Adaptiven Finiten Elementen numerisch lösen

Inhalt

- Notwendigkeit adaptiver Methoden
- Residuenfehlerschätzer
- Aspekte der Implementierung
- Optimalität der adaptiven Methode
- Funktionalfehlerschätzer
- hpFinite Elemente
Empfehlungen

Arbeitsaufwand
Gesamter Arbeitsaufwand: 180 Stunden
Präsenzzeit: 60 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 120 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Advanced Inverse Problems: Nonlinearity and Banach Spaces (MATH-NM44) [M-MATH-102955]

Verantwortung: Andreas Rieder

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Angewandte und Numerische Mathematik, Optimierung Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung Wahlpflichtfach Zusatzleistungen

Leistungspunkte: 5
Modulturnus: Unregelmäßig
Dauer: 1 Semester

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105927</td>
<td>5</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 20 Minuten.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele

Inhalt
Inexakte Newton-Verfahren in Hilbert-Räumen,
Approximative Inverse in Banach-Räumen,
Tikhonov-Regularisierung mit konvexem Strafterm,
Kaczmarz-Newton Verfahren in Banach-Räumen

Empfehlungen
Inverse Probleme, Funktionalanalysis

Arbeitsaufwand
Gesamter Arbeitsaufwand: 150 Stunden
Präsenzzeit: 60 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 90 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Bildgebende Verfahren in der Medizintechnik (MATHNM15) [M-MATH-102896]

Verantwortung:
Andreas Rieder

Einrichtung:
KIT-Fakultät für Mathematik

Curriculare Verankerung:
- Wahlpflicht

Bestandteil von:
- Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Angewandte und Numerische Mathematik, Optimierung
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung

### Leistungspunkte	Modulturnus	Dauer
8 | Unregelmäßig | 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105861</td>
<td>Bildgebende Verfahren in der Medizintechnik (S. 841)</td>
<td>8</td>
<td>Andreas Rieder</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 30 Minuten.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele

Inhalt
- Varianten der Computer-Tomographie (Röntgen-, Impedanz-, etc.)
- Eigenschaften der Radon-Transformation
- Abtastung und Auflösung
- Schlechtgestelltheit und Regularisierung
- Rekonstruktionsalgorithmen

Empfehlungen
Das Modul “Funktionalanalysis” ist hilfreich.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung
Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
M Modul: Compressive Sensing (MATHNM37) [M-MATH-102935]

Verantwortung: Andreas Rieder

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Angewandte und Numerische Mathematik, Optimierung

Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung

Wahlpflichtfach

Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105894</td>
<td>Compressive Sensing (S. 847)</td>
<td>5</td>
<td>Andreas Rieder</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 20 Minuten.

Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Inhalt

- Was ist Compressive Sensing und wo kommt es zum Einsatz
- Dünnbesetzte Lösungen unterbestimmter Gleichungssysteme
- Grundlegende Algorithmen
- Restricted Isometry Property
- Dünnbesetzte Lösungen unterbestimmter Gleichungssysteme mit Zufallsmatrizen

Empfehlungen

Arbeitsaufwand

Gesamter Arbeitsaufwand: 150 Stunden
Präsenzzeit: 60 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung
Selbststudium: 90 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
• Bearbeitung von Übungsaufgaben
• Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
• Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Einführung in das Wissenschaftliche Rechnen (MATHNM05) [M-MATH-102889]

Verantwortung: Tobias Jahnke, Willy Dörfler

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Angewandte und Numerische Mathematik, Optimierung Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung Wahlpflichtfach Zusatzleistungen

Leistungspunkte: 8

Modulturnus: Jedes Sommersemester

Dauer: 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105837</td>
<td>Einführung in das Wissenschaftliche Rechnen (S. 868)</td>
<td>8</td>
<td>Andreas Rieder, Tobias Jahnke, Marlis Hochbruck, Willy Dörfler, Christian Wieners</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 30 Minuten.

Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Absolventinnen und Absolventen können

- die Verzahnung aller Aspekte des Wissenschaftlichen Rechnens an einfachen Beispielen entwickeln: von der Modellbildung über die algorithmische Umsetzung bis zur Stabilitäts- und Fehleranalyse.
- Konzepte der Modellierung mit Differentialgleichungen erklären
- Einfache Anwendungsbeispiele algorithmisch umsetzen, den Code evaluieren und die Ergebnisse darstellen und diskutieren.

Inhalt

- Numerische Methoden für Anfangswertaufgaben, Randwertaufgaben und Anfangsrandwertaufgaben (Finite Differenzen, Finite Elemente)
- Modellierung mit Differentialgleichungen
- Algorithmische Umsetzung von Anwendungsbeispielen
- Präsentation der Ergebnisse wissenschaftlicher Rechnungen
Empfehlungen

Anmerkung
3 Stunden Vorlesung und 3 Stunden Praktikum

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Einführung in Matlab und numerische Algorithmen (MATHNM43) [M-MATH-102945]

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105913</td>
<td>Einführung in Matlab und numerische Algorithmen (S. 870)</td>
<td>5</td>
<td>Christian Wieners, Daniel Weiss</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 75 Minuten.

Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Absolventinnen und Absolventen können

- grundlegende numerische Algorithmen auch in Hinblick auf die Implementierung verstehen und in der Programmierumgebung Matlab effizient programmieren.
- vorhandene Tools und Toolboxen numerischer Algorithmen, welche in Matlab bereits implementiert sind, benutzen und in ihrer Funktionsweise verstehen.
- Matlab als Schnittstelle zu anderen Programmiersprachen und zu anderer mathematischer Software nutzen.

Inhalt

- Matlab als Programmierumgebung:
 1. Programmierung
 2. Debugging
 3. Visualisierung
 - Funktionsweise elementarer Matlab-Funktionen
 - Verschiedene Toolboxen von Matlab, z.B. PDE-Toolbox
 - Spezielle Speicherformate
- Parallelisierung

Empfehlungen
Die Inhalte der Module "Analysis 1 und 2" und "Lineare Algebra 1 und 2" bzw. vergleichbarer HM-Vorlesungen werden benötigt. Die Module "Numerische Mathematik 1 und 2" sind sehr hilfreich.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 150 Stunden
Präsenzzeit: 60 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung
Selbststudium: 90 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Einführung in Partikuläre Strömungen (MATHNM41) [M-MATH-102943]

Verantwortung: Willy Dörfler

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Angewandte und Numerische Mathematik, Optimierung
Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung
Wahlpflichtfach
Zusatzleistungen

Leistungspunkte: 3
Modulturnus: Einmalig
Dauer: 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105911</td>
<td>Einführung in Partikuläre Strömungen (S. 871)</td>
<td>3</td>
<td>Willy Dörfler</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 20 Minuten.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen können

- die grundlegenden Modelle der mathematischen Beschreibung von Strömungen erklären
- Konzepte der Modellierung teilchenbehafter Strömung erklären
- verstehen die numerischen Ansätze zur Berechnung solcher Strömungen

Inhalt

- Mathematische Beschreibung von Strömungen
- Modelle zur Beschreibung von Teilchen in einer Strömung
- Bewegung starrer Körper in einer Strömung
- Bewegung starrer Körper in einer viskosen Strömung
- Einbeziehung verschiedener Kräfte zwischen Strömung und Partikel, zum Beispiel bei ionischen Stömungen

Empfehlungen
Grundlagenkenntnisse in der numerischen Behandlung von Differentialgleichungen, in numerischer Strömungsmechanik und in einer Programmiersprache.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 90 Stunden
Präsenzzeit: 30 Stunden
• Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 60 Stunden

• Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
• Bearbeitung von Übungsaufgaben
• Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
• Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Finite Elemente Methoden (MATHNM07) [M-MATH-102891]

Verantwortung: Willy Dörfler, Christian Wieners

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung:
- Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Angewandte und Numerische Mathematik, Optimierung
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung
- Wahlpflichtfach
- Zusatzleistungen

Leistungspunkte 8
Modulturnus Jedes Wintersemester
Dauer 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105857</td>
<td>Finite Elemente Methoden (S. 889)</td>
<td>8</td>
<td>Andreas Rieder, Tobias Jahnke, Marlis Hochbruck, Willy Dörfler, Christian Wieners</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 30 Minuten.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen können

- die grundlegenden Methoden, Techniken und Algorithmen der Behandlung elliptischer Randwertprobleme mit Finiten Elementen erklären (insbesondere die Stabilität, Konvergenz und Komplexität der Diskretisierungen)
- Konzepte der Modellierung mit partiellen Differentialgleichungen wiedergeben
- Einfache Randwertaufgaben mit Finiten Elementen numerisch lösen

Inhalt
- Theorie der Finiten Elemente für elliptische Randwertaufgaben zweiter Ordnung im IR^n
- Grundlegende Konzepte der Implementierung
- Elliptische Eigenwertprobleme
- Gemischte Methoden

Empfehlungen
Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Geometrische numerische Integration (MATHNM31) [M-MATH-102921]

Verantwortung: Tobias Jahnke

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung:
- Wahlbereich Mathematische Methoden
- Wahlpflicht

Bestandteil von:
- Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung
- Angewandte und Numerische Mathematik, Optimierung
- Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung
- Wahlpflichtfach
- Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

Kennung	Teilleistung	LP	Verantwortung
T-MATH-105919 | Geometrische numerische Integration (S. 898) | 6 | Tobias Jahnke, Marlis Hochbruck

Erfolgskontrolle(n)
Mündliche Prüfung im Umfang von ca. 20 Minuten.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele

Inhalt

- Newton’sche Bewegungsgleichung, Lagrange-Gleichungen, Hamiltonsysteme
- Eigenschaften von Hamiltonsystemen: symplektischer Fluss, Energieerhaltung, weitere Erhaltungsgrößen
- Symplektische numerische Verfahren: symplektisches Euler-Verfahren, Störmer-Verlet-Verfahren, symplektische (partitionierte) Runge-Kutta-Verfahren
- Konstruktion von symplektischen Verfahren, z.B. durch Komposition und Splitting
- Backward error analysis und Energieerhaltung über lange Zeitintervalle

In der danach noch verbleibenden Zeit können weiterführende Themen behandelt werden wie z.B.

- KAM-Theorie und lineares Fehlerwachstum
- Verfahren auf Mannigfaltigkeiten (Magnus-Verfahren, Liegruppenmethoden)
- Mechanische Systeme mit Zwangsbedingungen
Wahlbereich Mathematische Methoden

- Trigonometrische Verfahren für oszillatorische Probleme
- Modulierte Fourierentwicklungen

Empfehlungen

Anmerkung
Turnus: Mindestens alle zwei Jahre

Arbeitsaufwand
Präsenzzeit: 60 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 120 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Integralgleichungen (MATHAN07) [M-MATH-102874]

Verantwortung: Frank Hettlich

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung:
- Wahlpflicht

Bestandteil von:
- Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Analysis
- Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Analysis
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung
- Wahlpflichtfach
- Zusatzleistungen

Leistungspunkte
- 8

Modulturnus
- Unregelmäßig

Dauer
- 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105834</td>
<td>Integralgleichungen (S. 914)</td>
<td>8</td>
<td>Tilo Arens, Andreas Kirsch, Frank Hettlich</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 30min.).

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Die Studierenden können Integralgleichungen klassifizieren und hinsichtlich Existenz und Eindeutigkeit mittels Methoden der Störungstheorie und der Fredholmtheorie untersuchen. Beweisideen der Herleitung der Fredholmtheorie sowie der Störungstheorie insbesondere bei Faltungsintegralgleichungen können sie beschreiben und erläutern. Darüberhinaus können die Studierenden klassische Randwertprobleme zu gewöhnlichen linearen Differentialgleichungen und zur Potentialtheorie durch Integralgleichungen formulieren und analysieren.

Inhalt
- Riesz- und Fredholmtheorie
- Fredholmsche und Volterrasche Integralgleichungen
- Anwendungen in der Potentialtheorie
- Faltungsgleichungen

Empfehlungen
Folgende Module sollten bereits belegt worden sein:
- Lineare Algebra 1+2
- Analysis 1-3

Arbeitsaufwand
- Gesamter Arbeitsaufwand: 240 Stunden
- Präsenzzeit: 90 Stunden

Wirtschaftsmathematik (M.Sc.)

Modulhandbuch mit Stand 04.08.2016 für Wintersemester 16/17
Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Inverse Probleme (MATHNM06) [M-MATH-102890]

Verantwortung: Andreas Kirsch
Einrichtung: KIT-Fakultät für Mathematik
Curriculare Verankerung: Wahlpflicht
Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Analysis
Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung
Mathematische Methoden/Wahlbereich Mathematische Methoden/Analysis
Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung
Wahlpflichtfach
Zusatzleistungen

Leistungspunkte 8
Modulturnus Jedes Wintersemester
Dauer 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105835</td>
<td>Inverse Probleme (S. 917)</td>
<td>8</td>
<td>Andreas Rieder, Tilo Arens, Andreas Kirsch, Frank Hettlich</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung von ca. 30 Minuten Dauer.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele

Inhalt
- Lineare Gleichungen 1. Art
- Schlecht gestellte Probleme
- Regularisierungstheorie
- Tikhonov Regularisierung bei linearen Gleichungen
- Iterative Regularisierungsverfahren
- Beispiele schlecht gestellter Probleme

Empfehlungen
Folgende Module sollten bereits belegt worden sein:
Lineare Algebra 1+2
Analysis 1-3
Funktionalanalysis

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
• Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

• Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
• Bearbeitung von Übungsaufgaben
• Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
• Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Mathematische Methoden in Signal- und Bildverarbeitung (MATHNM16) [M-MATH-102897]

Verantwortung: Andreas Rieder
Einrichtung: KIT-Fakultät für Mathematik
Curriculare Verankerung: Wahlpflicht
Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Angewandte und Numerische Mathematik, Optimierung
Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung
Wahlpflichtfach
Zusatzleistungen

Leistungspunkte
8
Modulturnus
Unregelmäßig
Dauer
1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105862</td>
<td>Mathematische Methoden in Signal- und Bildverarbeitung (S. 937)</td>
<td>8</td>
<td>Andreas Rieder</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 30 Minuten.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen kennen die wesentlichen mathematischen Werkzeuge der Signal- und Bildverarbeitung sowie deren Eigenschaften. Sie sind in der Lage, diese Werkzeuge adäquat anzuwenden, die erhaltenen Resultate zu hinterfragen und zu beurteilen.

Inhalt

- Digitale und analoge Systeme
- Integrale Fourier-Transformation
- Abtastung und Auflösung
- Diskrete und schnelle Fourier-Transformation
- Nichtuniforme Abtastung
- Anisotrope Diffusionsfilter
- Variationsmethoden

Empfehlungen
Das Modul "Funktionalanalysis" ist hilfreich.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
• Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

• Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
• Bearbeitung von Übungsaufgaben
• Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
• Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Mathematische Modellierung und Simulation in der Praxis (MATHNM27) [M-MATH-102929]

Verantwortung: Gudrun Thäter
Einrichtung: KIT-Fakultät für Mathematik
Curriculare Verankerung: Wahlpflicht
Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Angewandte und Numerische Mathematik, Optimierung Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung Wahlpflichtfach Zusatzleistungen

Leistungspunkte 4
Modulturnus Unregelmäßig
Dauer 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105889</td>
<td>Mathematische Modellierung und Simulation in der Praxis (S. 938)</td>
<td>4</td>
<td>Gudrun Thäter</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 20 Minuten.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen können

- Projektorientiert arbeiten,
- Überblickswissen verknüpfen,
- Typische Modellansätze weiterentwickeln

Inhalt
Mathematisches Denken (als Modellieren) und mathematische Techniken (als Handwerkszeug) treffen auf Anwendungsprobleme wie:

- Differenzengleichungen
- Bevölkerungsmodelle
- Verkehrsflussmodelle
- Wachstumsmodelle
- Spieltheorie
- Chaos
- Probleme aus der Mechanik
Empfehlungen
Analysis I-III, Numerische Mathematik 1,2 sowie Numerische Methoden für differentialgleichungen bzw. vergleichbare HM-Vorlesungen.

Anmerkung
Die Veranstaltung findet immer auf Englisch statt.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 120 Stunden
Präsenzzeit: 45 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung
Selbststudium: 75 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Wahlbereich Mathematische Methoden

Modul: Matrixfunktionen (MATHNM39) [M-MATH-102937]

Verantwortung: Volker Grimm

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung:
- Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Angewandte und Numerische Mathematik, Optimierung
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung
- Wahlpflichtfach
- Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105906</td>
<td>Matrixfunktionen (S. 941)</td>
<td>8</td>
<td>Volker Grimm</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 30 Minuten.

Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Inhalt

- Definition von Matrixfunktionen
- Approximation an Matrixfunktionen für große Matrixen
- Krylov-Verfahren und rationale Krylov-Verfahren
- Anwendung auf die numerische Lösung partieller Differentialgleichungen

Empfehlungen

Numerische Mathematik 1 und 2

Arbeitsaufwand

Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Maxwellgleichungen (MATHAN28) [M-MATH-102885]

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Verantwortung: Andreas Kirsch

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von:
- Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Analysis
- Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Analysis
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung
- Wahlpflichtfach
- Zusatzleistungen

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105856</td>
<td>Maxwellgleichungen (S. 942)</td>
<td>8</td>
<td>Tilo Arens, Andreas Kirsch, Frank Hettlich</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung von ca. 30 Minuten Dauer.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Die Studierenden sind in der Lage, die mathematischen Fragestellungen aus der Theorie der Maxwell'schen Gleichungen an Beispielen zu erläutern.
Sie können die Hauptsätze wiedergeben, beweisen, auf Spezialfälle anwenden und mit den Eigenschaften einfacherer Differentialgleichungen (z.B. der Helmholtzgleichung) vergleichen.

Inhalt
Spezielle Beispiele von Lösungen der Maxwellgleichungen, Eigenschaften der Lösungen (z. B. Darstellungssätze), Spezialfälle (E-Mode, H-Mode), Randwertaufgaben

Empfehlungen
Erwünscht sind grundlegende Kenntnisse aus der Funktionalanalyse

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Numerische Fortsetzungsmethoden (MATHNM42) [M-MATH-102944]

Verantwortung: Jens Rottmann-Matthes
Einrichtung: KIT-Fakultät für Mathematik
Curriculare Verankerung: Wahlpflicht
Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Angewandte und Numerische Mathematik, Optimierung Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung Wahlpflichtfach Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

Kennung	Teilleistung	LP	Verantwortung
T-MATH-105912 | Numerische Fortsetzungsmethoden (S. 953) | 5 | Jens Rottmann-Matthes |

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 20-30min.).

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen können
- grundlegende Verfahren zur Parameterfortsetzung und Bestimmung von Verzweigungspunkten beschreiben und anwenden,
- die benutzten numerischen Algorithmen analysieren,
- selbstständig Verzweigungsdiagramme in konkreten Fällen mit den numerischen Algorithmen erzeugen und interpretieren.

Inhalt
- Beispiele parameterabhängiger Differentialgleichungen
- Prädiktor-Korrektorverfahren zur Parameterfortsetzung
- Detektion von Umkehrpunkten
- Detektion einfacher Verzweigungspunkte
- Newtonverfahren in der Nähe von Verzweigungspunkten

Empfehlungen
Gute Kenntnisse der Linearen Algebra, Analysis, Numerik I und gewöhnlichen Differentialgleichungen

Arbeitsaufwand
Gesamter Arbeitsaufwand: 150 Stunden
Präsenzzeit: 60 Stunden
Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 90 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Numerische Methoden für Differentialgleichungen (MATHNM03) [M-MATH-102888]

Verantwortung: Tobias Jahnke, Willy Dörfler
Einrichtung: KIT-Fakultät für Mathematik
Curriculare Verankerung: Wahlpflicht
Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Angewandte und Numerische Mathematik, Optimierung
Mathematische Methoden/Wahlpflichtfach Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105836</td>
<td>Numerische Methoden für Differentialgleichungen (S. 954)</td>
<td>8</td>
<td>Andreas Rieder, Tobias Jahnke, Marlis Hochbruck, Willy Dörfler, Christian Wieners</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Modulnote
Die Modulnote ist die Note der schriftlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen können
- die grundlegenden Methoden, Techniken und Algorithmen zur Behandlung von Differentialgleichungen nennen, erörtern und anwenden (insbesondere die Stabilität, Konvergenz und Komplexität der numerischen Verfahren)
- Konzepte der Modellierung mit Differentialgleichungen wiedergeben
- Differentialgleichungen numerisch lösen

Inhalt
- Numerische Methoden für Anfangswertaufgaben (Runge-Kutta-Verfahren, Mehrschrittverfahren, Ordnung, Stabilität, steife Probleme)
- Numerische Methoden für Randwertaufgaben (Finite-Differenzen/Finite-Elemente-Verfahren für elliptische Gleichungen zweiter Ordnung)
- Numerische Methoden für Anfangsrandwertaufgaben (Finite-Differenzen/Finite-Elemente-Verfahren für Parabolische Gleichungen und Hyperbolische Gleichungen)

Empfehlungen
Arbeitsaufwand

Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
M Modul: Numerische Methoden für hyperbolische Gleichungen (MATHNM28) [M-MATH-102915]

Verantwortung: Willy Dörfler

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Angewandte und Numerische Mathematik, Optimierung Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung Wahlpflichtfach Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105900</td>
<td>Numerische Methoden für hyperbolische Gleichungen (S. 955)</td>
<td>6</td>
<td>Willy Dörfler</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 25 Minuten.

Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Absolventinnen und Absolventen können

- die grundlegenden Methoden, Techniken und Algorithmen der Behandlung
- hyperbolischer Anfangswertprobleme erklären
- Konzepte der Modellierung mit hyperbolischen Differentialgleichungen wiedergeben
- Einfache skalare oder vektorwertige hyperbolische Gleichungen numerisch lösen

Inhalt

- Modellierung mit Erhaltungsgleichungen
- Schocks, Verdünnungs Wellen und schwache Lösungen
- Aspekte der Existenz und Regularitätstheorie skalarer Probleme
- Diskretisierung von skalaren Erhaltungsgleichungen
- Eigenschaften und Diskretisierung hyperbolischer Systeme

Empfehlungen

Grundlagenkenntnisse in Finite Element Methoden, in einer Programmiersprache und der Analysis von Randwertproblemen werden benötigt. Kenntnisse in
Funktionalanalysis sind hilfreich.

Arbeitsaufwand

Präsenzzeit: 60 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 120 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Numerische Methoden für Integralgleichungen (MATHNM29) [M-MATH-102930]

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Verantwortung: Tilo Arens

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Angewandte und Numerische Mathematik, Optimierung
Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung
Wahlpflichtfach
Zusatzleistungen

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105901</td>
<td>Numerische Methoden für Integralgleichungen (S. 956)</td>
<td>8</td>
<td>Tilo Arens, Andreas Kirsch, Frank Hettlich</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 30 min.). Durch die erfolgreiche Teilnahme am Übungsbetrieb kann ein Bonus erworben werden. Liegt die Note der mündlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note um eine Notenstufe (0,3 oder 0,4).

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung, ggf. modifiziert durch den Bonus aus dem Übungsbetrieb.

Voraussetzungen
Keine

Qualifikationsziele

Inhalt
- Randintegraloperatoren
- Interpolation
- Quadraturformeln
- Approximation durch degenerierte Kernfunktionen
- Nyström-Verfahren
- Projektionsverfahren

Empfehlungen
Numerische Mathematik 1
Integralgleichungen
Arbeitsaufwand

Gesamter Arbeitsaufwand: 240 Stunden

Präsenzzeit: 90 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Numerische Methoden für zeitabhängige partielle Differentialgleichungen (MATHMWNM20) [M-MATH-102928]

Verantwortung: Marlis Hochbruck

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Angewandte und Numerische Mathematik, Optimierung Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung Wahlpflichtfach Zusatzleistungen

Leistungspunkte Modulturnus Dauer
8 Unregelmäßig 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105899</td>
<td>Numerische Methoden für zeitabhängige partielle Differentialgleichungen (S. 957)</td>
<td>8</td>
<td>Tobias Jahnke, Marlis Hochbruck</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 30 Minuten.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele

Inhalt
- Runge-Kutta-Verfahren und Exponentielle Integratoren für lineare, semilineare und quasilineare Evolutionsgleichungen
- Zeitintegration für hochoszillatorische Probleme, z. B. exponentielle Integratoren, Magnus-Methoden, trigonometrische Integratoren

Empfehlungen
Numerische Methoden für Differentialgleichungen, Einführung in das Wissenschaftliche Rechnen

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
 - Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden
 - Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Numerische Methoden in der Elektrodynamik (MATHNM13) [M-MATH-102894]

Verantwortung: Willy Dörfler

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlbereich Mathematische Methoden

Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Angewandte und Numerische Mathematik, Optimierung

Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung

Wahlpflichtfach

Zusatzleistungen

Leistungspunkte Modulturnus Dauer
6 Unregelmäßig 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105860</td>
<td>Numerische Methoden in der Elektrodynamik (S. 958)</td>
<td>6</td>
<td>Andreas Rieder, Tobias Jahnke, Marlis Hochbruck, Willy Dörfler, Christian Wieners</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 25 Minuten.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen

- können elektrostatische oder -dynamische Effekte mit mathematischen Modellen beschreiben,
- erkennen die grundlegenden Probleme der korrekten Approximation,
- können stabile Diskretisierungen der Maxwellgleichungen angeben.

Inhalt

- Die Maxwell Gleichungen, Modellierung
- Rand- und Übergangsbedingungen
- Analytische Hilfsmittel
- Das Quellenproblem
- Das Eigenwertproblem
- Finite Elemente für die Maxwell-Gleichungen
- Interpolationsabschätzungen
Empfehlungen
Grundkenntnisse in der Analysis von Randwertproblemen und der Finite Elemente Methode.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 180 Stunden
Präsenzzeit: 60 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 120 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Numerische Methoden in der Finanzmathematik (MATHNM18) [M-MATH-102901]

Verantwortung: Tobias Jahnke

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Angewandte und Numerische Mathematik, Optimierung Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung Wahlpflichtfach Zusatzleistungen

Leistungspunkte: 8
Modulturnus: Unregelmäßig
Dauer: 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105865</td>
<td>Numerische Methoden in der Finanzmathematik</td>
<td>8</td>
<td>Tobias Jahnke</td>
</tr>
</tbody>
</table>

Erwahrung

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 30 Minuten.

Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Inhalt

Modellierung:
- Optionen, Arbitrage und andere Grundbegriffe
- Wiener-Prozess, Ito-Integral, Ito-Formel
- Black-Scholes-Gleichung und Black-Scholes-Formel

Numerische Verfahren:
- Binomialbaumverfahren
- Erzeugung von Pseudo-Zufallszahlen, Monte-Carlo-Methode, Quasi-Monte-Carlo-Methode
- Numerische Verfahren für stochastische Differentialgleichungen
- Finite-Differenzen-Verfahren für eindimensionale Black-Scholes-Gleichungen
- Bewertung von amerikanischen Optionen

Wirtschaftsmathematik (M.Sc.)
Modulhandbuch mit Stand 04.08.2016 für Wintersemester 16/17
Empfehlungen
Grundlegende Inhalte des Moduls „Wahrscheinlichkeitstheorie“ und Grundkenntnisse über gewöhnliche Differentialgleichungen sowie Programmierkenntnisse in MATLAB werden benötigt.

Anmerkung
Wird jedes 4. Semester angeboten, jeweils im Wintersemester.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung
Selbststudium: 150 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Numerische Methoden in der Finanzmathematik II (MATHNM26) [M-MATH-102914]

Verantwortung: Tobias Jahnke

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Angewandte und Numerische Mathematik, Optimierung Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung Wahlpflichtfach Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105880</td>
<td>Numerische Methoden in der Finanzmathematik II (S. 960)</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 30 Minuten.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Im Mittelpunkt der Vorlesung steht die Bewertung von Optionen durch numerische Verfahren, wobei die Kenntnisse aus Teil 1 der Vorlesung erweitert und vertieft werden. Absolventinnen und Absolventen kennen nicht nur grundlegende, sondern auch raffinierte numerische Verfahren zur Lösung von stochastischen bzw. partiellen Differentialgleichungen und hochdimensionalen Problemen. Sie können diese Verfahren nicht nur implementieren und zur Bewertung von verschiedenen Optionen anwenden, sondern auch die Stabilität und Konvergenz der Verfahren analysieren und durch theoretische Resultate erklären.

Inhalt
- Multi-Level Monte-Carlo-Methoden
- Historische, implizite und lokale Volatilität
- Sprung-Diffusions-Prozesse und Integro-Differentialgleichungen,
- Lösung von Black-Scholes-Gleichungen mit der Methode der Finiten Elemente
- Dünnägermetoden (Sparse Grids) für die Bewertung von Basketoptionen

Empfehlungen
Empfehlungen: Grundlegende Inhalte des Moduls “Numerische Methoden in der Finanzmathematik” und Programmierkenntnisse (möglichst in MATLAB) werden benötigt.

Anmerkung
Arbeitsaufwand
Präsenzzeit: 90 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Numerische Methoden in der Strömungsmechanik (MATHNM34) [M-MATH-102932]

Verantwortung: Gudrun Thäter, Willy Dörfler
Einrichtung: KIT-Fakultät für Mathematik
Curriculare Verankerung: Wahlpflicht
Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Angewandte und Numerische Mathematik, Optimierung Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung Wahlpflichtfach Zusatzleistungen

Leistungspunkte 4
Modulturnus Unregelmäßig
Dauer 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105902</td>
<td>Numerische Methoden in der Strömungsmechanik (S. 961)</td>
<td>4</td>
<td>Gudrun Thäter, Willy Dörfler</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 20 Minuten.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Studierende können die Modellierung und die physikalischen Annahmen erläutern, die zu den Navier-Stokes Gleichungen führen. Sie können die Finite Elemente Methode auf die Strömungsrechnung anwenden und insbesondere mit der Inkompressibilität numerisch umgehen. Sie können die Konvergenz und Stabilität der Verfahren erläutern und begründen.

Inhalt

- Modellbildung und Herleitung der Navier-Stokes Gleichungen
- Mathematische und physikalische Repräsentation von Energie und Spannung
- Analytische und numerische Behandlung des Stokes-Problemes
- Stabilitäts- und Konvergenztheorie
- Lax-Milgram Theorem, Céa-Lemma und Sattelpunkttheorie
- Numerische Behandlung der stationären nichtlinearen Gleichung
- Numerische Verfahren für das instationäre Problem
- Turbulenzmodelle

Empfehlungen
Arbeitsaufwand
Gesamter Arbeitsaufwand: 120 Stunden
Präsenzzeit: 45 Stunden
• Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 75 Stunden
• Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
• Bearbeitung von Übungsaufgaben
• Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
• Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Numerische Optimierungsmethoden (MATHNM25) [M-MATH-102892]

Verantwortung: Christian Wieners

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung:
- Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Angewandte und Numerische Mathematik, Optimierung
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung
- Wahlpflichtfach
- Zusatzleistungen

Leistungspunkte: 8
Modulturnus: Unregelmäßig
Dauer: 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105858</td>
<td>Numerische Optimierungsmethoden (S. 962)</td>
<td>8</td>
<td>Andreas Rieder, Tobias Jahnke, Marlis Hochbruck, Willy Dörfler, Christian</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 30 Minuten.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifizierungsziele
Absolventinnen und Absolventen können
- verschiedene numerische Verfahren für restringierte und unrestringierte Optimierungsprobleme beschreiben.
- Aussagen über lokale und globale Konvergenz erklären
- exemplarische Anwendungen skizzieren

Inhalt
- Allgemeine unrestringierte Minimierungsverfahren
- Newton-Verfahren
- Inexakte Newton-Verfahren
- Quasi-Newton-Verfahren
- Nichtlineare cg-Verfahren
- Trust-Region-Verfahren
- Innere-Punkte-Verfahren
- Penalty-Verfahren
Aktive-Mengen Strategien
SQP-Verfahren
Nicht-glatte Optimierung

Empfehlungen
Optimierungstheorie

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Numerische Verfahren für die Maxwellgleichungen (MATHNM33) [M-MATH-102931]

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105920</td>
<td>Numerische Verfahren für die Maxwellgleichungen (S. 963)</td>
<td>6</td>
<td>Tobias Jahnke</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 20 Minuten.

Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Inhalt

- Maxwellgleichungen: Integral- und Differentialform, Materialgesetze, Randbedingungen, Wohlgestelltheit
- Raumdiskretisierung (z.B. finite Differenzen, konforme oder nichtkonforme finite Elemente)
- Zeitintegration (z.B Splitting-Verfahren, (lokal)-implizite Verfahren, exponentielle Integratoren)

Empfehlungen

Grundkenntnisse über gewöhnliche und/oder partielle Differentialgleichungen

Das Modul “Numerische Methoden für Differentialgleichungen” sollte besucht worden sein.

Anmerkung

Turnus: Mindestens alle zwei Jahre

Arbeitsaufwand

Gesamter Arbeitsaufwand: 180 Stunden
Präsenzzeit: 60 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung
Selbststudium: 120 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Operatorfunktionen (MATHNM38) [M-MATH-102936]

Verantwortung: Volker Grimm

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlbereich Mathematische Methoden

Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Angewandte und Numerische Mathematik, Optimierung Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung Wahlpflichtfach Zusatzleistungen

Leistungspunkte: 6

Modulturnus: Unregelmäßig

Dauer: 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105905</td>
<td>Operatorfunktionen (S. 969)</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 20 Minuten.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele

Inhalt
Definition von Operatorfunktionen
Stark stetige und analytische Halbgruppen
Feste rationale Approximationen an Operatorfunktionen
Rationale Krylov-Verfahren zur Approximation von Operatorfunktionen
Anwendungen in der Numerik von Evolutionsgleichungen

Empfehlungen
Numerische Mathematik 1 und 2, Funktionalanalysis

Arbeitsaufwand
Gesamter Arbeitsaufwand: 180 Stunden
Präsenzzeit: 60 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 120 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Optimierung in Banachräumen (MATHNM32) [M-MATH-102924]

Verantwortung: Andreas Kirsch

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von:
- Mathematische Methoden/Analyse oder Angewandte und Numerische Mathematik, Optimierung/Analyse
- Mathematische Methoden/Analyse oder Angewandte und Numerische Mathematik, Optimierung/Angewandte und Numerische Mathematik, Optimierung
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Analyse
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung
- Wahlpflichtfach
- Zusatzleistungen

Leistungspunkte 8
Modulturnus Unregelmäßig
Dauer 1 Semester

Pflichtbestandteile

Kennung Teilleistung LP Verantwortung
T-MATH-105893 Optimierung in Banachräumen (S. 970) 8 Andreas Kirsch

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 30 Minuten.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Die Studierenden sind in der Lage, Eigenschaften endlichdimensionaler Optimierungsprobleme auf unendlichdimensionale Fälle zu übertragen und diese auf Probleme der Approximationstheorie, der Variationsrechnung und der optimalen Steuerungstheorie anzuwenden. Sie können die Hauptsätze wiedergeben, beweisen und anhand von Beispielen erläutern.

Inhalt

Empfehlungen
Erwünscht sind grundlegende Kenntnisse aus der Funktionalanalysis

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
• Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
• Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Optimierung und optimale Kontrolle bei Differentialgleichungen (MATH-NM09) [M-MATH-102899]

Verantwortung: Christian Wieners
Einrichtung: KIT-Fakultät für Mathematik
Curriculare Verankerung: Wahlpflicht
Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Angewandte und Numerische Mathematik, Optimierung Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung Wahlpflichtfach Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105864</td>
<td>Optimierung und optimale Kontrolle bei Differentialgleichungen (S. 972)</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 20 Minuten.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen können

- den Überblick zur Modellierung mit optimaler Kontrolle gewinnen
- erlangen Kenntnisse zum funktionalanalytischen Rahmen
- Lösungsverfahren auf elliptische und parabolische Kontrollprobleme anwenden

Inhalt

- Einleitung und Motivation
- Linear-quadratische elliptische Probleme
- Parabolische Probleme
- Steuerung semilinearer elliptischer Gleichungen
- semilineare parabolische Kontrollprobleme

Arbeitsaufwand
Gesamter Arbeitsaufwand: 120 Stunden
Präsenzzeit: 45 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung
Selbststudium: 75 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Potentialtheorie (MATHAN20) [M-MATH-102879]

Verantwortung: Andreas Kirsch
Einrichtung: KIT-Fakultät für Mathematik
Curriculare Verankerung: Wahlbereich Mathematische Methoden

<table>
<thead>
<tr>
<th>Bestandteil von:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Analysis</td>
</tr>
<tr>
<td>Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung</td>
</tr>
<tr>
<td>Mathematische Methoden/Wahlbereich Mathematische Methoden/Analysis</td>
</tr>
<tr>
<td>Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung</td>
</tr>
<tr>
<td>Wahlpflichtfach</td>
</tr>
<tr>
<td>Zusatzleistungen</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105850</td>
<td>Potentialtheorie (S. 981)</td>
<td>8</td>
<td>Tilo Arens, Wolfgang Reichel, Andreas Kirsch, Frank Hettlich</td>
</tr>
</tbody>
</table>

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung (ca. 30 Min).

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Die Studierenden sind in der Lage, die Begriffe der Potentialtheorie in der Theorie und an Beispielen zu erläutern. Sie können die Hauptsätze wiedergeben, beweisen, anhand von Beispielen verdeutlichen, auf Spezialfälle reduzieren und auf verwandte Fragestellungen anwenden.

Inhalt
Eigenschaften harmonischer Funktionen, Existenz und Eindeutigkeit der Randwertaufgaben für die Laplace- und Poisson-gleichung, Greensche Funktion für die Kugel, Kugelflächenfunktionen, Flächenpotentiale, räumliche Potentiale

Empfehlungen
Erwünscht sind grundlegende Kenntnisse aus der Funktionalanalysis

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Projektorientiertes Softwarepraktikum (MATHNM40) [M-MATH-102938]

Verantwortung: Gudrun Thäter

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung:

1. Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Angewandte und Numerische Mathematik, Optimierung
2. Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung
3. Wahlpflichtfach
4. Zusatzleistungen

Leistungspunkte

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105907</td>
<td>Projektorientiertes Softwarepraktikum (S. 990)</td>
<td>4</td>
<td>Gudrun Thäter</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Zu jedem Projekt fertigen die Studierenden eine schriftliche Ausarbeitung im Umfang von in der Regel 10-15 Seiten an, die benotet wird. Die Gesamtnote wird als Durchschnitt der Teilnoten bestimmt.

Modulnote

Die Modulnote ist das Mittel aus den Teilnoten der Projekte.

Voraussetzungen

Keine

Qualifikationsziele

Inhalt

Vorlesungsanteil: Einführung in Modellbildung und Simulationen, Wiederholung zugehöriger numerischer Verfahren, Einführung in zugehörige Software

Eigene Gruppenarbeit: Bearbeitung von 1-2 Projekten in denen Modellbildung, Diskretisierung, Simulation und Auswertung (z.B. Visualisierung) für konkrete Themen aus dem Katalog durchgeführt werden. Der Katalog umfasst z.B:
- Solving the Poisson equation: Diffusion im Rechteckgebiet;
- Incompressible Navier-Stokes equations: Strömung im Kanal;
- Applying an Inexact Newton Method in HiFlow3: Nutzen nichtlinearer Tools;
- Distributed Control Problem for Poisson Equation: Backofensteuerung;
- Stabilization Schemes for Advection Dominated Steady Convection-Diffusion

Empfehlungen

Kenntnisse einer Programmiersprache
Grundkenntnisse in der Analysis von Randwertproblemen, der numerischen Methoden für Differentialgleichungen und der Finite Elemente Methode.

Arbeitsaufwand

Gesamter Arbeitsaufwand: 120 Stunden
Präsenzzeit: 60 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 60 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Sobolevräume (MATHAN37) [M-MATH-102926]

Verantwortung: Andreas Kirsch
Einrichtung: KIT-Fakultät für Mathematik
Curriculare Verankerung: Wahlpflicht
Bestandteil von:
- Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Analysis
- Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Analysis
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung
- Wahlpflichtfach
Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

Kennenmarktung Teilleistung LP Verantwortung

| T-MATH-105896 Sobolevräume (S. 1024) | 5 | Andreas Kirsch |

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung von ca. 20 Minuten Dauer.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Die Studierenden können die Bedeutung der Sobolevräume in der Theorie partieller Differentialgleichungen erläutern. Sie sind in der Lage, die wichtigsten Eigenschaften wiederzugeben und zu beweisen.

Inhalt
Definition der Sobolevräume für skalare und vektorwertige Funktionen für Lipschitzgebiete, Fortsetzungs- und Spursätze, kompakte Einbettungen, Helmholtzerlegung, einfache Randwertprobleme

Empfehlungen
Basisvorlesungen der Mathematik oder HM I-III

Arbeitsaufwand
Gesamter Arbeitsaufwand: 150 Stunden
Präsenzzeit: 60 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 90 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Spezielle Themen der numerischen linearen Algebra (MATHNM30) [M-MATH-102920]

Verantwortung: Marlis Hochbruck

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Angewandte und Numerische Mathematik, Optimierung
Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung
Wahlpflichtfach
Zusatzleistungen

Leistungspunkte 8
Modulturnus Unregelmäßig
Dauer 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105891</td>
<td>Spezielle Themen der numerischen linearen Algebra (S. 1038)</td>
<td>8</td>
<td>Marlis Hochbruck</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Mündliche Prüfung im Umfang von ca. 30 Minuten.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele

Inhalt
- Direkte Verfahren für dünn besetzte Gleichungssysteme
- Krylov-Verfahren zur Lösung großer linearer Gleichungssysteme und Eigenwertprobleme
- Matrixfunktionen

Empfehlungen
Numerische Mathematik 1 und 2

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung
Selbststudium: 150 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
• Bearbeitung von Übungsaufgaben
• Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
• Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Wavelets (MATHNM14) [M-MATH-102895]

Verantwortung: Andreas Rieder

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Angewandte und Numerische Mathematik, Optimierung

Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung

Wahlpflichtfach Zusatzleistungen

Leistungspunkte: 8

Modulturnus: Unregelmäßig

Dauer: 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105838</td>
<td>Wavelets (S. 1084)</td>
<td>8</td>
<td>Andreas Rieder</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 30 Minuten.

Voraussetzungen

Keine

Qualifikationsziele

Absolventinnen und Absolventen können

- die funktionalanalytischen Grundlagen der kontinuierlichen und diskreten Wavelet-Transformation nennen, erörtern und analysieren.
- die Wavelet-Transformation als Analysewerkzeug in der Signal- und Bildverarbeitung anwenden sowie die erzielten Ergebnisse bewerten.
- Designaspekte von Wavelet-Systemen erläutern.

Inhalt

- Gefensterte Fourier-Transformation
- Integrale Wavelet-Transformation
- Wavelet-Frames
- Wavelet-Basen
- Schnelle Wavelet-Transformation
- Konstruktion orthogonaler und bi-orthogonaler Wavelets
- Anwendungen in Signal- und Bildverarbeitung

Empfehlungen

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Stochastik

Modul: Asymptotische Stochastik (MATHST07) [M-MATH-102902]

Verantwortung: Norbert Henze
Einrichtung: KIT-Fakultät für Mathematik
Curriculare Verankerung: Wahlpflicht
Bestandteil von: Mathematische Methoden/Stochastik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105866</td>
<td>Asymptotische Stochastik (S. 839)</td>
<td>8</td>
<td>Bernhard Klar, Vicky Fasen-Hartmann, Norbert Henze</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 30 min).

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Die Absolvent(inn)en
- sind mit grundlegenden probabilistischen Techniken im Zusammenhang mit dem Nachweis der Verteilungs konvergenz von Zufallsvektoren vertraut und können diese anwenden,
- kennen das asymptotische Verhalten von Maximum-Likelihood-Schätzern und des verallgemeinerten Likelihood- Quotienten bei parametrischen Testproblemen,
- können das Limesverhalten von nichtdegenerierten und einfach degenerierten U-Statistiken erläutern,
- kennen den Satz von Donsker und können dessen Beweis skizzieren.

Inhalt
- Poissonischer Grenzwertsatz für Dreiecksschemata,
- Momentenmethode,
- Zentraler Grenzwertsatz für stationäre m-abhängige Folgen,
- allgemeine multivariate Normalverteilung,
- Verteilungs konvergenz und Zentraler Grenzwertsatz im \(\mathbb{R}^d \),
- Satz von Glivenko-Cantelli,
- Grenzwertsätze für U-Statistiken,
2.3 Wahlbereich Mathematische Methoden

- asymptotische Schätztheorie (Maximum-Likelihood- und Momentenschätzer),
- asymptotische Effizienz und relative Effizienz von Schätzern,
- asymptotische Tests in parametrischen Modellen, parametrischer Bootstrap,
- schwache Konvergenz in metrischen Räumen,
- Satz von Prokhorov,
- Brown-Wiener-Prozess, Satz von Donsker, funktionaler Zentraler Grenzwertsatz, Brownsche Brücke
- Anpassungstests.

Empfehlungen
Die Inhalte des Moduls “Wahrscheinlichkeitstheorie” werden benötigt.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Brownsche Bewegung (MATHST10) [M-MATH-102904]

Verantwortung: Nicole Bäuerle

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Mathematische Methoden/Stochastik

Bestandteil von: Mathematische Methoden/Stochastik

Mathematische Methoden/Wahlbereich Mathematische Methoden/Stochastik

Wahlpflichtfach

Zusatzleistungen

Leistungspunkte: 4

Modulturnus: Unregelmäßig

Dauer: 1 Semester

Pflichtbestandteile

Kennung	Teilleistung	LP	Verantwortung
T-MATH-105868 | Brownsche Bewegung (S. 843) | 4 | Günter Last, Nicole Bäuerle, Vicky Fasen-Hartmann

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 20 min).

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen können

- Eigenschaften der Brownschen Bewegung nennen, erklären und begründen,
- die Brownsche Bewegung zur Modellierung von stochastischen Phänomenen anwenden,
- spezifische probabilistische Techniken gebrauchen,
- selbstorganisiert und reflexiv arbeiten.

Inhalt

- Existenz und Konstruktion der Brownschen Bewegung
- Pfadegenschaften der Brownschen Bewegung
- Starke Markov-Eigenschaft der Brownschen Bewegung mit Anwendungen
- Skorohod Darstellung der Brownschen Bewegung

Empfehlungen
Die Inhalte des Moduls "Wahrscheinlichkeitstheorie" werden benötigt.

Arbeitsaufwand
Präsenzzeit: 45 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 75 Stunden

Wirtschaftsmathematik (M.Sc.)
Modulhandbuch mit Stand 04.08.2016 für Wintersemester 16/17
• Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
• Bearbeitung von Übungsaufgaben
• Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
• Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Der Poisson-Prozess (MATHST20) [M-MATH-102922]

Verantwortung: Günter Last

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung:
- Mathematische Methoden/Stochastik
- Wahlbereich Mathematische Methoden/Stochastik
- Wahlpflichtfach
- Zusatzleistungen

Leistungspunkte: 5

Modulturnus: Unregelmäßiger Modulturnus

Dauer: 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105922</td>
<td>Der Poisson-Prozess (S. 856)</td>
<td>5</td>
<td>Günter Last, Vicky Fasen-Hartmann, Daniel Hug</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 30 min).

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele

Inhalt
- Verteilungseigenschaften des Poisson-Prozesses
- Der Poisson-Prozess als spezieller Punktprozess
- Stationäre Poisson- und Punktprozesse
- Zufällige Maße und Coxprozesse
- Poisson-Cluster Prozesse und zusammengesetzte Poisson-Prozesse
- Der räumliche Gale-Shapley Algorithmus

Empfehlungen
Die Inhalte des Moduls Wahrscheinlichkeitstheorie werden zum Teil benötigt.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 150 Stunden
Präsenzzeit: 60 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 90 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Extremwerttheorie (MATHST23) [M-MATH-102939]

Verantwortung: Vicky Fasen-Hartmann
Einrichtung: KIT-Fakultät für Mathematik
Curriculare Verankerung: Mathematische Methoden/Stochastik
Wahlpflichtfach
Zusatzleistungen

Leistungspunkte 4
Modulturnus Unregelmäßig
Dauer 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105908</td>
<td>Extremwerttheorie (S. 882)</td>
<td>4</td>
<td>Vicky Fasen-Hartmann, Norbert Henze</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 20 min).

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen können
- statistische Methoden zur Schätzung von Risikomaßen nennen, erklären, begründen und anwenden,
- extreme Ereignisse modellieren und quantifizieren,
- spezifische probabilistische Techniken brauchen,
- selbstorganisiert und reflexiv arbeiten.

Inhalt
- Satz von Fisher und Tippett
- verallgemeinerte Extremwert- und Paretoverteilung (GED und GPD)
- Anziehungsbereiche von verallgemeinerten Extremwertverteilungen
- Satz von Pickands-Balkema-de Haan
- Schätzen von Risikomaßen
- Hill-Schätzer
- Blockmaximamethode
- POT-Methode
Empfehlungen
Die Inhalte des Moduls “Wahrscheinlichkeitstheorie” werden benötigt.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 120 Stunden
Präsenzzeit: 45 Stunden
 - Lehrveranstaltung einschließlich studienbegleitender Modulprüfung
Selbststudium: 75 Stunden
 - Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
 - Bearbeitung von Übungsaufgaben
 - Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
 - Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Finanzmathematik in diskreter Zeit (MATHST04) [M-MATH-102919]

Verantwortung: Nicole Bäuerle

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Mathematische Methoden/Stochastik

Bestandteil von: Mathematische Methoden/Stochastik

Wahlpflichtfach

Zusatzleistungen

Leistungspunkte 8

Modulturnus Jedes Wintersemester

Dauer 1 Semester

Pflichtbestandteile

Kennen Teilleistung LP Verantwortung
T-MATH-105839 Finanzmathematik in diskreter Zeit (S. 887) 8 Nicole Bäuerle, Vicky Fasen-Hartmann

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer schriftlichen Gesamtprüfung (120 min).

Modulnote
Die Modulnote ist die Note der schriftlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen können
- grundlegende Techniken der modernen diskreten Finanzmathematik nennen, erörtern und anwenden,
- spezifische probabilistische Techniken gebrauchen,
- ökonomische Fragestellungen im Bereich der diskreten Bewertung und Optimierung mathematisch analysieren,
- selbstorganisiert und reflexiv arbeiten.

Inhalt
- Endliche Finanzmärkte
- Das Cox-Ross-Rubinstein-Modell
 - Grenzübergang zu Black-Scholes
- Charakterisierung von No-Arbitrage
- Charakterisierung der Vollständigkeit
- Unvollständige Märkte
- Amerikanische Optionen
- Exotische Optionen
- Portfolio-Optimierung
- Präferenzen und stochastische Dominanz
MATHEMATISCHE METHODEN

2.3 Wahlbereich Mathematische Methoden

- Erwartungswert-Varianz Portfolios
- Risikomaße

Empfehlungen
Die Inhalte des Moduls "Wahrscheinlichkeitstheorie" werden benötigt.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Finanzmathematik in stetiger Zeit (MATHST08) [M-MATH-102860]

Verantwortung: Nicole Bäuerle

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung:
- Mathematische Methoden/Stochastik
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Stochastik
- Wahlpflichtfach
- Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105930</td>
<td>Finanzmathematik in stetiger Zeit (S. 888)</td>
<td>8</td>
<td>Nicole Bäuerle, Vicky Fasen-Hartmann</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 30 min).

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Das Modul kann nicht zusammen mit der Lehrveranstaltung *Stochastic Calculus and Finance* geprüft werden.

Qualifikationsziele
Absolventinnen und Absolventen können

- grundlegende Techniken der modernen zeitstetigen Finanzmathematik nennen, erörtern und anwenden,
- spezifische probabilistische Techniken gebrauchen,
- ökonomische Fragestellungen im Bereich der Bewertung und Optimierung mathematisch analysieren,
- selbstorganisiert und reflexiv arbeiten.

Inhalt

- Stochastische Prozesse und Filtrationen
 - Martingale in stetiger Zeit
 - Stoppzeiten
 - Quadratische Variation
- Stochastisches Ito-Integral bzgl. stetiger Semimartingale
- Ito-Kalkül
 - Ito-Doeblin Formel
 - Stochastische Exponentiale
 - Satz von Girsanov
 - Martingaldarstellung
- Black-Scholes Finanzmarkt
 - Arbitrage und äquivalente Martingalmaße
 - Optionen und No-Arbitragepreise
 - Vollständigkeit
- Portfolio Optimierung
- Bonds, Forwards und Zinsstrukturmodelle

Empfehlungen

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Generalisierte Regressionsmodelle (MATHST09) [M-MATH-102906]

Verantwortung: Bernhard Klar

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung:
- Mathematische Methoden/Stochastik
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Stochastik
- Wahlpflichtfach
- Zusatzleistungen

Leistungspunkte: 4

Modulturnus: Jedes Sommersemester

Dauer: 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105870</td>
<td>Generalisierte Regressionsmodelle (S. 895)</td>
<td>4</td>
<td>Bernhard Klar, Norbert Henze</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 20 min).

Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden

- kennen die wichtigsten Regressionsmodelle und deren Eigenschaften,
- können die Anwendbarkeit dieser Modelle beurteilen und die Ergebnisse interpretieren,
- sind in der Lage, die Modelle zur Analyse komplexer Datensätze einzusetzen.

Inhalt

Die Vorlesung behandelt grundlegende Modelle der Statistik, die es ermöglichen, Zusammenhänge zwischen Größen zu erfassen. Themen sind:

- Lineare Regressionsmodelle

 Modeldiagnostik
 Multikollinearität
 Variablen-Selektion
 Verallgemeinerte Kleinste-Quadrate-Methode

- Nichtlineare Regressionsmodelle

 Parameterschätzung
 Asymptotische Normalität der Maximum-Likelihood-Schätzer

- Regressionsmodelle für Zähldaten
- Verallgemeinerte lineare Modelle

Wirtschaftsmathematik (M.Sc.)

Modulhandbuch mit Stand 04.08.2016 für Wintersemester 16/17
Parameterschätzung
Modelldiagnose
Überdispersion und Quasi-Likelihood

Empfehlungen
Die Inhalte des Moduls "Statistik" werden benötigt.

Arbeitsaufwand
Präsenzzeit: 45 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 75 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Markovsche Entscheidungsprozesse (MATHST11) [M-MATH-102907]

Verantwortung: Nicole Bäuerle
Einrichtung: KIT-Fakultät für Mathematik
Curriculare Verankerung:
- Mathematische Methoden/Stochastik
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Stochastik
- Wahlpflichtfach
- Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105921</td>
<td>Markovsche Entscheidungsprozesse (S. 933)</td>
<td>5</td>
<td>Nicole Bäuerle</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 20 min).

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen können
- Die mathematischen Grundlagen der Markovschen Entscheidungsprozesse nennen und Lösungsverfahren anwenden,
- stochastische, dynamische Optimierungsprobleme als Markovschen Entscheidungsprozess formulieren,
- selbstorganisiert und reflexiv arbeiten.

Inhalt
- MDPs mit endlichem Horizont
 - Die Bellman Gleichung
 - Strukturierte Probleme
 - Anwendungsbeispielen
- MDPs mit unendlichem Horizont
 - kontrahierende MDPs
 - positive MDPs
 - Howards Politikverbesserung
 - Lösung durch lineare Programme
- Stopp-Probleme
 - endlicher und unendlicher Horizont
 - One-step-look-ahead-Regel

Empfehlungen
Das Modul “Wahrscheinlichkeitstheorie” sollte bereits absolviert sein. Das Modul “Markovsche Ketten” ist hilfreich.

Arbeitsaufwand

Gesamter Arbeitsaufwand: 150 Stunden
Präsenzzeit: 60 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 90 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Mathematische Statistik (MATHST15) [M-MATH-102909]

Verantwortung: Bernhard Klar
Einrichtung: KIT-Fakultät für Mathematik
Curriculare Verankerung: Wahlpflicht
Bestandteil von: Mathematische Methoden/Stochastik
Mathematische Methoden/Wahlbereich Mathematische Methoden/Stochastik
Wahlpflichtfach
Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Unregelmäß</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105872</td>
<td>Mathematische Statistik (S. 939)</td>
<td>4</td>
<td>Bernhard Klar, Norbert Henze</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 20 min).

Voraussetzungen
Keine

Qualifikationsziele
Die Studierenden

- kennen die grundlegenden Konzepte der mathematischen Statistik,
- können diese bei einfachen Fragestellungen und Beispielen eigenständig anwenden,
- kennen spezifische probabilistische Techniken und können damit Schätz- und Test-Verfahren mathematisch analysieren.

Inhalt
Die Vorlesung behandelt grundlegende Konzepte der mathematischen Statistik, insbesondere die finite Optimalitätstheorie von Schätzern und Tests. Themen sind:

- Optimale erwartungstreue Schätzer
- Beste lineare erwartungstreue Schätzer
- Cramér-Rao-Schranke in Exponentialfamilien
- Suffizienz und Vollständigkeit
- Satz von Lehmann-Scheffé
- Neyman-Pearson-Tests
- Optimale unverfälschte Tests

Empfehlungen
Die Inhalte des Moduls “Wahrscheinlichkeitstheorie” werden benötigt. Das Modul “Statistik” ist hilfreich.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 120 Stunden
Präsenzzeit: 45 Stunden
• Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 75 Stunden

• Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
• Bearbeitung von Übungsaufgaben
• Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
• Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Nichtparametrische Statistik (MATHST16) [M-MATH-102910]

Verantwortung: Norbert Henze

Einrichtung: KIT-Fakultät für Mathematik
Curriculare Verankerung: Wahlpflicht
Bestandteil von: Mathematische Methoden/Stochastik
Mathematische Methoden/Wahlbereich Mathematische Methoden/Stochastik
Wahlpflichtfach
Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105873</td>
<td>Nichtparametrische Statistik (S. 952)</td>
<td>4</td>
<td>Bernhard Klar, Norbert Henze</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 20 min).

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele

- Absolventinnen und Absolventen können verschiedene nichtparametrische statistische Testmethoden an Hand folgender Beispiele erklären und gegen parametrische Methoden abgrenzen:
 - Einstichproben-Lage-Problem
 - Zweistichproben-Lage-Problem

Sie können die Effizienz verschiedener Tests mittels asymptotischer Methoden vergleichen.

- Sie können verschiedene Abhängigkeitsmaße nennen und gegeneinander abgrenzen.
- Sie können verschiedene nichtparametrische Schätzmethoden an Hand folgender Beispiele nennen und erklären:
 - Dichteschätzung
 - Nichtparametrische Regression

Inhalt

- Ordnungsstatistiken und Quantilschätzung
- Rang-Statistiken
- Abhängigkeitsmaße
- Nichtparametrische Dichte- und Regressionsschätzung
Empfehlungen

Arbeitsaufwand
Gesamter Arbeitsaufwand: 120 Stunden
Präsenzzeit: 45 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 75 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Perkolation (MATHST13) [M-MATH-102905]

Verantwortung: Günter Last

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung:
- Mathematische Methoden/Stochastik
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Stochastik
- Wahlpflichtfach
- Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105869</td>
<td>Perkolation (S. 979)</td>
<td>6</td>
<td>Günter Last</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 30 min).

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Die Studierenden

- kennen grundlegende Modelle der diskreten und stetigen Perkolation,
- erwerben die Fähigkeit, spezifische probabilistische und graphentheoretische Methoden zur Analyse dieser Modelle einzusetzen,
- können selbstorganisiert und reflexiv arbeiten.

Inhalt

- Kanten- und Knoten-Perkolation auf Graphen
- Satz von Harris-Kesten
- Asymptotik der Clustergröße im sub- und superkritischen Fall
- Eindeutigkeit des unendlichen Clusters im quasitransitiven Fall
- Perkolation auf dem Gilbert-Graphen
- Stetige Perkolation

Empfehlungen
Das Modul Wahrscheinlichkeitstheorie sollte bereits belegt worden sein.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 180 Stunden
Präsenzzeit: 60 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 120 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
• Bearbeitung von Übungsaufgaben
• Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
• Vorbereitung auf die studienbegleitende Modulprüfung
M Modul: Räumliche Stochastik (MATHST14) [M-MATH-102903]

Verantwortung: Günter Last

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung:
- Wahlbereich Mathematische Methoden
- Wahlpflichtfach

Bestandteil von:
- Mathematische Methoden/Stochastik
- Wahlbereich Mathematische Methoden/Stochastik

Leistungspunkte: 8

Modulturnus: Jedes Wintersemester

Dauer: 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105867</td>
<td>Räumliche Stochastik (S. 996)</td>
<td>8</td>
<td>Günter Last, Daniel Hug</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 30 min).

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Die Studierenden kennen grundlegende räumliche stochastische Prozesse. Dabei verstehen sie nicht nur allgemeine Verteilungseigenschaften, sondern können auch konkrete Modelle (Poissonscher Prozess, Gaußsche Zufallsfelder) beschreiben und anwenden. Sie können ferner selbstorganisiert und reflexiv arbeiten.

Inhalt
- Punktprozesse
- Zufällige Maße
- Poissonprozess
- Gaußsche Punktprozesse
- Palmische Verteilung
- Räumlicher Ergodensatz
- Spektraltheorie zufälliger Felder
- Gaußsche Felder

Empfehlungen
Die Inhalte des Moduls Wahrscheinlichkeitstheorie werden zum Teil benötigt.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Steinsche Methode (MATHST24) [M-MATH-102946]

Verantwortung: Matthias Schulte

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung:
- Wahlpflicht
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Stochastik
- Wahlpflichtfach
- Zusatzleistungen

Leistungspunkte	Modulturnus	Dauer
5 | Unregelmäßig | 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105914</td>
<td>Steinsche Methode (S. 1044)</td>
<td>5</td>
<td>Matthias Schulte</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 20 min).

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen können
- die Grundlagen der Steinschen Methode und ihrer Anwendungen auf ausgewählte Probleme nennen und erörtern,
- können zentrale Grenzwertsätze und Poissonsche Grenzwertsätze mit Hilfe der Steinschen Methode beweisen,
- selbstorganisiert und reflexiv arbeiten.

Inhalt
- Steinsche Gleichungen für die uni- und multivariate Normalverteilung sowie für die Poisson-Verteilung
- Kopplungen (Zero Bias und Size Bias)
- Austauschbare Paare
- lokale Abhängigkeiten und Abhängigkeitsgraphen
- Anwendungen der o.g. Techniken auf ausgewählte Probleme wie z.B. Zufallsgraphen

Empfehlungen
Die Inhalte des Moduls "Wahrscheinlichkeitstheorie" werden benötigt.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 150 Stunden
Präsenzzeit: 60 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung
Selbststudium: 90 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Steuerung stochastischer Prozesse (MATHST12) [M-MATH-102908]

Verantwortung: Nicole Bäuerle

Einrichtung: KIT-Fakultät für Mathematik
Curriculare Verankerung: Mathematische Methoden/Stochastik
Wahlbereich Mathematische Methoden/Stochastik
Wahlpflichtfach
Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105871</td>
<td>Steuerung stochastischer Prozesse (S. 1045)</td>
<td>4</td>
<td>Nicole Bäuerle</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 20 min).

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen können

- Die mathematischen Grundlagen der Stochastischen Steuerung nennen und Lösungsverfahren anwenden,
- Zeitstetige, stochastische, dynamische Optimierungsprobleme als stochastisches Steuerproblem formulieren,
- selbstorganisiert und reflexiv arbeiten.

Inhalt

- Verifikationstechnik, Hamilton-Jacobi-Bellman Gleichung
- Viskositätslösung
- Singuläre Steuerung
- Feynman-Kac Darstellungen
- Anwendungsbeispiele aus der Finanz- und Versicherungsmathematik

Empfehlungen
Das Modul "Wahrscheinlichkeitslehre" sollte bereits absolviert sein. Die Module "Brownsche Bewegung" und "Finanzmathematik in stetiger Zeit" sind hilfreich.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 120 Stunden
Präsenzzeit: 45 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung
Selbststudium: 75 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Stochastische Evolutionsgleichungen (MATHAN40) [M-MATH-102942]

Verantwortung: Lutz Weis
Einrichtung: KIT-Fakultät für Mathematik
Curriculare Verankerung: Wahlpflicht
Bestandteil von: Mathematische Methoden/Stochastik
Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Analysis
Mathematische Methoden/Wahlbereich Mathematische Methoden/Analysis
Mathematische Methoden/Wahlbereich Mathematische Methoden/Stochastik
Wahlpflichtfach
Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105910</td>
<td>Stochastische Evolutionsgleichungen (S. 1053)</td>
<td>8</td>
<td>Lutz Weis</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung von ca. 30 Minuten Dauer.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Die Studenten können stochastische Störungen von PDE's als stochastische partielle Differentialgleichungen modellieren. Sie kennen grundlegende Existenzaussagen für stochastische PDE und wesentliche qualitative Eigenschaften ihrer Lösungen. Sie verstehen das Zusammenspiel analytischer und stochastischer Methoden (Fernique), insbesondere beherrschen sie Methoden der stochastischen Analysis und die Besonderheiten, die bei der stochastischen Integration Banachraumwertiger Prozesse auftreten.

Inhalt

- Gauß'sche Maße auf Banachräumen, Satz von Fernique
- Wiener Prozesse auf Banachräumen und die Loewe- Kahunen Darstellung
- Banachraumwertige Martingale und die UMD- Eigenschaft eines Banachraumes
- Ito- Integrale für Prozesse in UMD-Räumen und Burkholder-Gundy Ungleichenungen, Decoupling
- Modellierung stochastischer Störungen von PDE’s
- Existenz- Eindeutigkeits-Aussagen und Regularitäts-Aussagen für parabolische stochastische Differentialgleichungen
- Stochastische Wärmeleitungsgleichung.
- Beispiele für stochastische Schrödinger- und Wärmeleitungsgleichungen.

Empfehlungen
Folgende Module sollten bereits belegt worden sein:
Wahrscheinlichkeitstheorie, Spektraltheorie.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Stochastische Geometrie (MATHST06) [M-MATH-102865]

Verantwortung: Daniel Hug
Einrichtung: KIT-Fakultät für Mathematik
Curriculare Verankerung: Wahlpflicht
Bestandteil von: Mathematische Methoden/Stochastik
Mathematische Methoden/Wahlbereich Mathematische Methoden/Algebra und Geometrie
Mathematische Methoden/Wahlbereich Mathematische Methoden/Stochastik
Wahlpflichtfach
Zusatzleistungen

Leistungspunkte 8 Modulturnus Jedes Sommersemester Dauer 1 Semester

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105840</td>
<td>Stochastische Geometrie (S. 1054)</td>
<td>8</td>
<td>Günter Last, Daniel Hug</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 30 min).

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Die Studierenden

- kennen die grundlegenden geometrischen Modelle und Kenngrößen der Stochastischen Geometrie,
- sind mit Eigenschaften von Poissonprozessen geometrischer Objekte vertraut,
- kennen exemplarisch Anwendungen von Modellen der Stochastischen Geometrie,
- können reflexiv und selbstorganisiert arbeiten.

Inhalt

- Zufällige Mengen
- Geometrische Punktprozesse
- Stationarität und Isotropie
- Keim-Korn-Modelle
- Boolesche Modelle
- Grundlagen der Integralgeometrie
- Geometrische Dichten und Kenngrößen
- Zufällige Mosaike

Empfehlungen
Die Inhalte des Moduls Räumliche Stochastik werden zum Teil benötigt.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung
Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Verantwortung: Tilmann Gneiting

Einrichtung: KIT-Fakultät für Mathematik
Curriculare Verankerung: Wahlpflicht
Bestandteil von: Mathematische Methoden/Stochastik
Mathematische Methoden/Wahlbereich Mathematische Methoden/Stochastik
Wahlpflichtfach
Zusatzleistungen

Leistungspunkte 8
Modulturnus Unregelmäßig
Dauer 2 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teileistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105928</td>
<td>Vorhersagen: Theorie und Praxis (S. 1074)</td>
<td>8</td>
<td>Tilmann Gneiting</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 30 Minuten.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen können

- grundlegende Begriffe der maß- und wahrscheinlichkeitstheoretisch begründeten Theorie der Vorhersage nennen und an Beispielen verdeutlichen
- grundlegende Begriffe der entscheidungstheoretisch begründeten Evaluierung von Vorhersagen nennen und an Beispielen verdeutlichen
- Regressionsverfahren für Vorhersagen adaptieren, interpretieren und implementieren
- prinzipielle Vorgehensweisen bei der Erstellung und Evaluierung meteorologischer und ökonomischer Prognosen erläutern
- in Simulationsstudien und Fallbeispielen Vorhersage- und Evaluierungsverfahren selbständig entwickeln und programmieren

Inhalt

- Fallstudien aus Meteorologie und Ökonomie
- Punktvorhersagen und Wahrscheinlichkeitsvorhersagen
- Vorhersageräume, Kalibration und Schärfe
- Proper scoring rules und consistent scoring functions
- Aggregation von Vorhersagen
- prädiktive Aspekte von Regressionsverfahren
Empfehlungen
Die Inhalte des Moduls “Wahrscheinlichkeitstheorie” werden benötigt. Das Modul “Statistik” ist hilfreich.

Anmerkung
- Turnus: jedes zweite Jahr, beginnend Wintersemester 16/17
- Unterrichtssprache: Englisch

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Wahrscheinlichkeitstheorie und kombinatorische Optimierung (MATHST27) [M-MATH-102947]

Verantwortung: Daniel Hug
Einrichtung: KIT-Fakultät für Mathematik
Curriculare Verankerung: Wahlpflicht
Bestandteil von:
- Mathematische Methoden/Stochastik
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Stochastik
- Wahlpflichtfach
- Zusatzleistungen

Leistungspunkte: 8
Modulturnus: Unregelmäßig
Dauer: 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105923</td>
<td>Wahrscheinlichkeitstheorie und kombinatorische Optimierung (S. 1081)</td>
<td>8</td>
<td>Günter Last, Daniel Hug</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 30 min).

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen

- kennen die behandelten Fragestellungen der kombinatorischen Optimierung und können diese erläutern,
- kennen typische Methoden zur probabilistischen Analyse von Algorithmen und kombinatorischen Optimierungsproblemen und können diese zur Lösung von konkreten Optimierungsproblemen einsetzen,
- können selbstorganisiert und reflexiv arbeiten.

Inhalt

- das Problem langer gemeinsamer Teilfolgen,
- Packungsprobleme,
- das euklidische Problem des Handlungsreisenden,
- minimale euklidische Paarungen,
- minimale euklidische Spannbäume.
Für die Analyse von Problemen dieser Art wurden Techniken und Konzepte entwickelt, die in der Vorlesung vorgestellt und angewendet werden. Hierzu gehören

- Konzentrationsungleichungen und Konzentration von Maßen,
- Subadditivität und Superadditivität,
- Martingalmethoden,
- Isoperimetrie,
- Entropie.

Empfehlungen

Die Inhalte des Moduls "Wahrscheinlichkeitstheorie" werden benötigt.

Arbeitsaufwand

Gesamter Arbeitsaufwand: 240 Stunden

Präsenzzeit: 90 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
M Modul: Zeitreihenanalyse (MATHST18) [M-MATH-102911]

Verantwortung: Bernhard Klar

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Stochastik
Mathematische Methoden/Wahlbereich Mathematische Methoden/Stochastik
Wahlpflichtfach
Zusatzleistungen

Leistungspunkte 4
Modulturnus Jedes Sommersemester
Dauer 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105874</td>
<td>Zeitreihenanalyse (S. 1088)</td>
<td>4</td>
<td>Bernhard Klar, Norbert Henze</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 20 min).

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Die Studierenden

- kennen und verstehen die Standardmodelle der Zeitreihenanalyse,
- kennen exemplarisch statistische Methoden zur Modellwahl und Modellvalidierung,
- wenden Modelle und Methoden der Vorlesung eigenständig auf reale und simulierende Daten an,
- kennen spezifische mathematische Techniken und können damit Zeitreihenmodelle analysieren.

Inhalt
Die Vorlesung behandelt die grundlegenden Begriffe der klassischen Zeitreihenanalyse:

- Stationäre Zeitreihen
- Trends und Saisonalitäten
- Autokorrelation
- Autoregressive Modelle
- ARMA-Modelle
- Parameterschätzung
- Vorhersage
- Spektraldichte und Periodogramm
Empfehlungen
Die Inhalte des Moduls “Wahrscheinlichkeitstheorie” werden benötigt. Das Modul “Statistik” ist hilfreich.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 120 Stunden
Präsenzzeit: 45 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 75 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des
- Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Zufällige Graphen (MATHST29) [M-MATH-102951]

Verantwortung: Matthias Schulte

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Mathematische Methoden/Stochastik

Bestandteil von: Mathematische Methoden/Stochastik

Wahlpflichtfach

Zusatzleistungen

Leistungspunkte 6

Modulturnus Unregelmäßig

Dauer 1 Semester

Pflichtbestandteile

Kennung Teilleistung LP Verantwortung
T-MATH-105929 Zufällige Graphen (S. 1089) 6 Matthias Schulte

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 25 Minuten.

Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden

- kennen die grundlegenden Modelle für zufällige Graphen und deren Eigenschaften,
- sind mit probabilistischen Techniken zur Untersuchung zufälliger Graphen vertraut,
- können selbstorganisiert und reflexiv arbeiten.

Inhalt

- Erdös-Renyi-Graphen
- Konfigurationsmodelle
- Preferential-Attachment-Graphen
- Geometrische zufällige Graphen

Empfehlungen

Die Inhalte des Moduls "Wahrscheinlichkeitstheorie" werden benötigt.

Arbeitsaufwand

Gesamter Arbeitsaufwand: 180 Stunden
Präsenzzeit: 60 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 120 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
3 Finance - Risk Management - Managerial Economics

Modul: Analytics und Statistik [M-WIWI-101637]

Verantwortung: Oliver Grothe
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Curriculare Verankerung: Wahlpflicht
Bestandteil von: Finance - Risk Management - Managerial Economics

Leistungspunkte 9 Sprache Deutsch

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-103123</td>
<td>Statistik für Fortgeschrittene (S. 1042)</td>
<td>4,5</td>
<td>Oliver Grothe</td>
</tr>
</tbody>
</table>

Ergänzungsangebot

Wahlpflichtblock; min. 4,5, max. 5 Leistungspunkte

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-103124</td>
<td>Multivariate Verfahren (S. 946)</td>
<td>4,5</td>
<td>Oliver Grothe</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Voraussetzungen

Die Lehrveranstaltung "Statistik für Fortgeschrittene" des Moduls muss geprüft werden.

Qualifikationsziele

Der/die Studierende

- Vertieft Grundlagen der schließenden Statistik.
- Lernt mit Simulationsmethoden umzugehen und diese sinnvoll einzusetzen.
- Lernt grundlegende und erweiterte Methoden der statistischen Auswertung mehr- und hochdimensionaler Daten kennen.

Inhalt

- Schätzen und Testen
- Stochastische Prozesse
- Multivariate Statistik, Copulas
- Abhängigkeitsmessung
- Dimensionsreduktion
- Hochdimensionale Methoden
- Vorhersagen
Anmerkung
Das für drei Studienjahre im Voraus geplante Lehrangebot kann im Internet nachgelesen werden.

Arbeitsaufwand
M Modul: Collective Decision Making (WW4VWL16) [M-WIWI-101504]

Verantwortung: Clemens Puppe
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Curriculare Verankerung: Wahlpflicht
Bestandteil von: Finance - Risk Management - Managerial Economics
Wahlplflichtfach
Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Wahlpflichtangebot
Wahlpflichtblock; min. 9, max. 9,5 Leistungspunkte

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102617</td>
<td>Mathematische Theorie der Demokratie (S. 940)</td>
<td>4,5</td>
<td>Andranik Melik-Tangian</td>
</tr>
<tr>
<td>T-WIWI-102859</td>
<td>Social Choice Theory (S. 1025)</td>
<td>4,5</td>
<td>Clemens Puppe</td>
</tr>
<tr>
<td>T-WIWI-102740</td>
<td>Public Management (S. 991)</td>
<td>4,5</td>
<td>Berthold Wigger</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form von Teilprüfungen (nach §4(2), 1 o. 2 SPO) über die gewählten Lehrveranstaltungen des Moduls, mit denen in Summe die Mindestanforderung an Leistungspunkten erfüllt ist. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.
Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Voraussetzungen
Keine

Qualifikationsziele
Die Studierenden

- sind in der Lage, praktische Problemstellungen der Ökonomie des öffentlichen Sektors zu modellieren und im Hinblick auf positive und normative Fragestellungen zu analysieren,
- verstehen die individuellen Anreize und gesellschaftlichen Auswirkungen verschiedener institutioneller ökonomischer Rahmenbedingungen,
- sind vertraut mit der Funktionsweise und Ausgestaltung demokratischer Wahlverfahren und können diese im Hinblick auf ihre Anreizwirkung analysieren.

Arbeitsaufwand
Gesamtaufwand bei 9 Leistungspunkten: ca. 270 Stunden
Die genaue Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.
Modul: Entscheidungs- und Spieltheorie (MATHMWVL10) [M-WIWI-102970]

Verantwortung: Clemens Puppe

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Finance - Risk Management - Managerial Economics

Wahlpflichtfach

Zusatzleistungen

Leistungspunkte 9

Sprache Deutsch

Wahlpflichtangebot

Wahlpflichtblock; min. 9, max. 9 Leistungspunkte

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102613</td>
<td>Auktionstheorie (S. 840) 4,5 Karl-Martin Ehrhart</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102614</td>
<td>Experimentelle Wirtschaftsforschung (S. 879) 4,5 Christof Weinhardt, Timm Teubner</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102861</td>
<td>Advanced Game Theory (S. 824) 4,5 Karl-Martin Ehrhart, Clemens Puppe, Johannes Philipp Reiß</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form von Teilprüfungen über die gewählten Teilleistungen des Moduls, mit denen in Summe die Mindestanforderung an Leistungspunkten erfüllt ist. Die Erfolgskontrolle wird bei jeder Teilleistung dieses Moduls beschrieben.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Voraussetzungen

Keine

Qualifikationsziele

Der Student soll mit den Grundlagen des individuellen und des strategischen Entscheidens auf einem fortgeschrittenen, formalen Niveau bekannt gemacht werden.

Er soll lernen, ökonomische Probleme durch abstraktes und methodenbasiertes zu analysieren und fundierte Lösungsvorschläge zu erarbeiten. In den Übungen sollen die in den Vorlesungen dargelegten theoretischen Konzepte und Resultate durch Fallstudien vertieft werden.

Inhalt

Das Modul bietet, aufbauend auf einer fortgeschrittenen formalen Analyse von strategischen Entscheidungssituationen eine methodisch differenzierte Vertiefung - entweder theoretisch oder empirisch - der Anwendungsmöglichkeiten der spieltheoretischen Analyse an.

Anmerkung

Das Modul kann in folgenden Studienprofilen gewählt werden:

- Operations Research
- Klassische Wirtschaftsmathematik

Gute Kenntnisse in Mathematik und Statistik sind hilfreich.

Arbeitsaufwand

Gesamtaufwand bei 9 Leistungspunkten: ca. 270 Stunden

Die genaue Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.
Modul: Experimentelle Wirtschaftsforschung (WW4VWL17) [M-WIWI-101505]

Verantwortung: Johannes Philipp Reiß

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Curriculare Verankerung: Finance - Risk Management - Managerial Economics

Wahlpflichtfach

Zusatzleistungen

Leistungspunkte: 9

Sprache: Deutsch

Wahlpflichtangebot

Wahlpflichtblock; min. 2, max. 2 Teilleistungen

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102862</td>
<td>Predictive Mechanism and Market Design (S. 986)</td>
<td>4,5</td>
<td>Johannes Philipp Reiß</td>
</tr>
<tr>
<td>T-WIWI-102863</td>
<td>Topics in Experimental Economics (S. 1067)</td>
<td>4,5</td>
<td>Johannes Philipp Reiß</td>
</tr>
<tr>
<td>T-WIWI-105781</td>
<td>Incentives in Organizations (S. 908)</td>
<td>4,5</td>
<td>Petra Nieken</td>
</tr>
<tr>
<td>T-WIWI-102614</td>
<td>Experimentelle Wirtschaftsforschung (S. 879)</td>
<td>4,5</td>
<td>Christof Weinhardt, Timm</td>
</tr>
<tr>
<td></td>
<td>Teubner</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form von Teilprüfungen (nach §4(2), 1-3 SPO) über die Kernveranstaltung und weitere Lehrveranstaltungen des Moduls im Umfang von insgesamt mindestens 9 LP. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Voraussetzungen

Keine.

Qualifikationsziele

Der/die Studierende

- beherrscht die Methoden der Experimentellen Wirtschaftsforschung und lernt ihre Stärken und Schwächen einzuschätzen;
- lernt wie sich die theoriegeleitete experimentelle Wirtschaftsforschung und Theoriebildung gegenseitig befruchten;
- kann ein ökonomisches Experiment entwerfen;
- statistische Grundlagen der Datenauswertung kennen und anwenden.

Inhalt

Empfehlungen

Es werden grundlegende Kenntnisse in Mathematik, Statistik und Spieltheorie vorausgesetzt.

Anmerkung

Wirtschaftsmathematik (M.Sc.)
Modulhandbuch mit Stand 04.08.2016 für Wintersemester 16/17

Die Veranstaltung Topics in Experimental Economics wird voraussichtlich erstmals im Sommersemester 2016 angeboten.

Arbeitsaufwand
Gesamtaufwand bei 9 Leistungspunkten: ca. 270 Stunden
Die genaue Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.
Modul: Finance 1 (WW4BWLFBV1) [M-WIWI-101482]

Verantwortung: Marliese Uhrig-Homburg, Martin Ruckes

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Finance - Risk Management - Managerial Economics

Wahlpflichtfach

Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Wahlpflichtangebot

Wahlpflichtblock; min. 9, max. 9 Leistungspunkte

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102643</td>
<td>Derivate (S. 857)</td>
<td>4,5</td>
<td>Marliese Uhrig-Homburg</td>
</tr>
<tr>
<td>T-WIWI-102621</td>
<td>Valuation (S. 1068)</td>
<td>4,5</td>
<td>Martin Ruckes</td>
</tr>
<tr>
<td>T-WIWI-102647</td>
<td>Asset Pricing (S. 837)</td>
<td>4,5</td>
<td>Marliese Uhrig-Homburg, Martin Ruckes</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen

Keine

Qualifikationsziele

Der/die Studierende

- besitzt zentrale ökonomische und methodische Kenntnisse in moderner Finanzwirtschaft,
- beurteilt unternehmerische Investitionsprojekte aus finanzwirtschaftlicher Sicht,
- ist in der Lage, zweckgerechte Investitionsentscheidungen auf Finanzmärkten durchzuführen.

Inhalt

Arbeitsaufwand

Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 Credits). Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls. Dabei beträgt der Arbeitsaufwand für Lehrveranstaltungen mit 4,5 Credits ca. 135h.

Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.
Modul: Finance 2 (WW4BWLFBV2) [M-WIWI-101483]

Verantwortung: Marliese Uhrig-Homburg, Martin Ruckes

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Curriculare Verankerung: Wahlpflichtfach

Bestandteil von: Finance - Risk Management - Managerial Economics

Zusatzleistungen

Leistungspunkte	Modulturnus	Dauer
9 | Jedes Semester | 1 Semester

Wahlpflichtangebot

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102644</td>
<td>Festverzinsliche Titel (S. 883)</td>
<td>4,5</td>
<td>Marliese Uhrig-Homburg</td>
</tr>
<tr>
<td>T-WIWI-102622</td>
<td>Corporate Financial Policy (S. 851)</td>
<td>4,5</td>
<td>Martin Ruckes</td>
</tr>
<tr>
<td>T-WIWI-102645</td>
<td>Kreditrisiken (S. 926)</td>
<td>4,5</td>
<td>Marliese Uhrig-Homburg</td>
</tr>
<tr>
<td>T-WIWI-102647</td>
<td>Asset Pricing (S. 837)</td>
<td>4,5</td>
<td>Marliese Uhrig-Homburg, Martin Ruckes</td>
</tr>
<tr>
<td>T-WIWI-102621</td>
<td>Valuation (S. 1068)</td>
<td>4,5</td>
<td>Martin Ruckes</td>
</tr>
<tr>
<td>T-WIWI-102643</td>
<td>Derivate (S. 857)</td>
<td>4,5</td>
<td>Marliese Uhrig-Homburg</td>
</tr>
<tr>
<td>T-WIWI-102646</td>
<td>Internationale Finanzierung (S. 915)</td>
<td>3</td>
<td>Marliese Uhrig-Homburg</td>
</tr>
<tr>
<td>T-WIWI-102626</td>
<td>Geschäftspolitik der Kreditinstitute (S. 899)</td>
<td>3</td>
<td>Wolfgang Müller</td>
</tr>
<tr>
<td>T-WIWI-102625</td>
<td>Börsen (S. 842)</td>
<td>1,5</td>
<td>Jörg Franke</td>
</tr>
<tr>
<td>T-WIWI-102623</td>
<td>Finanzintermediation (S. 886)</td>
<td>4,5</td>
<td>Martin Ruckes</td>
</tr>
<tr>
<td>T-WIWI-102600</td>
<td>eFinance: Informationswirtschaft für den Wertpapierhandel (S. 866)</td>
<td>4,5</td>
<td>Christof Weinhardt</td>
</tr>
<tr>
<td>T-WIWI-102900</td>
<td>Financial Analysis (S. 884)</td>
<td>4,5</td>
<td>Torsten Luededecke</td>
</tr>
</tbody>
</table>

Erfolgskontrollen(n)

Die Modulprüfung erfolgt in Form von Teilprüfungen (nach §4(2), 1 o. 2 SPO) über die gewählten Lehrveranstaltungen des Moduls, mit denen in Summe die Mindestanforderung an Leistungspunkten erfüllt ist. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Voraussetzungen

Das Modul ist erst dann bestanden, wenn zusätzlich das Modul Finance 1 [WW4BWLFBV1] zuvor erfolgreich mit der letzten Teilprüfung abgeschlossen wurde.

Modellierte Voraussetzungen

Es müssen die folgenden Bestandteile erfüllt werden:

- Das Modul kann nur dann begonnen werden, wenn zugleich das Modul [M-WIWI-101482] Finance 1 begonnen wurde.

Qualifikationsziele

Der/die Studierende ist in der Lage, fortgeschrittene ökonomische und methodische Fragestellungen der Finanzwirtschaft zu erläutern, zu analysieren und Antworten darauf abzuleiten.

Inhalt

Das Modul Finance 2 baut inhaltlich auf dem Modul Finance 1 auf. In den Modulveranstaltungen werden den Studierenden
weiterführende ökonomische und methodische Kenntnisse der modernen Finanzwirtschaft auf breiter Basis vermittelt.

Anmerkung

Arbeitsaufwand
Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 Credits). Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls. Dabei beträgt der Arbeitsaufwand für Lehrveranstaltungen mit 1,5 Credits ca. 45h, für Lehrveranstaltungen mit 3 Credits ca. 90h und für Lehrveranstaltungen mit 4,5 Credits ca. 135h. Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.
Modul: Finance 3 (WW4BWLFBV11) [M-WIWI-101480]

Verantwortung: Marliese Uhrig-Homburg, Martin Ruckes

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Finance - Risk Management - Managerial Economics

Wahlpflichtfach

Zusatzleistungen

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102647</td>
<td>Asset Pricing (S. 837)</td>
<td>4,5</td>
<td>Marliese Uhrig-Homburg, Martin Ruckes</td>
</tr>
<tr>
<td>T-WIWI-102621</td>
<td>Valuation (S. 1068)</td>
<td>4,5</td>
<td>Martin Ruckes</td>
</tr>
<tr>
<td>T-WIWI-102643</td>
<td>Derivate (S. 857)</td>
<td>4,5</td>
<td>Marliese Uhrig-Homburg</td>
</tr>
<tr>
<td>T-WIWI-102644</td>
<td>Festverzinsliche Titel (S. 883)</td>
<td>4,5</td>
<td>Marliese Uhrig-Homburg</td>
</tr>
<tr>
<td>T-WIWI-102645</td>
<td>Kreditrisiken (S. 926)</td>
<td>4,5</td>
<td>Marliese Uhrig-Homburg</td>
</tr>
<tr>
<td>T-WIWI-102622</td>
<td>Corporate Financial Policy (S. 851)</td>
<td>4,5</td>
<td>Martin Ruckes</td>
</tr>
<tr>
<td>T-WIWI-102623</td>
<td>Finanzintermediation (S. 886)</td>
<td>4,5</td>
<td>Martin Ruckes</td>
</tr>
<tr>
<td>T-WIWI-102625</td>
<td>Börsen (S. 842)</td>
<td>1,5</td>
<td>Jörg Franke</td>
</tr>
<tr>
<td>T-WIWI-102626</td>
<td>Geschäftspolitik der Kreditinstitute (S. 899)</td>
<td>3</td>
<td>Wolfgang Müller</td>
</tr>
<tr>
<td>T-WIWI-102646</td>
<td>Internationale Finanzierung (S. 915)</td>
<td>3</td>
<td>Marliese Uhrig-Homburg</td>
</tr>
<tr>
<td>T-WIWI-102600</td>
<td>eFinance: Informationswirtschaft für den Wertpapierhandel (S. 866)</td>
<td>4,5</td>
<td>Christof Weinhardt</td>
</tr>
<tr>
<td>T-WIWI-102900</td>
<td>Financial Analysis (S. 884)</td>
<td>4,5</td>
<td>Torsten Luedecke</td>
</tr>
</tbody>
</table>

Erfolgskontrollen

Voraussetzungen

Das Modul ist erst dann bestanden, wenn zusätzlich die Module Finance 1 und Finance 2 zuvor erfolgreich mit der letzten Teilprüfung abgeschlossen wurden.

Modellierte Voraussetzungen

Es müssen die folgenden Bestandteile erfüllt werden:

Qualifikationsziele

Der/die Studierende ist in der Lage, fortgeschrittene ökonomische und methodische Fragestellungen der Finanzwirtschaft zu erläutern, zu analysieren und Antworten darauf abzuleiten.
Inhalt
In den Modulveranstaltungen werden den Studierenden weiterführende ökonomische und methodische Kenntnisse der modernen Finanzwirtschaft auf breiter Basis vermittelt.

Anmerkung

Arbeitsaufwand
Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 Credits). Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls. Dabei beträgt der Arbeitsaufwand für Lehrveranstaltungen mit 1,5 Credits ca. 45h, für Lehrveranstaltungen mit 3 Credits ca. 90h und für Lehrveranstaltungen mit 4,5 Credits ca. 135h. Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.
M Modul: Innovation und Wachstum (WW4VWIWW1) [M-WIWI-101478]

Verantwortung: Ingrid Ott

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Curriculare Verankerung: Finance - Risk Management - Managerial Economics

Bestandteil von: Wahlpflichtfach

Zusatzleistungen

Leistungspunkte 9

Modulturnus Jedes Semester

Dauer 1 Semester

Wahlpflichtangebot

Wahlpflichtblock; min. 9, max. 10 Leistungspunkte

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102840</td>
<td>Innovationstheorie und -politik (S. 909)</td>
<td>4,5</td>
<td>Ingrid Ott</td>
</tr>
<tr>
<td>T-WIWI-102785</td>
<td>Endogene Wachstumtheorie (S. 872)</td>
<td>4,5</td>
<td>Ingrid Ott</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Voraussetzungen

Keine

Qualifikationsziele

Der/ die Studierende

- kennt die wesentlichen Techniken zur Analyse statischer und dynamischer Optimierungsmodelle, die im Rahmen von mikro- und makroökonomischen Theorien angewendet werden
- lernt, die herausragende Rolle von Innovationen für das gesamtwirtschaftliche Wachstum sowie die Wohlfahrt zu verstehen
- ist in der Lage, die Bedeutung alternativer Anreizmechanismen für die Entstehung und Verbreitung von Innovationen zu identifizieren
- kann begründen, in welchen Fällen Markteingriffe durch den Staat, bspw. in Form von Steuern und Subventionen legitimiert werden können und sie vor dem Hintergrund wohlfahrtsökonomischer Maßstäbe bewerten

Inhalt

Das Modul umfasst Veranstaltungen, die sich im Rahmen mikro- und makroökonomischer Theorien mit Fragestellungen zu Innovation und Wachstum auseinandersetzen. Die dynamische Analyse ermöglicht es, die Konsequenzen individueller Entscheidungen im Zeitablauf zu analysieren und so insbesondere das Spannungsverhältnis zwischen statischer und dynamischer Effizienz zu verstehen. In diesem Kontext wird auch analysiert, welche Politik bei Vorliegen von Marktvorsagen geeignet ist, um korrigierend in das Marktgeschehen einzutreten und die Wohlfahrt zu erhöhen.

Empfehlungen

Arbeitsaufwand
Gesamtaufwand bei 9 Leistungspunkten: ca. 270 Stunden
Präsenzzeit pro gewählter Veranstaltung: 3x14h
Vor- /Nachbereitung pro gewählter Veranstaltung: 3x14h
Rest: Prüfungsvorbereitung
Die genaue Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.
Modul: Insurance Management I (WW4BWLFBV6) [M-WIWI-101469]

Verantwortung: Ute Werner

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Finance - Risk Management - Managerial Economics

Wahlpflichtfach

Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Wahlpflichtangebot

Wahlpflichtblock; min. 9, max. 9 Leistungspunkte

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102603</td>
<td>Principles of Insurance Management (S. 987)</td>
<td>4,5</td>
<td>Ute Werner</td>
</tr>
<tr>
<td>T-WIWI-102601</td>
<td>Insurance Marketing (S. 911)</td>
<td>4,5</td>
<td>Edmund Schwake</td>
</tr>
<tr>
<td>T-WIWI-102648</td>
<td>Insurance Production (S. 912)</td>
<td>4,5</td>
<td>Ute Werner</td>
</tr>
<tr>
<td>T-WIWI-102637</td>
<td>Current Issues in the Insurance Industry (S. 852)</td>
<td>2</td>
<td>Wolf-Rüdiger Heilmann</td>
</tr>
<tr>
<td>T-WIWI-102636</td>
<td>Insurance Risk Management (S. 913)</td>
<td>2,5</td>
<td>Harald Maser</td>
</tr>
<tr>
<td>T-WIWI-102797</td>
<td>P&C Insurance Simulation Game (S. 976)</td>
<td>3</td>
<td>Ute Werner</td>
</tr>
<tr>
<td>T-WIWI-102649</td>
<td>Risk Communication (S. 997)</td>
<td>4,5</td>
<td>Ute Werner</td>
</tr>
<tr>
<td>T-WIWI-102841</td>
<td>Modelling, Measuring and Managing of Extreme Risks (S. 944)</td>
<td>2,5</td>
<td>Ute Werner</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Voraussetzungen

Keine

Qualifikationsziele

Der/die Studierende

- kennt und versteht den zufallsabhängigen Charakter der Dienstleistungserstellung in Versicherungsunternehmen,
- kann geeignete Handlungsoptionen zu wichtigen betriebswirtschaftlichen Funktionen in Versicherungsunternehmen auswählen und kombinieren.
- kennt die wirtschaftlichen, rechtlichen und soziopolitischen Rahmenbedingungen des Wirtschaftens im Versicherungsunternehmen.

Inhalt

Anmerkung

Arbeitsaufwand

Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 Credits). Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls. Dabei beträgt der Arbeitsaufwand für Lehrveranstaltungen mit 4,5 Credits ca. 135h.

Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.
Modul: Microeconomic Theory (WW4VWL15) [M-WIWI-101500]

Verantwortung: Clemens Puppe

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Finance - Risk Management - Managerial Economics

Wahlpflichtfach

Zusatzleistungen

Leistungspunkte: 9

Sprache: Deutsch

Wahlpflichtangebot

Wahlpflichtblock; min. 1, max. 1 Teilleistungen, min. 9, max. 9 Leistungspunkte

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102609</td>
<td>Advanced Topics in Economic Theory (S. 826)</td>
<td>4,5</td>
<td>Kay Mitsch, Marten Hillebrand</td>
</tr>
<tr>
<td>T-WIWI-102861</td>
<td>Advanced Game Theory (S. 824)</td>
<td>4,5</td>
<td>Karl-Martin Ehrhart, Clemens Puppe, Johannes Philipp Reiß</td>
</tr>
<tr>
<td>T-WIWI-102859</td>
<td>Social Choice Theory (S. 1025)</td>
<td>4,5</td>
<td>Clemens Puppe</td>
</tr>
<tr>
<td>T-WIWI-102613</td>
<td>Auktionsstheorie (S. 840)</td>
<td>4,5</td>
<td>Karl-Martin Ehrhart</td>
</tr>
<tr>
<td>T-WIWI-105781</td>
<td>Incentives in Organizations (S. 908)</td>
<td>4,5</td>
<td>Petra Nieken</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form von Teilprüfungen (nach §4(2), 1 o. 2 SPO) über die gewählten Lehrveranstaltungen des Moduls, mit denen in Summe die Mindestanforderung an Leistungspunkten erfüllt ist. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden

- sind in der Lage, praktische Problemstellungen der Mikroökonomik mathematisch zu modellieren und im Hinblick auf positive und normative Fragestellungen zu analysieren,
- verstehen die individuellen Anreize und gesellschaftlichen Auswirkungen verschiedener institutioneller ökonomischer Rahmenbedingungen.

Inhalt

Die Studierenden verstehen weiterführende Themen der Wirtschaftstheorie, Spieltheorie und Wohlfahrtsstheorie. Die thematischen Schwerpunkte sind unter anderem die strategische Interaktion in Märkten, kooperative und nichtkooperative Verhandlungen (Advanced Game Theory), Allokation unter asymmetrischer Information und allgemeine Gleichgewichte über einen längeren Zeitraum (Advanced Topics in Economic Theory), sowie Wahlen und die Aggregation von Präferenzen und Urteilen (Social Choice Theory).

Arbeitsaufwand

Gesamtaufwand bei 9 Leistungspunkten: ca. 270 Stunden

Die genaue Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.
Modul: Ökonometrie und Statistik I [M-WIWI-101638]

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
<th>Sprache</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

Verantwortung: Melanie Schienle

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Curriculare Verankerung: Finance - Risk Management - Managerial Economics

Bestandteil von: Wahlpflichtfach

Zusatzleistungen

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-103125</td>
<td>Angewandte Ökonometrie (S. 836)</td>
<td>4,5</td>
<td>Melanie Schienle</td>
</tr>
</tbody>
</table>

Ergänzungsangebot

Wahlpflichtblock; min. 4,5, max. 5 Leistungspunkte

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-103066</td>
<td>Data Mining and Applications (S. 853)</td>
<td>4,5</td>
<td>Rheza Nakhaeizadeh</td>
</tr>
<tr>
<td>T-WIWI-103064</td>
<td>Financial Econometrics (S. 885)</td>
<td>4,5</td>
<td>Melanie Schienle</td>
</tr>
<tr>
<td>T-WIWI-103126</td>
<td>Nicht- und Semiparametrik (S. 948)</td>
<td>4,5</td>
<td>Melanie Schienle</td>
</tr>
<tr>
<td>T-WIWI-103127</td>
<td>Paneldaten (S. 977)</td>
<td>4,5</td>
<td>Wolf-Dieter Heller</td>
</tr>
<tr>
<td>T-WIWI-103065</td>
<td>Statistische Modellierung von allgemeinen Regressionsmodellen (S. 1043)</td>
<td>4,5</td>
<td>Wolf-Dieter Heller</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen

Qualifikationsziele

Der/die Studierende besitzt umfassende Kenntnisse fortgeschrittener ökonometrischer Methoden für unterschiedliche Datentypen. Er/Sie ist in der Lage diese kenntnisreich anzuwenden, sie mit Hilfe von statistischer Software umzusetzen und kritisch zu evaluieren.

Inhalt

In den Modulveranstaltungen wird den Studierenden ein umfassendes Portfolio an weiterführenden ökonometrischen Methoden für unterschiedliche Datentypen vermittelt.

Anmerkung

Arbeitsaufwand
Modul: Ökonometrie und Statistik II [M-WIWI-101639]

Verantwortung: Melanie Schienle

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Finance - Risk Management - Managerial Economics

Wahlpflichtfach

Zusatzleistungen

Leistungspunkte 9

Modulturnus Jedes Semester Dauer 1 Semester Sprache Deutsch

Wahlpflichtangebot

Wahlpflichtblock; min. 9, max. 10 Leistungspunkte

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-103125</td>
<td>Angewandte Ökonometrie (S. 836)</td>
<td>4,5</td>
<td>Melanie Schienle</td>
</tr>
<tr>
<td>T-WIWI-103066</td>
<td>Data Mining and Applications (S. 853)</td>
<td>4,5</td>
<td>Rhea Nakhaeizadeh</td>
</tr>
<tr>
<td>T-WIWI-103064</td>
<td>Financial Econometrics (S. 885)</td>
<td>4,5</td>
<td>Melanie Schienle</td>
</tr>
<tr>
<td>T-WIWI-103124</td>
<td>Multivariate Verfahren (S. 946)</td>
<td>4,5</td>
<td>Oliver Grothe</td>
</tr>
<tr>
<td>T-WIWI-103126</td>
<td>Nicht- und Semiparametrik (S. 948)</td>
<td>4,5</td>
<td>Melanie Schienle</td>
</tr>
<tr>
<td>T-WIWI-103127</td>
<td>Paneldaten (S. 977)</td>
<td>4,5</td>
<td>Wolf-Dieter Heller</td>
</tr>
<tr>
<td>T-WIWI-103128</td>
<td>Portfolio and Asset Liability Management (S. 980)</td>
<td>4,5</td>
<td>Mher Safarian</td>
</tr>
<tr>
<td>T-WIWI-103065</td>
<td>Statistische Modellierung von allgemeinen Regressionenmodellen (S. 1043)</td>
<td>4,5</td>
<td>Wolf-Dieter Heller</td>
</tr>
<tr>
<td>T-WIWI-103129</td>
<td>Stochastic Calculus and Finance (S. 1047)</td>
<td>4,5</td>
<td>Mher Safarian</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Voraussetzungen

Das Modul ist erst dann bestanden, wenn zusätzlich das Modul “Ökonometrie und Statistik I” zuvor erfolgreich mit der letzten Teilprüfung abgeschlossen wurde.

Modellierte Voraussetzungen

Es müssen die folgenden Bestandteile erfüllt werden:

- Das Modul kann nur dann begonnen werden, wenn zugleich das Modul [M-WIWI-101638] Ökonometrie und Statistik I begonnen wurde.

Qualifikationsziele

Der/die Studierende besitzt umfassende Kenntnisse fortgeschrittener ökonometrischer Methoden für unterschiedliche Datentypen. Er/Sie ist in der Lage diese kenntnisreich anzuwenden, sie mit Hilfe von statistischer Software umzusetzen und kritisch zu evaluieren.

Inhalt

Dieses Modul baut inhaltlich auf dem Modul “Ökonometrie und Statistik I” auf. In den Modulveranstaltungen wird den
Studierenden ein umfassendes Portfolio an weiterführenden ökonometrischen Methoden für unterschiedliche Datentypen vermittelt.

Anmerkung

Arbeitsaufwand
Modul: Ökonomische Theorie und ihre Anwendung in Finance (WW4VWL14) [M-WIWI-101502]

Verantwortung: Kay Mitusch
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Curriculare Verankerung: Wahlpflicht
Bestandteil von: Finance - Risk Management - Managerial Economics

Leistungspunkte 9 Sprache Deutsch

Wahlpflichtangebot
Wahlpflichtblock; min. 9, max. 9 Leistungspunkte

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102609</td>
<td>Advanced Topics in Economic Theory (S. 826)</td>
<td>4,5</td>
<td>Kay Mitusch, Marten Hillebrand</td>
</tr>
<tr>
<td>T-WIWI-102622</td>
<td>Corporate Financial Policy (S. 851)</td>
<td>4,5</td>
<td>Martin Ruckes</td>
</tr>
<tr>
<td>T-WIWI-102623</td>
<td>Finanzintermediation (S. 886)</td>
<td>4,5</td>
<td>Martin Ruckes</td>
</tr>
<tr>
<td>T-WIWI-102647</td>
<td>Asset Pricing (S. 837)</td>
<td>4,5</td>
<td>Marliese Uhrig-Homburg, Martin Ruckes</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen
Keine

Qualifikationsziele
Die Studierenden
- beherrschen anhand der Allgemeinen Gleichgewichtstheorie und der Vertragstheorie die Methoden des formalen ökonomischen Modellierens
- können diese Methoden auf finanzwirtschaftliche Fragestellungen anwenden
- erhalten viele nützliche Einsichten in das Verhältnis von Unternehmen und Investoren und das Funktionieren von Finanzmärkten

Inhalt

Anmerkung
Das Modul wird für die Masterstudiengänge Wirtschaftsingenieurwesen und Technische Volkswirtschaftslehre nur im Wahlpflichtbereich angeboten.

Arbeitsaufwand
Gesamtaufwand bei 9 Leistungspunkten: ca. 270 Stunden
Die genaue Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.
Modul: Wachstum und Agglomeration (WW4VWL12) [M-WIWI-101496]

Verantwortung: Ingrid Ott

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Finance - Risk Management - Managerial Economics

Wahlpflichtfach

Zusatzleistungen

Leistungspunkte 9

Modulturnus Jedes Semester

Dauer 1 Semester

Wahlpflichtangebot

Wahlpflichtblock; min. 9, max. 9 Leistungspunkte

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102785</td>
<td>Endogene Wachstumstheorie (S. 872)</td>
<td>4,5</td>
<td>Ingrid Ott</td>
</tr>
<tr>
<td>T-WIWI-103107</td>
<td>Spatial Economics (S. 1030)</td>
<td>4,5</td>
<td>Ingrid Ott</td>
</tr>
<tr>
<td>T-WIWI-102897</td>
<td>Internationale Wirtschaftspolitik (S. 916)</td>
<td>4,5</td>
<td>Jan Kowalski</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form von schriftlichen Teilprüfungen (siehe Lehrveranstaltungsbeschreibungen).

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Note der Teilprüfungen gebildet.

Voraussetzungen

Keine

Qualifikationsziele

Der/die Studierende

- erzielt vertiefende Kenntnisse mikrobasierter allgemeiner Gleichgewichtsmodelle
- versteht, wie auf Grundlage individueller Optimierungsentscheidungen aggregierte Phänomene wie gesamtwirtschaftlichen Wachstum oder Agglomerationen (Städte/Metropolen) resultieren
- kann den Beitrag dieser Phänomene zur Entstehung ökonomischer Trends einordnen und bewerten
- kann theoriebasierte Politikempfehlungen ableiten

Inhalt

Die gemeinsame Klammer der Vorlesungen in diesem Modul ist, dass in allen Veranstaltungen, basierend auf verschiedenen theoretischen Modellen, wirtschaftspolitische Empfehlungen abgeleitet werden.

Empfehlungen

Der Besuch der Veranstaltung Einführung in die Wirtschaftspolitik [2560280] wird empfohlen.

Der Besuch der Veranstaltungen VWL1: Mikroökonomie und VWL2: Makroökonomie wird vorausgesetzt.

Arbeitsaufwand

Gesamtaufwand bei 9 Leistungspunkten: ca. 270 Stunden

Die genaue Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.
4 Operations Management - Datenanalyse - Informatik

Modul: Anwendungen des Operations Research (WW3OR5) [M-WIWI-101413]

Verantwortung: Stefan Nickel
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Curriculare Verankerung: Wahlpflicht
Bestandteil von: Operations Management - Datenanalyse - Informatik
Zusatzeleistungen

Leistungspunkte 9
Modulturnus Jedes Semester Dauer 1 Semester

Wahlpflichtangebot
Wahlpflichtblock; min. 1, max. 4 Teilleistungen

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-103061</td>
<td>Vorleistung zu Standortplanung und strategisches Supply Chain Management (S. 1079)</td>
<td>4,5</td>
<td>Stefan Nickel</td>
</tr>
<tr>
<td>T-WIWI-102704</td>
<td>Standortplanung und strategisches Supply Chain Management (S. 1040)</td>
<td>4,5</td>
<td>Stefan Nickel</td>
</tr>
<tr>
<td>T-WIWI-105940</td>
<td>Vorleistung zu Taktisches und operatives Supply Chain Management (S. 1080)</td>
<td>4,5</td>
<td>Stefan Nickel</td>
</tr>
<tr>
<td>T-WIWI-102714</td>
<td>Taktisches und operatives Supply Chain Management (S. 1064)</td>
<td>4,5</td>
<td>Stefan Nickel</td>
</tr>
</tbody>
</table>

Ergänzungsangebot
Wahlpflichtblock; max. 1 Teilleistungen

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102717</td>
<td>Software-Praktikum: OR-Modelle I (S. 1026)</td>
<td>4,5</td>
<td>Stefan Nickel</td>
</tr>
<tr>
<td>T-WIWI-102726</td>
<td>Globale Optimierung I (S. 901)</td>
<td>4,5</td>
<td>Oliver Stein</td>
</tr>
<tr>
<td>T-WIWI-102627</td>
<td>Simulation I (S. 1020)</td>
<td>4,5</td>
<td>Karl-Heinz Waldmann</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form von Teilprüfungen (nach § 4(2), 1 SPO) über die gewählten Lehrveranstaltungen des Moduls, mit denen in Summe die Mindestanforderungen an Leistungspunkten erfüllt ist.
Die Erfolgskontrolle wird bei jeder Lehrveranstaltung beschrieben.
Die Gesamtnote des Moduls wird aus den mit Leistungspunkten gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Voraussetzungen
Keine

Qualifikationsziele
Der/ die Studierende

- ist vertraut mit wesentlichen Konzepten und Begriffen des Supply Chain Managements,
- kennt die verschiedenen Teilgebiete des Supply Chain Managements und die zugrunde liegenden Optimierungsprobleme,
- ist mit den klassischen Standortmodellen (in der Ebene, auf Netzwerken und diskret), sowie mit den grundlegenden Methoden zur Ausliefer- und Transportplanung, Warenlagerplanung und Lagermanagement vertraut,
• ist in der Lage praktische Problemstellungen mathematisch zu modellieren und kann deren Komplexität abschätzen sowie geeignete Lösungsverfahren auswählen und anpassen.

Inhalt

Anmerkung
Das für drei Studienjahre im Voraus geplante Lehrangebot kann im Internet nachgelesen werden.
Modul: Energiewirtschaft und Technologie (WW4BWL1IP5) [M-WIWI-101452]

Verantwortung: Wolf Fichtner

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Curriculare Verankerung: Operations Management - Datenanalyse - Informatik

Leistungspunkte 9 Modulturnus Jedes Semester Dauer 1 Semester

Erfolgskontrolle(n)

Voraussetzungen

Qualifikationsziele
Der/die Studierende

- besitzt detaillierte Kenntnisse zu heutigen und zukünftigen Energieversorgungstechnologien (Fokus auf die Endenergieträger Elektrizität und Wärme),
- kennt die technoökonomischen Charakteristika von Anlagen zur Energiebereitstellung, zum Energietransport sowie der Energieverteilung und Energienachfrage,
- kann die wesentlichen Umweltauswirkungen dieser Technologien einordnen.

Inhalt

- Strategische Aspekte der Energiewirtschaft: Langfristige Planungsmethoden, Erzeugungstechnologien
- Technologischer Wandel in der Energiewirtschaft: Zukünftige Energietechnologien, Lernkurven, Energienachfrage
- Wärmewirtschaft: Fernwärme, Heizungsanlagen, Wärmebedarfsreduktion, gesetzliche Vorgaben
- Energiesystemanalyse: Interdependenzen in der Energiewirtschaft, Modelle der Energiewirtschaft
- Energie und Umwelt: Emissionsfaktoren, Emissionsminderungsmaßnahmen, Umweltauswirkungen
Arbeitsaufwand
Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 Credits). Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls. Dabei beträgt der Arbeitsaufwand für Lehrveranstaltungen mit 3 Credits ca. 90h, für Lehrveranstaltungen mit 3,5 Credits ca. 105h und für Lehrveranstaltungen mit 5 Credits ca. 150h. Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.
Modul: Informatik (WW4INFO1) [M-WIWI-101472]

Verantwortung: Rudi Studer, Hartmut Schmeck, Andreas Oberweis, York Sure-Vetter, Johann Marius Zöllner

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Operations Management - Datenanalyse - Informatik

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102658</td>
<td>Algorithms for Internet Applications (S. 832)</td>
<td>5</td>
<td>Hartmut Schmeck</td>
</tr>
<tr>
<td>T-WIWI-102759</td>
<td>Anforderungsanalyse und -management (S. 834)</td>
<td>4</td>
<td>Ralf Kneuper</td>
</tr>
<tr>
<td>T-WIWI-102651</td>
<td>Angewandte Informatik II - Informatiksysteme für eCommerce (S. 835)</td>
<td>5</td>
<td>Johann Marius Zöllner</td>
</tr>
<tr>
<td>T-WIWI-102680</td>
<td>Computational Economics (S. 848)</td>
<td>4,5</td>
<td>Simon Caton, Pradyumn Kumar Shukla</td>
</tr>
<tr>
<td>T-WIWI-102661</td>
<td>Datenbanksysteme und XML (S. 854)</td>
<td>5</td>
<td>Andreas Oberweis</td>
</tr>
<tr>
<td>T-WIWI-102663</td>
<td>Dokumentenmanagement und Groupwaresysteme (S. 860)</td>
<td>4</td>
<td>Stefan Klink</td>
</tr>
<tr>
<td>T-WIWI-102655</td>
<td>Effiziente Algorithmen (S. 864)</td>
<td>5</td>
<td>Hartmut Schmeck</td>
</tr>
<tr>
<td>T-WIWI-102668</td>
<td>Enterprise Architecture Management (S. 876)</td>
<td>5</td>
<td>Thomas Wolf</td>
</tr>
<tr>
<td>T-WIWI-102666</td>
<td>Knowledge Discovery (S. 919)</td>
<td>5</td>
<td>Rudi Studer</td>
</tr>
<tr>
<td>T-WIWI-102667</td>
<td>Management von Informatik-Projekten (S. 928)</td>
<td>5</td>
<td>Roland Schätzle</td>
</tr>
<tr>
<td>T-WIWI-102697</td>
<td>Modellierung von Geschäftsprozessen (S. 943)</td>
<td>5</td>
<td>Andreas Oberweis</td>
</tr>
<tr>
<td>T-WIWI-102679</td>
<td>Naturinspirierte Optimierungsverfahren (S. 947)</td>
<td>5</td>
<td>Pradyumn Kumar Shukla</td>
</tr>
<tr>
<td>T-WIWI-102659</td>
<td>Organic Computing (S. 973)</td>
<td>5</td>
<td>Hartmut Schmeck</td>
</tr>
<tr>
<td>T-WIWI-102874</td>
<td>Semantic Web Technologien (S. 998)</td>
<td>5</td>
<td>Rudi Studer, Andreas Harth</td>
</tr>
<tr>
<td>T-WIWI-105801</td>
<td>Service Oriented Computing (S. 1019)</td>
<td>5</td>
<td>Barry Norton, Sudhir Agarwal, Rudi Studer</td>
</tr>
<tr>
<td>T-WIWI-102845</td>
<td>Smart Energy Distribution (S. 1023)</td>
<td>4</td>
<td>Hartmut Schmeck</td>
</tr>
<tr>
<td>T-WIWI-102895</td>
<td>Software-Qualitätsmanagement (S. 1028)</td>
<td>5</td>
<td>Andreas Oberweis</td>
</tr>
<tr>
<td>T-WIWI-102676</td>
<td>Spezialvorlesung Betriebliche Informationssysteme (S. 1032)</td>
<td>5</td>
<td>Andreas Oberweis</td>
</tr>
<tr>
<td>T-WIWI-102657</td>
<td>Spezialvorlesung Effiziente Algorithmen (S. 1033)</td>
<td>5</td>
<td>Hartmut Schmeck</td>
</tr>
<tr>
<td>T-WIWI-102678</td>
<td>Spezialvorlesung Software- und Systemsengineering (S. 1034)</td>
<td>5</td>
<td>Andreas Oberweis</td>
</tr>
<tr>
<td>T-WIWI-102671</td>
<td>Spezialvorlesung Wissensmanagement (S. 1035)</td>
<td>5</td>
<td>Rudi Studer</td>
</tr>
<tr>
<td>T-WIWI-102669</td>
<td>Strategisches Management der betrieblichen Informationsverarbeitung (S. 1061)</td>
<td>5</td>
<td>Thomas Wolf</td>
</tr>
<tr>
<td>T-WIWI-103112</td>
<td>Web Science (S. 1085)</td>
<td>5</td>
<td>York Sure-Vetter</td>
</tr>
<tr>
<td>T-WIWI-102662</td>
<td>Workflow-Management (S. 1086)</td>
<td>5</td>
<td>Andreas Oberweis</td>
</tr>
<tr>
<td>T-WIWI-103523</td>
<td>Praktikum Informatik (S. 982)</td>
<td>4</td>
<td>Rudi Studer, Hartmut Schmeck, Andreas Oberweis, York Sure-Vetter, Johann Marius Zöllner</td>
</tr>
</tbody>
</table>

Modulhandbuch mit Stand 04.08.2016 für Wintersemester 16/17
Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form von Teilprüfungen (nach §4(2), 1-3 SPO) über die gewählten Lehrveranstaltungen des Moduls, mit denen in Summe die Mindestanforderung an Leistungspunkten erfüllt ist.

In jeder der ausgewählten Teilprüfungen müssen zum Bestehen die Mindestanforderungen erreicht werden. Wenn jede der Teilprüfungen bestanden ist, wird die Gesamtnote des Moduls aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Die Prüfungen werden in jedem Semester angeboten und können zu jedem ordentlichen Prüfungstermin wiederholt werden. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Bitte beachten Sie folgende Informationen zu den Teilleistungen von Prof. Dr. H. Schmeck:

Voraussetzungen

Es darf nur eine der belegten Lehrveranstaltungen ein Praktikum sein.

Qualifikationsziele

Der/die Studierende

- hat die Fähigkeit, Methoden und Instrumente in einem komplexen Fachgebiet zu beherrschen und Innovationsfähig-
 keit bezüglich der eingesetzten Methoden zu demonstrieren,
- kennt die Grundlagen und Methoden im Kontext ihrer Anwendungsmöglichkeiten in der Praxis,
- ist in der Lage, auf der Basis eines grundlegenden Verständnisses der Konzepte und Methoden der Informatik,
 die heute im Berufsleben auf ihn/sie zukommenden, rasanten Entwicklungen im Bereich der Informatik schnell zu
 erfassen und richtig einzusetzen,
- ist in der Lage, Argumente für die Problemlösung zu finden und zu vertreten.

Inhalt

Die thematische Schwerpunktsetzung erfolgt je nach Auswahl der Lehrveranstaltungen in den Bereichen Effiziente Al-

Arbeitsaufwand

Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 Credits). Die Aufteilung erfolgt nach den

Leistungspunkten der Lehrveranstaltungen des Moduls. Dabei beträgt der Arbeitsaufwand für Lehrveranstaltungen mit 5
Credits ca. 150h, für Lehrveranstaltungen mit 4.5 Credits ca. 135h, für Lehrveranstaltungen mit 4 Credits ca. 120h und
für Lehrveranstaltungen mit 3 Credits ca. 90h.

Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und
Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen
durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.
Modul: Marketing Management (WW4BWLMAR5) [M-WIWI-101490]

Verantwortung: Martin Klarmann

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Curriculare Verankerung: Operations Management - Datenanalyse - Informatik

Leistungspunkte 9

Modulturnus Jedes Sommersemester

Dauer 1 Semester

Wahlpflichtangebot

Wahlpflichtblock; min. 1 Teilleistungen, min. 9, max. 9 Leistungspunkte

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102812</td>
<td>Produkt- und Innovationsmanagement (S. 988)</td>
<td>3</td>
<td>Martin Klarmann</td>
</tr>
<tr>
<td>T-WIWI-102811</td>
<td>Marktforschung (S. 934)</td>
<td>4,5</td>
<td>Martin Klarmann</td>
</tr>
<tr>
<td>T-WIWI-102619</td>
<td>Verhaltenswissenschaftliches Marketing (S. 1071)</td>
<td>4,5</td>
<td>Bruno Neibecker</td>
</tr>
<tr>
<td>T-WIWI-102618</td>
<td>Strategische und innovative Marketingentscheidungen (S. 1059)</td>
<td>4,5</td>
<td>Bruno Neibecker</td>
</tr>
<tr>
<td>T-WIWI-102832</td>
<td>Business Plan Workshop (S. 844)</td>
<td>3</td>
<td>Martin Klarmann, Orestis Terzidis</td>
</tr>
<tr>
<td>T-WIWI-102835</td>
<td>Marketing Strategy Planspiel (S. 930)</td>
<td>1,5</td>
<td>Martin Klarmann</td>
</tr>
<tr>
<td>T-WIWI-102842</td>
<td>Strategic Brand Management (S. 1055)</td>
<td>1,5</td>
<td>Joachim Blickhäuser, Martin Klarmann</td>
</tr>
<tr>
<td>T-WIWI-102901</td>
<td>Open Innovation - Konzepte, Methoden und Best Practices (S. 964)</td>
<td>1,5</td>
<td>Alexander Hahn</td>
</tr>
<tr>
<td>T-WIWI-102902</td>
<td>Marketingkommunikation (S. 932)</td>
<td>4,5</td>
<td>Ju-Young Kim</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen

Qualifikationsziele

Studierende

- verfügen über fortgeschrittene Kenntnisse zentraler Marketinginhalte
- verfügen über einen vertieften Einblick in wichtige Instrumente des Marketing
- kennen und verstehen eine große Zahl an strategischen Konzepten und können diese einsetzen
- sind fähig, ihr vertieftes Marketingwissen sinnvoll in einem praktischen Kontext anzuwenden
- kennen eine Vielzahl von qualitativen und quantitativen Verfahren zur Vorbereitung von strategischen Entscheidungen im Marketing
- haben die nötigen theoretischen Kenntnisse, die für das Verfassen einer Masterarbeit im Bereich Marketing grundlegend sind
- haben die theoretischen Kenntnisse und Fertigkeiten, die vonnöten sind, um in der Marketingabteilung eines Unternehmens zu arbeiten oder mit dieser zusammenzuarbeiten
Inhalt
Ziel dieses Moduls ist es, zentrale Marketinginhalte im Rahmen des Masterstudiums zu vertiefen. Während im Bachelorstudium der Fokus auf Grundlagen liegt, gibt das Masterprogramm einen tieferen Einblick in wichtige Instrumente des Marketing. Studierende können im Rahmen dieses Moduls zwischen folgenden Kursen wählen:

Im Rahmen der Veranstaltung “Produkt- und Innovationsmanagement” erfahren Studenten Inhalte des Bereiches Produktpolitik. Der Kurs geht dabei auf strategische Konzepte des Innovationsmanagements ein, auf einzelne Stufen des Innovationsprozesses, sowie auf das Management bestehender Produkte.

Die Veranstaltung “Verhaltenswissenschaftliches Marketing” vermittelt Paradigmen der verhaltenswissenschaftlichen, empirischen Marketingforschung sowie sozialpsychologische und marketingtheoretische Lösungsansätze zur Gestaltung der Unternehmenskommunikation.

Der Kurs “Strategische und Innovative Marketingentscheidungen” konzentriert sich unter anderem auf die strategische Ableitung richtiger Entscheidungen sowohl bei Planungskonzepten im Marketingmanagement, als auch bei der Wahl der Unternehmensstrategie im globalen Wettbewerb sowie bei Entscheidungen in Innovationsprozessen.

Im “Business Plan Workshop” entwickeln die Studenten in Arbeitsgruppen Businesspläne und lernen bereits erlerntes Wissen sinnvoll einzusetzen, um strategische Entscheidungen treffen zu können.

Das “Marketing and Strategy Planspiel” ist sehr praxisorientiert ausgestaltet und stellt die Gruppen vor reale Entscheidungssituationen, in denen die Studenten ihr analytisches Entscheidungsvermögen einsetzen müssen, um strategische Entscheidungen in Marketingkontexten treffen zu können.

Empfehlungen
Keine

Anmerkung

Nähere Informationen erhalten Sie direkt bei der Forschergruppe Marketing & Vertrieb (marketing.ism.kit.edu).

Arbeitsaufwand
Gesamtaufwand bei 9 Leistungspunkten: ca. 270 Stunden
Die genaue Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.
Modul: Mathematische Optimierung (WW4OR9) [M-WIWI-101473]

Verantwortung: Oliver Stein

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Operations Management - Datenanalyse - Informatik

Wahlpflichtfach

Zusatzleistungen

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102719</td>
<td>Gemischt-ganzzahlige Optimierung I (S. 892)</td>
<td>4,5</td>
<td>Oliver Stein</td>
</tr>
<tr>
<td>T-WIWI-102720</td>
<td>Gemischt-ganzzahlige Optimierung II (S. 894)</td>
<td>4,5</td>
<td>Oliver Stein</td>
</tr>
<tr>
<td>T-WIWI-102733</td>
<td>Gemischt-ganzzahlige Optimierung I und II (S. 893)</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102726</td>
<td>Globale Optimierung I (S. 901)</td>
<td>4,5</td>
<td>Oliver Stein</td>
</tr>
<tr>
<td>T-WIWI-102727</td>
<td>Globale Optimierung II (S. 903)</td>
<td>4,5</td>
<td>Oliver Stein</td>
</tr>
<tr>
<td>T-WIWI-103638</td>
<td>Globale Optimierung I und II (S. 902)</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102723</td>
<td>Graph Theory and Advanced Location Models (S. 904)</td>
<td>4,5</td>
<td>Stefan Nickel</td>
</tr>
<tr>
<td>T-WIWI-102856</td>
<td>Konvexe Analysis (S. 923)</td>
<td>4,5</td>
<td>Oliver Stein</td>
</tr>
<tr>
<td>T-WIWI-103635</td>
<td>Vorleistung zu Nichtlineare Optimierung I (Master) (S. 1076)</td>
<td>4,5</td>
<td>Oliver Stein</td>
</tr>
<tr>
<td>T-WIWI-102724</td>
<td>Nichtlineare Optimierung I (S. 949)</td>
<td>4,5</td>
<td>Oliver Stein</td>
</tr>
<tr>
<td>T-WIWI-103636</td>
<td>Vorleistung zu Nichtlineare Optimierung II (Master) (S. 1078)</td>
<td>4,5</td>
<td>Oliver Stein</td>
</tr>
<tr>
<td>T-WIWI-102725</td>
<td>Nichtlineare Optimierung II (S. 951)</td>
<td>4,5</td>
<td>Oliver Stein</td>
</tr>
<tr>
<td>T-WIWI-103637</td>
<td>Nichtlineare Optimierung I und II (S. 950)</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102855</td>
<td>Parametrische Optimierung (S. 978)</td>
<td>4,5</td>
<td>Oliver Stein</td>
</tr>
<tr>
<td>T-WIWI-102721</td>
<td>Spezialvorlesung zur Optimierung I (S. 1036)</td>
<td>4,5</td>
<td>Oliver Stein</td>
</tr>
<tr>
<td>T-WIWI-102722</td>
<td>Spezialvorlesung zur Optimierung II (S. 1037)</td>
<td>4,5</td>
<td>Oliver Stein</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form von Teilprüfungen über die gewählten Lehrveranstaltungen des Moduls, mit denen in Summe die Mindestanforderung an Leistungspunkten erfüllt ist. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Voraussetzungen
Keine

Qualifikationsziele
Der/die Studierende
• benennt und beschreibt die Grundbegriffe von fortgeschrittenen Optimierungsverfahren, insbesondere aus der kontinuierlichen und gemischt-ganzzahligen Optimierung, der Standorttheorie und der Graphentheorie,
• kennt die für eine quantitative Analyse unverzichtbaren Methoden und Modelle,
• modellierte und klassifiziert Optimierungsprobleme und wählt geeignete Lösungsverfahren aus, um auch anspruchsvolle Optimierungsprobleme selbständig und gegebenenfalls mit Computerhilfe zu lösen,
• validiert, illustriert und interpretiert erhaltene Lösungen,
• erkennt Nachteile der Lösungsmethoden und ist gegebenenfalls in der Lage, Vorschläge für Ihre Anpassung an Praxisprobleme zu machen.

Inhalt
Der Schwerpunkt des Moduls liegt auf der Vermittlung sowohl theoretischer Grundlagen als auch von Lösungsverfahren für Optimierungsprobleme mit kontinuierlichen und gemischt-ganzzahligen Entscheidungsvariablen, für Standortprobleme und für Probleme auf Graphen.

Anmerkung

Arbeitsaufwand
Verantwortung: Oliver Stein
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Curriculare Verankerung: Operations Management - Datenanalyse - Informatik
Bestandteil von: Wahlpflichtfach Zusatzleistungen

Leistungspunkte: 9
Modulturnus: Jedes Semester
Dauer: 1 Semester

Wahlpflichtangebot
Wahlpflichtblock; min. 1, max. 3 Teilleistungen

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102726</td>
<td>Globale Optimierung I (S. 901)</td>
<td>4,5</td>
<td>Oliver Stein</td>
</tr>
<tr>
<td>T-WIWI-103062</td>
<td>Vorleistung zu Nichtlineare Optimierung I (Bachelor) (S. 1075)</td>
<td>4,5</td>
<td>Oliver Stein</td>
</tr>
<tr>
<td>T-WIWI-102724</td>
<td>Nichtlineare Optimierung I (S. 949)</td>
<td>4,5</td>
<td>Oliver Stein</td>
</tr>
</tbody>
</table>

Ergänzungsangebot
Wahlpflichtblock; max. 1 Teilleistungen

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102727</td>
<td>Globale Optimierung II (S. 903)</td>
<td>4,5</td>
<td>Oliver Stein</td>
</tr>
<tr>
<td>T-WIWI-103638</td>
<td>Globale Optimierung I und II (S. 902)</td>
<td>4,5</td>
<td>Oliver Stein</td>
</tr>
<tr>
<td>T-WIWI-103060</td>
<td>Vorleistung zu Nichtlineare Optimierung II (Bachelor) (S. 1077)</td>
<td>4,5</td>
<td>Oliver Stein</td>
</tr>
<tr>
<td>T-WIWI-102725</td>
<td>Nichtlineare Optimierung II (S. 951)</td>
<td>4,5</td>
<td>Oliver Stein</td>
</tr>
<tr>
<td>T-WIWI-103637</td>
<td>Nichtlineare Optimierung I und II (S. 950)</td>
<td>4,5</td>
<td>Oliver Stein</td>
</tr>
<tr>
<td>T-WIWI-103061</td>
<td>Vorleistung zu Standortplanung und strategisches Supply Chain Management (S. 1079)</td>
<td>4,5</td>
<td>Stefan Nickel</td>
</tr>
<tr>
<td>T-WIWI-102704</td>
<td>Standortplanung und strategisches Supply Chain Management (S. 1040)</td>
<td>4,5</td>
<td>Stefan Nickel</td>
</tr>
<tr>
<td>T-WIWI-102710</td>
<td>Stochastische Entscheidungsmodelle I (S. 1050)</td>
<td>5</td>
<td>Karl-Heinz Waldmann</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen

Qualifikationsziele
Der/die Studierende

- benennt und beschreibt die Grundbegriffe von Optimierungsverfahren, insbesondere aus der nichtlinearen und aus der globalen Optimierung,
- kennt die für eine quantitative Analyse unverzichtbaren Methoden und Modelle,
modelliert und klassifiziert Optimierungsprobleme und wählt geeignete Lösungsverfahren aus, um auch anspruchsvolle Optimierungsprobleme selbständig und gegebenenfalls mit Computerhilfe zu lösen,
validiert, illustriert und interpretiert erhaltene Lösungen.

Inhalt
Der Schwerpunkt des Moduls liegt auf der Vermittlung sowohl theoretischer Grundlagen als auch von Lösungsverfahren für Optimierungsprobleme mit kontinuierlichen Entscheidungsvariablen. Die Vorlesungen zur nichtlinearen Optimierung behandeln lokale Lösungskonzepte, die Vorlesungen zur globalen Optimierung die Möglichkeiten zur globalen Lösung.

Anmerkung

Arbeitsaufwand
Modul: Operations Research im Supply Chain Management (WW4OR11) [M-WIWI-102832]

Verantwortung: Stefan Nickel
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Curriculare Verankerung: Wahlpflicht
Bestandteil von: Operations Management - Datenanalyse - Informatik
Wahlpflichtfach
Zusatzleistungen

Leistungspunkte 9 Sprache Deutsch

Wahlpflichtangebot
Wahlpflichtblock; min. 9, max. 9 Leistungspunkte

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102704</td>
<td>Standortplanung und strategisches Supply Chain Management (S. 1040)</td>
<td>4,5</td>
<td>Stefan Nickel</td>
</tr>
<tr>
<td>T-WIWI-103061</td>
<td>Vorleistung zu Standortplanung und strategisches Supply Chain Management (S. 1079)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102714</td>
<td>Taktisches und operatives Supply Chain Management (S. 1064)</td>
<td>4,5</td>
<td>Stefan Nickel</td>
</tr>
<tr>
<td>T-WIWI-105940</td>
<td>Vorleistung zu Taktisches und operatives Supply Chain Management (S. 1080)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102715</td>
<td>Operations Research in Supply Chain Management (S. 968)</td>
<td>4,5</td>
<td>Stefan Nickel</td>
</tr>
<tr>
<td>T-WIWI-102784</td>
<td>Software-Praktikum: OR-Modelle II (S. 1027)</td>
<td>4,5</td>
<td>Stefan Nickel</td>
</tr>
<tr>
<td>T-WIWI-102718</td>
<td>Ereignisdiskrete Simulation in Produktion und Logistik (S. 877)</td>
<td>4,5</td>
<td>Stefan Nickel</td>
</tr>
<tr>
<td>T-WIWI-102723</td>
<td>Graph Theory and Advanced Location Models (S. 904)</td>
<td>4,5</td>
<td>Stefan Nickel</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form von Teilprüfungen(nach § 4(2), 1 SPO) über die gewählten Lehrveranstaltungen des Moduls, mit denen in Summe die Mindestanforderungen an Leistungspunkten erfüllt ist.

Voraussetzungen
Keine

Qualifikationsziele
Der/die Studierende

- ist vertraut mit wesentlichen Konzepten und Begriffen des Supply Chain Managements,
- kennt die verschiedenen Teilgebiete des Supply Chain Managements und die zugrunde liegenden Optimierungsprobleme,
- ist mit den klassischen Standortmodellen (in der Ebene, auf Netzwerken und diskret), sowie mit den grundlegenden Methoden zur Ausliefer- und Transportplanung, Warenlagerplanung und Lagermanagements vertraut
- ist in der Lage praktische Problemstellungen mathematisch zu modellieren und kann deren Komplexität abschätzen sowie geeignete Lösungsverfahren auswählen und anpassen.
Inhalt
Supply Chain Management befasst sich mit der Planung und Optimierung des gesamten, unternehmensübergreifenden Beschaffungs-, Herstellungs- und Distributionsprozesses mehrerer Produkte zwischen allen beteiligten Geschäftspartnern (Lieferanten, Logistikdienstleistern, Händlern). Ziel ist, unter Berücksichtigung verschiedener Rahmenbedingungen die Befriedigung der (Kunden-) Bedarfe, so dass die Gesamtkosten minimiert werden.

Empfehlungen

Anmerkung
Einige Veranstaltungen werden unregelmäßig angeboten.
Das für drei Studienjahre im Voraus geplante Lehrangebot kann im Internet nachgelesen werden.

Arbeitsaufwand
Gesamtaufwand bei 9 Leistungspunkten: ca. 270 Stunden
- Präsenzzeit: 84 Stunden
- Vor-/Nachbereitung: 112 Stunden
- Prüfung und Prüfungsvorbereitung: 74 Stunden
Modul: Service Operations (WW4BWLKSR4) [M-WIWI-102805]

Verantwortung: Stefan Nickel

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Operations Management - Datenanalyse - Informatik

Zusatzleistungen

Leistungspunkte 9

Sprache Deutsch

Wahlpflichtangebot
Wahlpflichtblock; min. 1, max. 2 Teilleistungen

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102715</td>
<td>Operations Research in Supply Chain Management (S. 968)</td>
<td>4,5</td>
<td>Stefan Nickel</td>
</tr>
<tr>
<td>T-WIWI-102884</td>
<td>Operations Research in Health Care Management (S. 966)</td>
<td>4,5</td>
<td>Stefan Nickel</td>
</tr>
<tr>
<td>T-WIWI-102716</td>
<td>Praxis-Seminar: Health Care Management (mit Fallstudien) (S. 984)</td>
<td>7</td>
<td>Stefan Nickel</td>
</tr>
</tbody>
</table>

Ergänzungsangebot
Wahlpflichtblock; max. 1 Teilleistungen

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102718</td>
<td>Ereignisdiskrete Simulation in Produktion und Logistik (S. 877)</td>
<td>4,5</td>
<td>Stefan Nickel</td>
</tr>
<tr>
<td>T-WIWI-102860</td>
<td>Supply Chain Management in der Prozessindustrie (S. 1062)</td>
<td>4,5</td>
<td>Stefan Nickel</td>
</tr>
<tr>
<td>T-WIWI-102787</td>
<td>Krankenhausmanagement (S. 925)</td>
<td>4,5</td>
<td>Stefan Nickel</td>
</tr>
<tr>
<td>T-WIWI-102872</td>
<td>Challenges in Supply Chain Management (S. 845)</td>
<td>4,5</td>
<td>Robert Blackburn</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form von Teilprüfungen (nach §4(2), 1-3 SPO) im Umfang von insgesamt mindestens 9 LP. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Voraussetzungen

Qualifikationsziele
Der/die Studierende
- ist in der Lage service-spezifische Problemstellungen zu analysieren, mathematisch zu modellieren und zu erläutern,
- benennt und beschreibt die Grundbegriffe von fortgeschrittenen Optimierungsverfahren, insbesondere aus der diskreten Optimierung,
- modelliert und klassifiziert Optimierungsprobleme und wählt geeignete Lösungsverfahren aus, um auch anspruchsvolle Optimierungsprobleme aus den Bereichen Supply Chain Management und Health Care selbständig und gegebenenfalls mit Wirtschaftsmathematik (M.Sc.)

Modulhandbuch mit Stand 04.08.2016 für Wintersemester 16/17
Computerhilfe zu lösen,
- validiert, illustriert und interpretiert erhaltene Lösungen.

Inhalt

Empfehlungen
Die Veranstaltung Practical Seminar Health Care sollte mit der Veranstaltung OR in Health Care Management kombiniert werden.

Anmerkung

Arbeitsaufwand
Modul: Stochastische Methoden und Simulation (WW3OR7) [M-WIWI-101400]

Verantwortung: Karl-Heinz Waldmann

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Operations Management - Datenanalyse - Informatik

Wahlpflichtfach

Zusatzleistungen

Leistungspunkte 9 Modulturnus Jedes Semester Dauer 1 Semester

Wahlpflichtangebot
Wahlpflichtblock; min. 1, max. 2 Teilleistungen

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102710</td>
<td>Stochastische Entscheidungsmodelle I (S. 1050)</td>
<td>5</td>
<td>Karl-Heinz Waldmann</td>
</tr>
<tr>
<td>T-WIWI-102627</td>
<td>Simulation I (S. 1020)</td>
<td>4,5</td>
<td>Karl-Heinz Waldmann</td>
</tr>
</tbody>
</table>

Ergänzungsangebot
Wahlpflichtblock; max. 2 Teilleistungen

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102711</td>
<td>Stochastische Entscheidungsmodelle II (S. 1051)</td>
<td>4,5</td>
<td>Karl-Heinz Waldmann</td>
</tr>
<tr>
<td>T-WIWI-102703</td>
<td>Simulation II (S. 1022)</td>
<td>4,5</td>
<td>Karl-Heinz Waldmann</td>
</tr>
<tr>
<td>T-WIWI-103062</td>
<td>Vorlesung zu Nichtlineare Optimierung I (Bachelor) (S. 1075)</td>
<td>4,5</td>
<td>Karl-Heinz Waldmann</td>
</tr>
<tr>
<td>T-WIWI-102724</td>
<td>Nichtlineare Optimierung I (S. 949)</td>
<td>4,5</td>
<td>Oliver Stein</td>
</tr>
<tr>
<td>T-WIWI-105940</td>
<td>Vorlesung zu Taktisches und operatives Supply Chain Management (S. 1080)</td>
<td>4,5</td>
<td>Stefan Nickel</td>
</tr>
<tr>
<td>T-WIWI-102714</td>
<td>Taktisches und operatives Supply Chain Management (S. 1064)</td>
<td>4,5</td>
<td>Stefan Nickel</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen

Qualifikationsziele

Der/die Studierende

- besitzt fundierte Kenntnisse der Modellierung, Analyse und Optimierung stochastischer Systeme in Ökonomie und Technik.

Inhalt

Stochastische Entscheidungsmodelle I: Markov Ketten, Poisson Prozesse.
Stochastische Entscheidungsmodelle II: Warteschlangen, Stochastische Entscheidungsprozesse
Simulation I: Erzeugung von Zufallszahlen, Monte Carlo Integration, Diskrete Simulation, Zufallszahlen diskreter und stetiger Zufallsvariablen, statistische Analyse simulierter Daten.
Simulation II: Varianzreduzierende Verfahren, Simulation stochastischer Prozesse, Fallstudien.

Anmerkung
Das für zwei Studienjahre im Voraus geplante Lehrangebot kann im Internet unter http://www.ior.kit.edu/ nachgelesen werden.
Modul: Stochastische Modellierung und Optimierung (WW4OR10) [M-WIWI-101454]

Verantwortung: Karl-Heinz Waldmann
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Curriculare Verankerung: Operations Management - Datenanalyse - Informatik
Bestandteil von: Wahlpflichtfach

Leistungspunkte: 9
Modulturnus: Jedes Semester
Dauer: 1 Semester

Wahlpflichtangebot
Wahlpflichtblock; min. 9, max. 10 Leistungspunkte

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102628</td>
<td>Optimierung in einer zufälligen Umwelt (S. 971)</td>
<td>4,5</td>
<td>Karl-Heinz Waldmann</td>
</tr>
<tr>
<td>T-WIWI-102730</td>
<td>OR-nahe Modellierung und Analyse realer Probleme (Projekt) (S. 975)</td>
<td>4,5</td>
<td>Karl-Heinz Waldmann</td>
</tr>
<tr>
<td>T-WIWI-102728</td>
<td>Qualitätssicherung I (S. 993)</td>
<td>4,5</td>
<td>Karl-Heinz Waldmann</td>
</tr>
<tr>
<td>T-WIWI-102729</td>
<td>Qualitätssicherung II (S. 994)</td>
<td>4,5</td>
<td>Karl-Heinz Waldmann</td>
</tr>
<tr>
<td>T-WIWI-102627</td>
<td>Simulation I (S. 1020)</td>
<td>4,5</td>
<td>Karl-Heinz Waldmann</td>
</tr>
<tr>
<td>T-WIWI-102703</td>
<td>Simulation II (S. 1022)</td>
<td>4,5</td>
<td>Karl-Heinz Waldmann</td>
</tr>
<tr>
<td>T-WIWI-102710</td>
<td>Stochastische Entscheidungsmodelle I (S. 1050)</td>
<td>5</td>
<td>Karl-Heinz Waldmann</td>
</tr>
<tr>
<td>T-WIWI-102711</td>
<td>Stochastische Entscheidungsmodelle II (S. 1051)</td>
<td>4,5</td>
<td>Karl-Heinz Waldmann</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen
Keine

Qualifikationsziele
Der/die Studierende
- besitzt vertiefte Kenntnisse der Modellierung, Analyse und Optimierung stochastischer Systeme in Ökonomie und Technik.

Inhalt
Stochastische Entscheidungsmodelle I: Markov Ketten, Poisson Prozesse.
Stochastische Entscheidungsmodelle II: Warteschlangen, Stochastische Entscheidungsprozesse
Simulation I: Erzeugung von Zufallszahlen, Monte Carlo Integration, Diskrete Simulation, Zufallszahlen diskreter und stetiger Zufallsvariablen, statistische Analyse simulierter Daten.
Simulation II: Varianzreduzierende Verfahren, Simulation stochastischer Prozesse, Fallstudien.
Anmerkung
Das für zwei Studienjahre im Voraus geplante Lehrangebot kann im Internet unter http://www.ior.kit.edu/ nachgelesen werden.

Arbeitsaufwand
Gesamtaufwand bei 9 Leistungspunkten: ca. 270 Stunden
Die genaue Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.
5 Wirtschaftswissenschaftliches Seminar

Modul: Seminar (MATHMWSEM02) [M-WIWI-102971]

Verantwortung: Oliver Stein, Hagen Lindstädt

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Wirtschaftswissenschaftliches Seminar

Wahlpflichtfach

Leistungspunkte: 3

Sprache: Deutsch

Wahlpflichtangebot

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-103474</td>
<td>Seminar Betriebswirtschaftslehre A (Master) (S. 1000)</td>
<td>3</td>
<td>Martin Klarmann, Marliese Uhrig-Homburg, Christof Weinhardt, Andreas Geyer-Schulz, Ju-Young Kim, Hagen Lindstädt, Thomas Lützkendorf, Stefan Nickel, Marcus Wouters, Petra Nieken, Wolf Fichtner, Hansjörg Fromm, Ute Werner, David Lorenz, Gerhard Satzger, Frank Schultmann, Bruno Neibecker, Orestis Terzidis, Marion Weissenberger-Eibl, Martin Ruckes</td>
</tr>
<tr>
<td>T-WIWI-103478</td>
<td>Seminar Volkswirtschaftslehre A (Master) (S. 1017)</td>
<td>3</td>
<td>Kay Mitsu, Ingrid Ott, Jan Kowalski, Marten Hillebrand, Clemens Puppe, Johannes Philipp Reiß, Berthold Wigger Wolf-Dieter Heller, Melanie Schienle, Oliver Grothe</td>
</tr>
<tr>
<td>T-WIWI-103483</td>
<td>Seminar Statistik A (Master) (S. 1015)</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen

Keine.

Qualifikationsziele

Die Studierenden

- können sich selbständig mit einer aktuellen, forschungsorientierten Fragestellung nach wissenschaftlichen Kriterien auseinandersetzen.
- Sie sind in der Lage zu recherchieren, die Informationen zu analysieren, zu abstrahieren und kritisch zu betrachten.
- Aus den wenig strukturierten Informationen können sie eigene Schlüsse unter Einbeziehung ihres interdisziplinären Wissens ziehen und die aktuellen Forschungsergebnisse punktuell weiter entwickeln.
- Die gewonnenen Ergebnisse wissen sie zu validieren und unter Berücksichtigung der wissenschaftlichen Arbeitsweise (Strukturierung, Fachterminologie, Quellenangabe) logisch und systematisch in schriftlicher und mündlicher Form präsen-
tieren. Dabei können sie fachlich argumentieren und die Ergebnisse in der Diskussion mit Fachvertretern verteidigen.

Inhalt

Die im Rahmen des Seminarmoduls erworbenen Kompetenzen dienen im Besonderen der Vorbereitung auf die Thesis. Begleitet durch die entsprechenden Prüfer übt sich der Studierende beim Verfassen der abschließenden Seminararbeiten und bei der Präsentation derselben im selbstständigen wissenschaftlichen Arbeiten.

Darüber hinaus werden im Modul auch additiven Schlüsselqualifikationen in den SQ-Veranstaltungen vermittelt.

Empfehlungen

Keine.

Anmerkung

Arbeitsaufwand

Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 90 Stunden (3 Credits).
Modul: Seminar (MATHMWSEM03) [M-WIWI-102973]

Verantwortung: Oliver Stein, Hagen Lindstädt

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Wirtschaftswissenschaftliches Seminar Wahlpflichtfach

Leistungspunkte: 3, Sprache: Deutsch

Wahlpflichtangebot
Wahlpflichtblock; min. 3, max. 3 Leistungspunkte

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-103479</td>
<td>Seminar Informatik A (Master) (S. 1004)</td>
<td>3</td>
<td>Rudi Studer, Hartmut Schmeck, Andreas Oberweis, York Sure-Vetter, Johann Marius Zöllner</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen
Keine.

Qualifikationsziele
Die Studierenden
- können sich selbständig mit einer aktuellen, forschungsorientierten Fragestellung nach wissenschaftlichen Kriterien auseinandersetzen.
- Sie sind in der Lage zu recherchieren, die Informationen zu analysieren, zu abstrahieren und kritisch zu betrachten.
- Aus den wenig strukturierten Informationen können sie eigene Schlüsse unter Einbeziehung ihres interdisziplinären Wissens ziehen und die aktuellen Forschungsergebnisse punktuell weiter entwickeln.
- Die gewonnenen Ergebnisse wissen sie zu validieren und unter Berücksichtigung der wissenschaftlichen Arbeitsweise (Strukturierung, Fachterminologie, Quellenangabe) logisch und systematisch in schriftlicher und mündlicher Form präsentieren. Dabei können sie fachlich argumentieren und die Ergebnisse in der Diskussion mit Fachvertretern verteidigen.

Inhalt

Empfehlungen
Keine.

Anmerkung
Die im Modulhandbuch aufgeführten Seminartitel sind als Platzhalter zu verstehen. Die für jedes Semester aktuell angebotenen Seminare werden jeweils im Vorlesungsverzeichnis und auf den Internetseiten der Institute bekanntgegeben.

Wirtschaftsmathematik (M.Sc.)
Modulhandbuch mit Stand 04.08.2016 für Wintersemester 16/17
In der Regel werden die aktuellen Seminarthemen eines jeden Semesters bereits zum Ende des vorangehenden Semesters bekanntgegeben. Bei der Planung des Seminarmoduls sollte darauf geachtet werden, dass für manche Seminare eine Anmeldung bereits zum Ende des vorangehenden Semesters erforderlich ist.

Arbeitsaufwand

Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 90 Stunden (3 Credits).
6 Mathematisches Seminar

Modul: Seminar [M-MATH-102730]

Verantwortung: Stefan Kühnlein

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Pflicht

Bestandteil von: Mathematisches Seminar

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
<th>Sprache</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form eines Vortrags von mindestens 45 Minuten Dauer.

Modulnote
Entfällt, da unbenotet.

Voraussetzungen
Keine

Qualifikationsziele
Die Studierenden sollen am Ende des Moduls

- ein abgegrenztes Problem in einem speziellen Gebiet analysiert haben,
- fachspezifische Probleme innerhalb der vorgegebenen Aufgabenstellung erörtern, mit geeigneten Medien präsentieren und verteidigen können,
- Zusammenfassungen der wichtigsten Ergebnisse des Themas selbständig erstellt haben,
- über kommunikative, organisatorische und didaktische Kompetenzen bei komplexen Problemanalysen verfügen. Sie können Techniken des wissenschaftlichen Arbeitens anwenden.

Inhalt
Der konkrete Inhalt richtet sich nach den angebotenen Seminarthemen.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 90 Stunden
Präsenzzzeit: 30 Stunden
Selbststudium: 60 Stunden

- Erarbeitung der fachlichen Inhalte des Vortrags
- Didaktische Aufbereitung der Vortragsinhalte
- Konzeption des Tafelbildes bzw. der Beamerpräsentation
- Übungsvortrag, eventuell Erstellung eines Handouts
7 Wahlpflichtfach

Modul: Adaptive Finite Elemente Methoden (MATHNM19) [M-MATH-102900]

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Verantwortung: Willy Dörfler

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung:
- Wahlpflicht

Bestandteil von:
- Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung
- Angewandte und Numerische Mathematik, Optimierung
- Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung
- Wahlpflichtfach
- Zusatzleistungen

Kennung Teilleistung LP Verantwortung

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105898</td>
<td>Adaptive Finite Elemente Methoden (S. 823)</td>
<td>6</td>
<td>Willy Dörfler</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 25 Minuten.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen können

- können die Notwendigkeit adaptiver Methoden darstellen
- die grundlegenden Methoden, Techniken und Algorithmen der Behandlung elliptischer Randwertprobleme mit adaptiven Finiten Elementen erklären
- Konzepte der Modellierung mit partiellen Differentialgleichungen wiedergeben
- Einfache Randwertaufgaben mit Adaptiven Finiten Elementen numerisch lösen

Inhalt

- Notwendigkeit adaptiver Methoden
- Residuenfehlerschätzer
- Aspekte der Implementierung
- Optimalität der adaptiven Methode
- Funktionalfehlerschätzer
- hpFinite Elemente
Empfehlungen

Arbeitsaufwand
Gesamter Arbeitsaufwand: 180 Stunden
Präsenzzeit: 60 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 120 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Advanced Inverse Problems: Nonlinearity and Banach Spaces (MATH-NM44) [M-MATH-102955]

Verantwortung: Andreas Rieder

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Angewandte und Numerische Mathematik, Optimierung Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung Wahlpflichtfach Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105927</td>
<td>Advanced Inverse Problems: Nonlinearity and Banach Spaces (S. 825)</td>
<td>5</td>
<td>Andreas Rieder</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 20 Minuten.

Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Inhalt

Inexakte Newton-Verfahren in Hilbert-Räumen, Approximative Inverse in Banach-Räumen, Tikhonov-Regularisierung mit konvexem Strafterm, Kaczmarz-Newton Verfahren in Banach-Räumen

Empfehlungen

Inverse Probleme, Funktionalanalysis

Arbeitsaufwand

Gesamter Arbeitsaufwand: 150 Stunden
Präsenzzeit: 60 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 90 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Algebra (MATHAG05) [M-MATH-101315]

Verantwortung: Frank Herrlich

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung:
Wahlpflicht

Bestandteil von:
Mathematische Methoden/Wahlbereich Mathematische Methoden/Algebra und Geometrie
Wahlpflichtfach
Zusatzleistungen

Leistungspunkte 8
Modulturnus Jedes Wintersemester
Dauer 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-102253</td>
<td>Algebra (S. 827)</td>
<td>8</td>
<td>Frank Herrlich, Stefan Kühnlein, Claus-Günther Schmidt</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 30 min.)

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen können

- wesentliche Konzepte der Algebra nennen und erörtern,
- den Aufbau der Galoistheorie nachvollziehen und ihre Aussagen auf konkrete Fragestellungen anwenden,
- grundlegende Resultate über Bewertungsringe und ganze Ringerweiterungen nennen und zueinander in Beziehung setzen,
- und sind darauf vorbereitet, eine Abschlussarbeit im Bereich Algebra zu schreiben

Inhalt

- **Körper**: algebraische Körpererweiterungen, Galoistheorie, Einheitswurzeln und Kreisteilung, Lösen von Gleichungen durch Radikale
- **Bewertungen**: Beträge, Bewertungsringe
- **Ringtheorie**: Tensorprodukt von Moduln, ganze Ringerweiterungen, Normalisierung, noethersche Ringe, Hilbertscher Basissatz

Empfehlungen
Folgende Module sollten bereits belegt worden sein:
Lineare Algebra
Einführung in Algebra und Zahlentheorie

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
WAHLPFLICHTFACH

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Algebraische Geometrie [M-MATH-101724]

Verantwortung: Frank Herrlich

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Wahlbereich Mathematische Methoden/Algebra und Geometrie

Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-103340</td>
<td>Algebraische Geometrie (S. 828)</td>
<td>8</td>
<td>Frank Herrlich, Stefan Kühnlein</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung von ca. 30 Minuten Dauer.

Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Absolventen und Absolventinnen können

- grundlegende Konzepte der Theorie der algebraischen Varietäten nennen und erörtern,
- Hilfsmittel aus der Algebra, insbesondere der Theorie der Polynomringe, auf geometrische Fragestellungen anwenden,
- wichtige Resultate der klassischen algebraischen Geometrie erläutern und auf Beispiele anwenden,
- und sind darauf vorbereitet, Forschungsarbeiten aus der algebraischen Geometrie zu lesen und eine Abschlussarbeit in diesem Bereich zu schreiben.

Inhalt

- Hilbertscher Nullstellensatz
- affine und projektive Varietäten
- Morphismen und rationale Abbildungen
- nichtsinguläre Varietäten
- algebraische Kurven
- Satz von Riemann-Roch

Empfehlungen

Folgende Module sollten bereits belegt worden sein:

Einführung in Algebra und Zahlentheorie
Algebra

Arbeitsaufwand

Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Algebraische Topologie (MATHAG34) [M-MATH-102948]

Verantwortung: Roman Sauer

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Mathematische Methoden/Wahlbereich Mathematische Methoden/Algebra und Geometrie

Bestandteil von: Wahlpflichtfach

Zusatzleistungen

Leistungspunkte 8 Modulturnus Unregelmäßig Dauer 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105915</td>
<td>Algebraische Topologie (S. 829)</td>
<td>8</td>
<td>Holger Kammeyer, Roman Sauer</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Schriftliche Prüfung im Umfang von 120 min.

Modulnote
Notenbildung: Note der Prüfung

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen

- können die Homologie grundlegender Beispielsräume berechnen,
- beherrschen elementare Techniken der homologischen Algebra (Diagrammjagd),
- können selbstorganisiert und reflexiv arbeiten

Inhalt

- CW-Komplexe
- Satz von Seifert und van Kampen
- Homotopiegruppen
- Singuläre Homologie und Kohomologie
- Grundzüge der homologischen Algebra (Projektive Auflösung, Tor, Ext)

Empfehlungen

Anmerkung

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Algebraische Topologie II (MATHAG41) [M-MATH-102953]

Verantwortung: Roman Sauer

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Wahlbereich Mathematische Methoden/Algebra und Geometrie
Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105926</td>
<td>Algebraische Topologie II (S. 830)</td>
<td>8</td>
<td>Roman Sauer</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Schriftliche Prüfung im Umfang von 120 min.

Modulnote
Die Modulnote ist die Note der Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen

- können die Kohomologieringe grundlegender Beispielsräume berechnen,
- beherrschen grundlegende Techniken der homologischen Algebra,
- können selbstorganisiert und reflexiv arbeiten

Inhalt

- Singuläre Kohomologie
- Produktstrukturen in der Kohomologie
- Universelle Koeffiziententheoreme der homologischen Algebra
- Poincare Dualität

Empfehlungen

Anmerkung
Turnus: Alle zwei Jahre.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung
Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
M Modul: Algebraische Zahlentheorie [M-MATH-101725]

Verantwortung: Claus-Günther Schmidt

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Wahlbereich Mathematische Methoden/Algebra und Geometrie

Wahlpflichtfach

Zusatzleistungen

Leistungspunkte 8

Modulturnus Unregelmäßig

Dauer 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-103346</td>
<td>Algebraische Zahlentheorie (S. 831)</td>
<td>8</td>
<td>Stefan Kühnlein, Claus-Günther Schmidt</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 30 min.)

Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Absolventinnen und Absolventen

- verstehen grundlegende Strukturen und Denkweisen der Algebraischen Zahlentheorie,
- erkennen die Bedeutung der abstrakten Begriffsbildungen für konkrete Fragestellungen,
- sind grundsätzlich in der Lage, aktuelle Forschungsarbeiten zu lesen und eine Abschlussarbeit auf dem Gebiet der Algebraischen Zahlentheorie zu schreiben.

Inhalt

- Algebraische Zahlkörper: Ganzheitsringe, Minkowskitheorie, Klassengruppe und Dirichletscher Einheitensatz
- Erweiterung von Zahlkörpern: Verzweigungstheorie, Galoistheoretische Fragestellungen
- Lokale Körper: Satz von Ostrowski, Bewertungstheorie, Lemma von Hensel, Erweiterungen lokaler Körper

Empfehlungen

Die Inhalte des Moduls „Algebra“ werden vorausgesetzt.

Arbeitsaufwand

Gesamter Arbeitsaufwand: 240 Stunden

Präsenzzeit: 90 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Analytics und Statistik [M-WIWI-101637]

Verantwortung: Oliver Grothe

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Finance - Risk Management - Managerial Economics

Zusatzleistungen

Leistungspunkte 9
Sprache Deutsch

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-103123</td>
<td>Statistik für Fortgeschrittene (S. 1042)</td>
<td>4,5</td>
<td>Oliver Grothe</td>
</tr>
</tbody>
</table>

Ergänzungsangebot

Wahlpflichtblock; min. 4,5, max. 5 Leistungspunkte

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-103124</td>
<td>Multivariate Verfahren (S. 946)</td>
<td>4,5</td>
<td>Oliver Grothe</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen

Die Lehrveranstaltung "Statistik für Fortgeschrittene" des Moduls muss geprüft werden.

Qualifikationsziele

Der/die Studierende

- Vertieft Grundlagen der schließenden Statistik.
- Lernt mit Simulationsmethoden umzugehen und diese sinnvoll einzusetzen.
- Lernt grundlegende und erweiterte Methoden der statistischen Auswertung mehr- und hochdimensionaler Daten kennen.

Inhalt

- Schätzen und Testen
- Stochastische Prozesse
- Multivariate Statistik, Copulas
- Abhängigkeitsmessung
- Dimensionsreduktion
- Hochdimensionale Methoden
- Vorhersagen

Anmerkung

Das für drei Studienjahre im Voraus geplante Lehrangebot kann im Internet nachgelesen werden.

Arbeitsaufwand

Modul: Anwendungen des Operations Research (WW3OR5) [M-WIWI-101413]

Verantwortung: Stefan Nickel
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Curriculare Verankerung: Wahlpflicht
Bestandteil von: Operations Management - Datenanalyse - Informatik
Wahlpflichtfach
Zusatzleistungen

Leistungspunkte Modulturnus Dauer
9 Jedes Semester 1 Semester

Wahlpflichtangebot
Wahlpflichtblock; min. 1, max. 4 Teilleistungen

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-103061</td>
<td>Vorleistung zu Standortplanung und strategisches Supply Chain Management (S. 1079)</td>
<td>4,5</td>
<td>Stefan Nickel</td>
</tr>
<tr>
<td>T-WIWI-102704</td>
<td>Standortplanung und strategisches Supply Chain Management (S. 1040)</td>
<td>4,5</td>
<td>Stefan Nickel</td>
</tr>
<tr>
<td>T-WIWI-105940</td>
<td>Vorleistung zu Taktisches und operatives Supply Chain Management (S. 1080)</td>
<td>4,5</td>
<td>Stefan Nickel</td>
</tr>
<tr>
<td>T-WIWI-102714</td>
<td>Taktisches und operatives Supply Chain Management (S. 1064)</td>
<td>4,5</td>
<td>Stefan Nickel</td>
</tr>
</tbody>
</table>

Ergänzungsangebot
Wahlpflichtblock; max. 1 Teilleistungen

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102717</td>
<td>Software-Praktikum: OR-Modelle I (S. 1026)</td>
<td>4,5</td>
<td>Stefan Nickel</td>
</tr>
<tr>
<td>T-WIWI-102726</td>
<td>Globale Optimierung I (S. 901)</td>
<td>4,5</td>
<td>Oliver Stein</td>
</tr>
<tr>
<td>T-WIWI-102627</td>
<td>Simulation I (S. 1020)</td>
<td>4,5</td>
<td>Karl-Heinz Waldmann</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form von Teilprüfungen (nach § 4(2), 1 SPO) über die gewählten Lehrveranstaltungen des Moduls, mit denen in Summe die Mindestanforderungen an Leistungspunkten erfüllt ist.
Die Erfolgskontrolle wird bei jeder Lehrveranstaltung beschrieben.
Die Gesamtnote des Moduls wird aus den mit Leistungspunkten gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Voraussetzungen
Keine

Qualifikationsziele
Der/die Studierende
- ist vertraut mit wesentlichen Konzepten und Begriffen des Supply Chain Managements,
- kennt die verschiedenen Teilgebiete des Supply Chain Managements und die zugrunde liegenden Optimierungsprobleme,
- ist mit den klassischen Standortmodellen (in der Ebene, auf Netzwerken und diskret), sowie mit den grundlegenden Methoden zur Ausliefer- und Transportplanung, Warenlagerplanung und Lagermanagement vertraut,
- ist in der Lage praktische Problemstellungen mathematisch zu modellieren und kann deren Komplexität abschätzen sowie geeignete Lösungsverfahren auswählen und anpassen.

Anmerkung
Das für drei Studienjahre im Voraus geplante Lehrangebot kann im Internet nachgelesen werden.
Modul: Asymptotische Stochastik (MATHST07) [M-MATH-102902]

Verantwortung: Norbert Henze

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Stochastik
Mathematische Methoden/Wahlbereich Mathematische Methoden/Stochastik
Wahlpflichtfach

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105866</td>
<td>Asymptotische Stochastik (S. 839)</td>
<td>8</td>
<td>Bernhard Klar, Vicky Fasen-Hartmann, Norbert Henze</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 30 min).

Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Die Absolvent(inn)en

- sind mit grundlegenden probabilistischen Techniken im Zusammenhang mit dem Nachweis der Verteilungskonvergenz von Zufallsvektoren vertraut und können diese anwenden,
- kennen das asymptotische Verhalten von Maximum-Likelihood-Schätzern und des verallgemeinerten Likelihood-Quotienten bei parametrischen Testproblemen,
- können das Limesverhalten von nichtdegenerierten und einfach degenerierten U-Statistiken erläutern,
- kennen den Satz von Donsker und können dessen Beweis skizzieren.

Inhalt

- Poissonscher Grenzwertsatz für Dreiecksschemata,
- Momentenmethode,
- Zentraler Grenzwertsatz für stationäre m-abhängige Folgen,
- allgemeine multivariate Normalverteilung,
- Verteilungskonvergenz und Zentraler Grenzwertsatz im \mathbb{R}^d,
- Satz von Glivenko-Cantelli,
- Grenzwertsätze für U-Statistiken,
- asymptotische Schätztheorie (Maximum-Likelihood- und Momentenschätzer),
• asymptotische Effizienz und relative Effizienz von Schätzern,
• asymptotische Tests in parametrischen Modellen, parametrischer Bootstrap,
• schwache Konvergenz in metrischen Räumen,
• Satz von Prokhorov,
• Brown-Wiener-Prozess, Satz von Donsker, funktionaler Zentraler Grenzwertsatz, Brownsche Brücke
• Anpassungstests.

Empfehlungen
Die Inhalte des Moduls "Wahrscheinlichkeitstheorie" werden benötigt.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden

• Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

• Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
• Bearbeitung von Übungsaufgaben
• Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
• Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Bildgebende Verfahren in der Medizintechnik (MATHNM15) [M-MATH-102896]

Verantwortung: Andreas Rieder

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Angewandte und Numerische Mathematik, Optimierung
Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung
Wahlpflichtfach
Zusatzleistungen

Leistungspunkte

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105861</td>
<td>Bildgebende Verfahren in der Medizintechnik (S. 841)</td>
<td>8</td>
<td>Andreas Rieder</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 30 Minuten.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele

Inhalt

- Varianten der Computer-Tomographie (Röntgen-, Impedanz-, etc.)
- Eigenschaften der Radon-Transformation
- Abtastung und Auflösung
- Schlechtgestelltheit und Regularisierung
- Rekonstruktionsalgorithmen

Empfehlungen
Das Modul “Funktionalanalysis” ist hilfreich.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung
Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Brownsche Bewegung (MATHST10) [M-MATH-102904]

Verantwortung: Nicole Bäuerle

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Stochastik
Mathematische Methoden/Wahlbereich Mathematische Methoden/Stochastik
Wahlpflichtfach
Zusatzleistungen

Leistungspunkte: 4
Modulturnus: Unregelmäßig
Dauer: 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105868</td>
<td>Brownsche Bewegung (S. 843)</td>
<td>4</td>
<td>Günter Last, Nicole Bäuerle, Vicky Fasen-Hartmann</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 20 min).

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen können

- Eigenschaften der Brownschen Bewegung nennen, erklären und begründen,
- die Brownsche Bewegung zur Modellierung von stochastischen Phänomenen anwenden,
- spezifische probabilistische Techniken gebrauchen,
- selbstorganisiert und reflexiv arbeiten.

Inhalt

- Existenz und Konstruktion der Brownschen Bewegung
- Pfad eigenschaften der Brownschen Bewegung
- Starke Markov-Eigenschaft der Brownschen Bewegung mit Anwendungen
- Skorohod Darstellung der Brownschen Bewegung

Empfehlungen
Die Inhalte des Moduls “Wahrscheinlichkeitstheorie” werden benötigt.

Arbeitsaufwand
Präsenzzeit: 45 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 75 Stunden
• Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
• Bearbeitung von Übungsaufgaben
• Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
• Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Collective Decision Making (WW4VWL16) [M-WIWI-101504]

Verantwortung: Clemens Puppe

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Finance - Risk Management - Managerial Economics

Wahlpflichtfach

Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Wahlpflichtangebot

Wahlpflichtblock; min. 9, max. 9,5 Leistungspunkte

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102617</td>
<td>Mathematische Theorie der Demokratie (S. 940)</td>
<td>4,5</td>
<td>Andranik Melik-Tangian</td>
</tr>
<tr>
<td>T-WIWI-102859</td>
<td>Social Choice Theory (S. 1025)</td>
<td>4,5</td>
<td>Clemens Puppe</td>
</tr>
<tr>
<td>T-WIWI-102740</td>
<td>Public Management (S. 991)</td>
<td>4,5</td>
<td>Berthold Wigger</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form von Teilprüfungen (nach §4(2), 1 o. 2 SPO) über die gewählten Lehrveranstaltungen des Moduls, mit denen in Summe die Mindestanforderung an Leistungspunkten erfüllt ist. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden

- sind in der Lage, praktische Problemstellungen der Ökonomie des öffentlichen Sektors zu modellieren und im Hinblick auf positive und normative Fragestellungen zu analysieren,
- verstehen die individuellen Anreize und gesellschaftlichen Auswirkungen verschiedener institutioneller ökonomischer Rahmenbedingungen,
- sind vertraut mit der Funktionsweise und Ausgestaltung demokratischer Wahlverfahren und können diese im Hinblick auf ihre Anreizwirkung analysieren.

Arbeitsaufwand

Gesamtaufwand bei 9 Leistungspunkten: ca. 270 Stunden

Die genaue Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.
Modul: Compressive Sensing (MATHNM37) [M-MATH-102935]

Verantwortung: Andreas Rieder

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Angewandte und Numerische Mathematik, Optimierung
Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung
Wahlpflichtfach
Zusatzleistungen

Leistungspunkte 5
Modulturnus Unregelmäßig
Dauer 1 Semester

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105894</td>
<td>Compressive Sensing (S. 847)</td>
<td>5</td>
<td>Andreas Rieder</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 20 Minuten.

Modulnote
The Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele

Inhalt
- Was ist Compressive Sensing und wo kommt es zum Einsatz
- Dünnbesetzte Lösungen unterbestimmter Gleichungssysteme
- Grundlegende Algorithmen
- Restricted Isometry Property
- Dünnbesetzte Lösungen unterbestimmter Gleichungssysteme mit Zufallsmatrizen

Empfehlungen

Arbeitsaufwand
Gesamter Arbeitsaufwand: 150 Stunden
Präsenzzeit: 60 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 90 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
• Bearbeitung von Übungsaufgaben
• Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
• Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Computerunterstützte analytische Methoden für Rand- und Eigenwertprobleme (MATHAN11) [M-MATH-102883]

Verantwortung: Michael Plum
Einrichtung: KIT-Fakultät für Mathematik
Curriacular Verankerung: Wahlpflicht
Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Analysis
Mathematische Methoden/Wahlbereich Mathematische Methoden/Analysis
Wahlpflichtfach
Zusatzleistungen

Leistungspunkte
Modulturnus
Dauer

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105854</td>
<td>Computerunterstützte analytische Methoden für Rand- und Eigenwertprobleme (S. 850)</td>
<td>8</td>
<td>Michael Plum</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 20 min).

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele

Inhalt

Empfehlungen
- Klassische Methoden für partielle Differentialgleichungen
- Rand- und Eigenwertprobleme
- Funktionalanalysis

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung
Selbststudium: 150 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Der Poisson-Prozess (MATHST20) [M-MATH-102922]

Verantwortung: Günter Last
Einrichtung: KIT-Fakultät für Mathematik
Curriculare Verankerung: Wahlpflicht
Bestandteil von: Mathematische Methoden/Stochastik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105922</td>
<td>Der Poisson-Prozess (S. 856)</td>
<td>5</td>
<td>Günter Last, Vicky Fasen-Hartmann, Daniel Hug</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 30 min).

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele

Inhalt
- Verteilungseigenschaften des Poisson-Prozesses
- Der Poisson-Prozess als spezieller Punktprozess
- Stationäre Poisson- und Punktprozesse
- Zufällige Maße und Coxprozesse
- Poisson-Cluster Prozesse und zusammengesetzte Poisson-Prozesse
- Der räumliche Gale-Shapley Algorithmus

Empfehlungen
Die Inhalte des Moduls Wahrscheinlichkeitstheorie werden zum Teil benötigt.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 150 Stunden
Präsenzzeit: 60 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung
Selbststudium: 90 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
M

Modul: Die Riemannsche Zeta-Funktion (MATHAG45) [M-MATH-102960]

Verantwortung: Fabian Januszewski

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Wahlbereich Mathematische Methoden/Algebra und Geometrie Wahlpflichtfach Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
<th>Sprache</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105934</td>
<td>Die Riemannsche Zeta-Funktion (S. 858)</td>
<td>4</td>
<td>Fabian Januszewski</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung von ca. 20 Minuten Dauer.

Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden kennen die fundamentalen Eigenschaften der Riemannschen Zeta-Funktion, insbesondere als Prototyp allgemeiner L-Funktionen (Euler-Produkt, meromorphe Fortsetzung, Funktionalgleichung). Weiterhin können die Studierenden aus den Eigenschaften der Zeta-Funktion den Primzahlsatz ableiten und die Relevanz der Riemannschen Vermutung für die Verteilung der Primzahlen erklären.

Inhalt

- Definition und Konvergenz, Euler-Produkt-Entwicklung
- Analytische Fortsetzung und Funktionalgleichung
- Anwendungen auf den Primzahlsatz, Riemannsche Vermutung

Empfehlungen

Das Modul "Einführung in Algebra Zahlentheorie" sollte bereits belegt worden sein.

Arbeitsaufwand

Gesamter Arbeitsaufwand: 120 Stunden

Präsenzzeit: 45 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 75 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung

Wirtschaftsmathematik (M.Sc.)

Modulhandbuch mit Stand 04.08.2016 für Wintersemester 16/17
M Modul: Differentialgeometrie (MATHAG04) [M-MATH-101317]

Verantwortung: Wilderich Tuschmann

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Wahlbereich Mathematische Methoden/Algebra und Geometrie

Wahlpflichtfach

Zusatzleistungen

Leistungspunkte Modulturnus Dauer
8 Jedes Wintersemester 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-102275</td>
<td>Differentialgeometrie (S. 859)</td>
<td>8</td>
<td>Wilderich Tuschmann, Enrico Leuzinger, Sebastian Grensing</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung von 120 Minuten Dauer.

Modulnote
Die Modulnote ist die Note der schriftlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen
- können grundlegende Aussagen und Techniken der modernen Differentialgeometrie näher erörtern und anwenden,
- sind mit exemplarischen Anwendungen der Differentialgeometrie vertraut,
- können weiterführende Seminare und Vorlesungen im Bereich der Differentialgeometrie und Topologie besuchen.

Inhalt
Mannigfaltigkeiten
Tensoren
Riemannsche Metriken
Lineare Zusammenhänge
Kovariante Ableitung
Parallelverschiebung
Geodätische
Krümmungstensor und Krümmungsbegriffe

Optional:

Bündel
Differentialformen
Satz von Stokes

Empfehlungen
Folgende Module sollten bereits belegt worden sein:
Lineare Algebra I, II
Analysis I, II
Einführung in Geometrie und Topologie bzw. Elementare Geometrie

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Dynamische Systeme (MATHAN43) [M-MATH-103080]

Verantwortung: Jens Rottmann-Matthes

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Analysis
Mathematische Methoden/Wahlbereich Mathematische Methoden/Analysis
Wahlpflichtfach
Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
<th>Sprache</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-106114</td>
<td>Dynamische Systeme (S. 861)</td>
<td>8</td>
<td>Jens Rottmann-Matthes</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Prüfung: mündliche Prüfung (ca. 30 Min)

Modulnote
Notenbildung: Note der Prüfung.

Voraussetzungen
keine

Qualifikationsziele
Absolventinnen und Absolventen können

- die Bedeutung Dynamischer Systeme an Hand von Beispielen erläutern,
- die Konzepte eines zeitdiskreten und zeitkontinuierlichen dynamischen Systems zueinander in Beziehung setzen,
- wichtige Methoden zur Analyse dynamischer Systeme beschreiben und mit ihrer Hilfe das asymptotische Verhalten von Lösungen in der Nähe von Gleichgewichten für verschiedene dynamische Systeme analysieren,
- das Verhalten invarianter Mengen unter Diskretisierung beschreiben.

Inhalt

- Beispiele endlich- und unendlich-dimensionaler Dynamischer Systeme
- Fixpunkte, periodische Orbits, Limesmengen
- Invariante Mengen
- Attraktoren
- Ober- und Unterhalbstetigkeit von Attraktoren
- Stabile und instabile Mannigfaltigkeiten
- Zentrumsmannigfaltigkeiten

Empfehlungen
Analysis 1-3, Funktionalanalysis

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung
Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Einführung in das Wissenschaftliche Rechnen (MATHNM05) [M-MATH-102889]

Verantwortung: Tobias Jahnke, Willy Dörfler

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Angewandte und Numerische Mathematik, Optimierung Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung Wahlpflichtfach Zusatzleistungen

Leistungspunkte 8

Modulturnus Jedes Sommersemester

Dauer 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105837</td>
<td>Einführung in das Wissenschaftliche Rechnen (S. 868)</td>
<td>8</td>
<td>Andreas Rieder, Tobias Jahnke, Marlis Hochbruck, Willy Dörfler, Christian Wieners</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 30 Minuten.

Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Absolventinnen und Absolventen können

- die Verzahnung aller Aspekte des Wissenschaftlichen Rechnens an einfachen Beispielen entwickeln: von der Modellbildung über die algorithmische Umsetzung bis zur Stabilitäts- und Fehleranalyse.
- Konzepte der Modellierung mit Differentialgleichungen erklären
- Einfache Anwendungsbeispiele algorithmisch umsetzen, den Code evaluieren und die Ergebnisse darstellen und diskutieren.

Inhalt

- Numerische Methoden für Anfangswertaufgaben, Randwertaufgaben und Anfangsrandwertaufgaben (Finite Differenzen, Finite Elemente)
- Modellierung mit Differentialgleichungen
- Algorithmische Umsetzung von Anwendungsbeispielen
- Präsentation der Ergebnisse wissenschaftlicher Rechnungen
Empfehlungen

Anmerkung
3 Stunden Vorlesung und 3 Stunden Praktikum

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Einführung in die geometrische Maßtheorie (MATHAG35) [M-MATH-102949]

Verantwortung: Steffen Winter

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflichtfach

Bestandteil von: Mathematische Methoden/Wahlbereich Mathematische Methoden/Algebra und Geometrie

Zusatzleistungen

Leistungspunkte 6

Modulturnus Unregelmäßig

Dauer 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105918</td>
<td>Einführung in die geometrische Maßtheorie (S. 869)</td>
<td>6</td>
<td>Steffen Winter</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung von ca. 20 Minuten.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Die Studierenden
- kennen grundlegende Aussagen und Beweistechniken der geometrischen Maßtheorie,
- sind mit exemplarischen Anwendungen von Methoden der geometrischen Maßtheorie vertraut und wenden diese an,
- können reflexiv und selbstorganisiert arbeiten.

Inhalt
- Maß und Integral
- Überdeckungssätze
- Hausdorff-Maße
- Differentiation von Maßen
- Lipschitzfunktionen und Rektifizierbarkeit
- Flächen- und Koflächenformel
- Ströme
- Anwendungen

Empfehlungen
Folgende Module sollten bereits belegt worden sein:
Lineare Algebra 1+2, Analysis 1-3

Arbeitsaufwand
Gesamter Arbeitsaufwand: 180 Stunden
Präsenzzeit: 60 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 120 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Einführung in Matlab und numerische Algorithmen (MATHNM43) [M-MATH-102945]

Verantwortung: Daniel Weiß
Einrichtung: KIT-Fakultät für Mathematik
Curriculare Verankerung: Wahlpflicht
Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Angewandte und Numerische Mathematik, Optimierung Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung Wahlpflichtfach Zusatzleistungen

Leistungspunkte	Modulturnus	Dauer
5 | Unregelmäßig | 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105913</td>
<td>Einführung in Matlab und numerische Algorithmen (S. 870)</td>
<td>5</td>
<td>Christian Wieners, Daniel Weiß</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 75 Minuten.

Modulnote
Die Modulnote ist die Note der schriftlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen können

- grundlegende numerische Algorithmen auch in Hinblick auf die Implementierung verstehen und in der Programmierumgebung Matlab effizient programmieren.
- vorhandene Tools und Toolboxen numerischer Algorithmen, welche in Matlab bereits implementiert sind, benutzen und in ihrer Funktionsweise verstehen.
- Matlab als Schnittstelle zu anderen Programmiersprachen und zu anderer mathematischer Software nutzen.

Inhalt

- Matlab als Programmierumgebung:
 1. Programmierung
 2. Debugging
 3. Visualisierung
 - Funktionsweise elementarer Matlab-Funktionen
 - Verschiedene Toolboxen von Matlab, z.B. PDE-Toolbox
 - Spezielle Speicherformate
EMPFEHLUNGEN

ARBEITSAUFWAND
Gesamter Arbeitsaufwand: 150 Stunden
Präsenzzeit: 60 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 90 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Einführung in Partikuläre Strömungen (MATHNM41) [M-MATH-102943]

Verantwortung: Willy Dörfler

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung
Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung
Wahlpflichtfach
Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Einmalig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105911</td>
<td>Einführung in Partikuläre Strömungen (S. 871)</td>
<td>3</td>
<td>Willy Dörfler</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 20 Minuten.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen können

- die grundlegenden Modelle der mathematischen Beschreibung von Strömungen erklären
- Konzepte der Modellierung teilchenbehafter Strömung erklären
- verstehen die numerischen Ansätze zur Berechnung solcher Strömungen

Inhalt

- Mathematische Beschreibung von Strömungen
- Modelle zur Beschreibung von Teilchen in einer Strömung
- Bewegung starrer Körper in einer Strömung
- Bewegung starrer Körper in einer viskosen Strömung
- Einbeziehung verschiedener Kräfte zwischen Strömung und Partikel, zum Beispiel bei ionischen Strömungen

Empfehlungen
Grundlagenkenntnisse in der numerischen Behandlung von Differentialgleichungen, in numerischer Strömungsmechanik und in einer Programmiersprache.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 90 Stunden
Präsenzzeit: 30 Stunden
• Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 60 Stunden

• Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
• Bearbeitung von Übungsaufgaben
• Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
• Vorbereitung auf die studienbegleitende Modulprüfung
M Modul: Energiewirtschaft und Technologie (WW4BWLIIIP5) [M-WIWI-101452]

Verantwortung: Wolf Fichtner

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Operations Management - Datenanalyse - Informatik
Wahlpflichtfach
Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Wahlpflichtangebot
Wahlpflichtblock; min. 9, max. 9 Leistungspunkte

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102650</td>
<td>Energie und Umwelt (S. 874)</td>
<td>4,5</td>
<td>Ute Karl</td>
</tr>
<tr>
<td>T-WIWI-102633</td>
<td>Strategische Aspekte der Energiewirtschaft (S. 1057)</td>
<td>3,5</td>
<td>Armin Ardone</td>
</tr>
<tr>
<td>T-WIWI-102694</td>
<td>Technologischer Wandel in der Energiewirtschaft (S. 1065)</td>
<td>3</td>
<td>Martin Wietschel</td>
</tr>
<tr>
<td>T-WIWI-102695</td>
<td>Wärmewirtschaft (S. 1083)</td>
<td>3</td>
<td>Wolf Fichtner</td>
</tr>
<tr>
<td>T-WIWI-102830</td>
<td>Energy Systems Analysis (S. 875)</td>
<td>3</td>
<td>Valentin Bertsch</td>
</tr>
<tr>
<td>T-WIWI-102793</td>
<td>Efficient Energy Systems and Electric Mobility (S. 862)</td>
<td>3,5</td>
<td>Russell McKenna, Patrick Jochem</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen

Qualifikationsziele
Der/die Studierende

- besitzt detaillierte Kenntnisse zu heutigen und zukünftigen Energieversorgungstechnologien (Fokus auf die Endenergieträger Elektrizität und Wärme),
- kennt die techno-ökonomischen Charakteristika von Anlagen zur Energiebereitstellung, zum Energietransport sowie der Energieverteilung und Energienachfrage,
- kann die wesentlichen Umweltauswirkungen dieser Technologien einordnen.

Inhalt

- Strategische Aspekte der Energiewirtschaft: Langfristige Planungsmethoden, Erzeugungstechnologien
- Technologischer Wandel in der Energiewirtschaft: Zukünftige Energietechnologien, Lernkurven, Energienachfrage
- Wärmewirtschaft: Fernwärme, Heizungsanlagen, Wärmebedarfsreduktion, gesetzliche Vorgaben
- Energiesystemanalyse: Interdependenzen in der Energiewirtschaft, Modelle der Energiewirtschaft
- Energie und Umwelt: Emissionsfaktoren, Emissionsminderungsmaßnahmen, Umweltauswirkungen
Arbeitsaufwand
Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 Credits). Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls. Dabei beträgt der Arbeitsaufwand für Lehrveranstaltungen mit 3 Credits ca. 90h, für Lehrveranstaltungen mit 3,5 Credits ca. 105h und für Lehrveranstaltungen mit 5 Credits ca. 150h. Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.
Modul: Entscheidungs- und Spieltheorie (MATHMWVWL10) [M-WIWI-102970]

Verantwortung: Clemens Puppe

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Curriculare Verankerung: Wahlpflicht
Bestandteil von: Finance - Risk Management - Managerial Economics
Wahlpflichtfach
Zusatzleistungen

Leistungspunkte 9
Sprache Deutsch

Wahlpflichtangebot
Wahlpflichtblock; min. 9, max. 9 Leistungspunkte

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102613</td>
<td>Auktionstheorie (S. 840)</td>
<td>4,5</td>
<td>Karl-Martin Ehrhart</td>
</tr>
<tr>
<td>T-WIWI-102614</td>
<td>Experimentelle Wirtschaftsforschung (S. 879)</td>
<td>4,5</td>
<td>Christof Weinhardt, Timm Teubner</td>
</tr>
<tr>
<td>T-WIWI-102861</td>
<td>Advanced Game Theory (S. 824)</td>
<td>4,5</td>
<td>Karl-Martin Ehrhart, Clemens Puppe, Johannes Philipp Reiß</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen
Keine

Qualifikationsziele

Inhalt
Das Modul bietet, aufbauend auf einer fortgeschrittenen formalen Analyse von strategischen Entscheidungssituationen eine methodisch differenzierte Vertiefung - entweder theoretisch oder empirisch - der Anwendungsmöglichkeiten der spieltheoretischen Analyse an.

Anmerkung
Das Modul kann in folgenden Studienprofilen gewählt werden:
- Operations Research
- Klassische Wirtschaftsmathematik

Gute Kenntnisse in Mathematik und Statistik sind hilfreich.

Arbeitsaufwand
Gesamtaufwand bei 9 Leistungspunkten: ca. 270 Stunden
Die genaue Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.
Modul: Evolutionsgleichungen (MATHAN12) [M-MATH-102872]

Verantwortung: Roland Schnaubelt

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Analysis
Mathematische Methoden/Wahlbereich Mathematische Methoden/Analysis
Wahlpflichtfach

Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105844</td>
<td>Evolutionsgleichungen (S. 878)</td>
<td>8</td>
<td>Roland Schnaubelt, Lutz Weis</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung von ca. 30 Minuten.

Modulnote

Die Modulnote ist die Note der Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Inhalt

stark stetige Operatorhalbgruppen und ihre Erzeuger,
Erzeugungssätze und Wohlgestelltheit,
analytische Halbgruppen,
inhomogene und semilineare Cauchyprobleme,
Störungstheorie,
Einführung in Stabilitäts- und Spektraltheorie von Operatorhalbgruppen,
Anwendungen auf partielle Differentialgleichungen

Anmerkung

Turnus: Alle zwei Jahre.

Arbeitsaufwand

Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Experimentelle Wirtschaftsforschung (WW4WVL17) [M-WIWI-101505]

Verantwortung: Johannes Philipp Reiß

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Finance - Risk Management - Managerial Economics
Wahlpflichtfach
Zusatzleistungen

Leistungspunkte 9 Sprache Deutsch

Wahlpflichtangebot
Wahlpflichtblock; min. 2, max. 2 Teilleistungen

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102862</td>
<td>Predictive Mechanism and Market Design (S. 986)</td>
<td>4,5</td>
<td>Johannes Philipp Reiß</td>
</tr>
<tr>
<td>T-WIWI-102863</td>
<td>Topics in Experimental Economics (S. 1067)</td>
<td>4,5</td>
<td>Johannes Philipp Reiß</td>
</tr>
<tr>
<td>T-WIWI-105781</td>
<td>Incentives in Organizations (S. 908)</td>
<td>4,5</td>
<td>Petra Nieken</td>
</tr>
<tr>
<td>T-WIWI-102614</td>
<td>Experimentelle Wirtschaftsforschung (S. 879)</td>
<td>4,5</td>
<td>Christof Weinhardt, Timm Teubner</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form von Teilprüfungen (nach §4(2), 1-3 SPO) über die Kernveranstaltung und weitere Lehrveranstaltungen des Moduls im Umfang von insgesamt mindestens 9 LP. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Voraussetzungen
Keine.

Qualifikationsziele
Der/die Studierende

- beherrscht die Methoden der Experimentellen Wirtschaftsforschung und lernt ihre Stärken und Schwächen einzuschätzen;
- lernt wie sich die theoriegeleitete experimentelle Wirtschaftsforschung und Theoriebildung gegenseitig befruchten;
- kann ein ökonomisches Experiment entwerfen;
- statistische Grundlagen der Datenauswertung kennen und anwenden.

Inhalt

Empfehlungen
Es werden grundlegende Kenntnisse in Mathematik, Statistik und Spieltheorie vorausgesetzt.

Anmerkung
Die Veranstaltung Predictive Mechanism and Market Design wird in jedem zweiten Wintersemester angeboten, z.B. WS2013/14, WS2015/16, ...

Die Veranstaltung Topics in Experimental Economics wird voraussichtlich erstmals im Sommersemester 2016 angeboten.

Arbeitsaufwand
Gesamtaufwand bei 9 Leistungspunkten: ca. 270 Stunden
Die genaue Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.
M

Modul: Extremale Graphentheorie (MATHAG42) [M-MATH-102957]

Verantwortung: Maria Aksenovich

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Wahlbereich Mathematische Methoden/Algebra und Geometrie Wahlpflichtfach Zusatzleistungen

Leistungspunkte

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
<th>Sprache</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
<td>Englisch</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105931</td>
<td>Extremale Graphentheorie (S. 881)</td>
<td>8</td>
<td>Maria Aksenovich, Torsten Ueckerdt</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 30 min.)

Modulnote

Die Modulnote ist die Note der Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Inhalt

Empfehlungen

Grundkenntnisse in lineare Algebra, Analysis und Graphentheorie sind empfohlen.

Anmerkung

Unterrichtssprache: Englisch

Arbeitsaufwand

Gesamter Arbeitsaufwand: 240 Stunden

- Präsenzzeit: 90 Stunden
 - Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selfstudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Extremwerttheorie (MATHST23) [M-MATH-102939]

Verantwortung: Vicky Fasen-Hartmann

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung:
- Wahlpflicht
- Mathematische Methoden/Stochastik
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Stochastik
- Wahlpflichtfach

Leistungspunkte 4
Modulturnus Unregelmäßig
Dauer 1 Semester

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kennung</td>
</tr>
<tr>
<td>T-MATH-105908</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 20 min).

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen können
- statistische Methoden zur Schätzung von Risikomaßen nennen, erklären, begründen und anwenden,
- extreme Ereignisse modellieren und quantifizieren,
- spezifische probabilistische Techniken gebrauchen,
- selbstorganisiert und reflexiv arbeiten.

Inhalt
- Satz von Fisher und Tippett
- verallgemeinerte Extremwert- und Paretoverteilung (GED und GPD)
- Anziehungsbereiche von verallgemeinerten Extremwertverteilungen
- Satz von Pickands-Balkema-de Haan
- Schätz von Risikomaßen
- Hill-Schätzer
- Blockmaximummethode
- POT-Methode
Empfehlungen
Die Inhalte des Moduls “Wahrscheinlichkeitstheorie” werden benötigt.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 120 Stunden
Präsenzzeit: 45 Stunden
• Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 75 Stunden
• Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
• Bearbeitung von Übungsaufgaben
• Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
• Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Finance 1 (WW4BWLFBV1) [M-WIWI-101482]

Verantwortung: Marliese Uhrig-Homburg, Martin Ruckes

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Finance - Risk Management - Managerial Economics

Zusatzleistungen

Leistungspunkte	Modulturnus	Dauer
9 | Jedes Semester | 1 Semester

Wahlpflichtangebot

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102643</td>
<td>Derivate (S. 857)</td>
<td>4,5</td>
<td>Marliese Uhrig-Homburg</td>
</tr>
<tr>
<td>T-WIWI-102621</td>
<td>Valuation (S. 1068)</td>
<td>4,5</td>
<td>Martin Ruckes</td>
</tr>
<tr>
<td>T-WIWI-102647</td>
<td>Asset Pricing (S. 837)</td>
<td>4,5</td>
<td>Marliese Uhrig-Homburg, Martin Ruckes</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form von Teilprüfungen (nach §4(2), 1 o. 2 SPO) über die gewählten Lehrveranstaltungen des Moduls, mit denen in Summe die Mindestanforderung an Leistungspunkten erfüllt ist. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Voraussetzungen

Keine

Qualifikationsziele

Der/die Studierende

- besitzt zentrale ökonomische und methodische Kenntnisse in moderner Finanzwirtschaft,
- beurteilt unternehmerische Investitionsprojekte aus finanzwirtschaftlicher Sicht,
- ist in der Lage, zweckgerechte Investitionsentscheidungen auf Finanzmärkten durchzuführen.

Inhalt

Arbeitsaufwand

Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 Credits). Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls. Dabei beträgt der Arbeitsaufwand für Lehrveranstaltungen mit 4,5 Credits ca. 135h.

Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.
Modul: Finance 2 (WW4BWLFBV2) [M-WIWI-101483]

Verantwortung: Marliese Uhrig-Homburg, Martin Ruckes

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Finance - Risk Management - Managerial Economics
Wahlpflichtfach
Zusatzleistungen

Leistungspunkte 9 Modulturnus Jedes Semester Dauer 1 Semester

Wahlpflichtangebot
Wahlpflichtblock; min. 9, max. 9 Leistungspunkte

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102644</td>
<td>Festverzinsliche Titel (S. 883)</td>
</tr>
<tr>
<td>T-WIWI-102622</td>
<td>Corporate Financial Policy (S. 851)</td>
</tr>
<tr>
<td>T-WIWI-102645</td>
<td>Kreditrisiken (S. 926)</td>
</tr>
<tr>
<td>T-WIWI-102647</td>
<td>Asset Pricing (S. 837)</td>
</tr>
<tr>
<td>T-WIWI-102621</td>
<td>Valuation (S. 1068)</td>
</tr>
<tr>
<td>T-WIWI-102643</td>
<td>Derivate (S. 857)</td>
</tr>
<tr>
<td>T-WIWI-102646</td>
<td>Internationale Finanzierung (S. 915)</td>
</tr>
<tr>
<td>T-WIWI-102626</td>
<td>Geschäftspolitik der Kreditinstitute (S. 899)</td>
</tr>
<tr>
<td>T-WIWI-102625</td>
<td>Börsen (S. 842)</td>
</tr>
<tr>
<td>T-WIWI-102623</td>
<td>Finanzintermediation (S. 886)</td>
</tr>
<tr>
<td>T-WIWI-102600</td>
<td>eFinance: Informationswirtschaft für den Wertpapierhandel (S. 866)</td>
</tr>
<tr>
<td>T-WIWI-102900</td>
<td>Financial Analysis (S. 884)</td>
</tr>
</tbody>
</table>

LP Verantwortung
4,5 Marliese Uhrig-Homburg
4,5 Martin Ruckes
4,5 Marliese Uhrig-Homburg
4,5 Martin Ruckes
4,5 Martin Ruckes
4,5 Martin Ruckes
3 Marliese Uhrig-Homburg
3 Wolfgang Müller
1,5 Jörg Franke
4,5 Martin Ruckes
4,5 Christof Weinhardt
4,5 Torsten Luedecke

Erfolgskontrolle(n)

Voraussetzungen

Das Modul ist erst dann bestanden, wenn zusätzlich das Modul Finance 1 [WW4BWLFBV1] zuvor erfolgreich mit der letzten Teilprüfung abgeschlossen wurde.

Modellierte Voraussetzungen

Es müssen die folgenden Bestandteile erfüllt werden:

- Das Modul kann nur dann begonnen werden, wenn zugleich das Modul [M-WIWI-101482] Finance 1 begonnen wurde.

Qualifikationsziele

Der/die Studierende ist in der Lage, fortgeschrittene ökonomische und methodische Fragestellungen der Finanzwirtschaft zu erläutern, zu analysieren und Antworten darauf abzuleiten.

Inhalt

Das Modul Finance 2 baut inhaltlich auf dem Modul Finance 1 auf. In den Modulveranstaltungen werden den Studierenden
weiterführende ökonomische und methodische Kenntnisse der modernen Finanzwirtschaft auf breiter Basis vermittelt.

Anmerkung

Arbeitsaufwand
Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 Credits). Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls. Dabei beträgt der Arbeitsaufwand für Lehrveranstaltungen mit 1,5 Credits ca. 45h, für Lehrveranstaltungen mit 3 Credits ca. 90h und für Lehrveranstaltungen mit 4,5 Credits ca. 135h. Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.
Modul: Finance 3 (WW4BWLFBV11) [M-WIWI-101480]

Verantwortung: Marliese Uhrig-Homburg, Martin Ruckes

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Finance - Risk Management - Managerial Economics
Wahlpflichtfach
Zusatzeleistungen

Leistungspunkte 9
Modulturnus Jedes Semester
Dauer 1 Semester

Wahlpflichtangebot
Wahlpflichtblock; min. 9, max. 9 Leistungspunkte

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102647</td>
<td>Asset Pricing (S. 837)</td>
<td>4,5</td>
<td>Marliese Uhrig-Homburg, Martin Ruckes</td>
</tr>
<tr>
<td>T-WIWI-102621</td>
<td>Valuation (S. 1068)</td>
<td>4,5</td>
<td>Martin Ruckes</td>
</tr>
<tr>
<td>T-WIWI-102643</td>
<td>Derivate (S. 857)</td>
<td>4,5</td>
<td>Marliese Uhrig-Homburg</td>
</tr>
<tr>
<td>T-WIWI-102644</td>
<td>Festverzinsliche Titel (S. 883)</td>
<td>4,5</td>
<td>Marliese Uhrig-Homburg</td>
</tr>
<tr>
<td>T-WIWI-102645</td>
<td>Kreditrisiken (S. 926)</td>
<td>4,5</td>
<td>Marliese Uhrig-Homburg</td>
</tr>
<tr>
<td>T-WIWI-102622</td>
<td>Corporate Financial Policy (S. 851)</td>
<td>4,5</td>
<td>Martin Ruckes</td>
</tr>
<tr>
<td>T-WIWI-102623</td>
<td>Finanzintermediation (S. 886)</td>
<td>4,5</td>
<td>Martin Ruckes</td>
</tr>
<tr>
<td>T-WIWI-102625</td>
<td>Börsen (S. 842)</td>
<td>1,5</td>
<td>Jörg Franke</td>
</tr>
<tr>
<td>T-WIWI-102626</td>
<td>Geschäftspolitik der Kreditinstitute (S. 899)</td>
<td>3</td>
<td>Wolfgang Müller</td>
</tr>
<tr>
<td>T-WIWI-102646</td>
<td>Internationale Finanzierung (S. 915)</td>
<td>3</td>
<td>Marliese Uhrig-Homburg</td>
</tr>
<tr>
<td>T-WIWI-102600</td>
<td>eFinance: Informationswirtschaft für den Wertpapierhandel (S. 866)</td>
<td>4,5</td>
<td>Christof Weinhardt</td>
</tr>
<tr>
<td>T-WIWI-102900</td>
<td>Financial Analysis (S. 884)</td>
<td>4,5</td>
<td>Torsten Luedecke</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen
Das Modul ist erst dann bestanden, wenn zusätzlich die Module Finance 1 und Finance 2 zuvor erfolgreich mit der letzten Teilprüfung abgeschlossen wurden.

Modellierte Voraussetzungen
Es müssen die folgenden Bestandteile erfüllt werden:

Qualifikationsziele
Der/die Studierende ist in der Lage, fortgeschrittene ökonomische und methodische Fragestellungen der Finanzwirtschaft zu erläutern, zu analysieren und Antworten darauf abzuleiten.
Inhalt
In den Modulveranstaltungen werden den Studierenden weiterführende ökonomische und methodische Kenntnisse der modernen Finanzwirtschaft auf breiter Basis vermittelt.

Anmerkung

Arbeitsaufwand
Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 Credits). Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls. Dabei beträgt der Arbeitsaufwand für Lehrveranstaltungen mit 1,5 Credits ca. 45h, für Lehrveranstaltungen mit 3 Credits ca. 90h und für Lehrveranstaltungen mit 4,5 Credits ca. 135h. Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.
Modul: Finanzmathematik in diskreter Zeit (MATHST04) [M-MATH-102919]

Verantwortung: Nicole Bäuerle

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung:
- Mathematische Methoden/Stochastik
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Stochastik
- Wahlpflichtfach
- Zusatzleistungen

Leistungspunkte 8 | **Modulturnus** Jedes Wintersemester | **Dauer** 1 Semester

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105839</td>
<td>Finanzmathematik in diskreter Zeit (S. 887)</td>
<td>8</td>
<td>Nicole Bäuerle, Vicky Fasen-Hartmann</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer schriftlichen Gesamtprüfung (120 min).

Modulnote
Die Modulnote ist die Note der schriftlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen können
- grundlegende Techniken der modernen diskreten Finanzmathematik nennen, erörtern und anwenden,
- spezifische probabilistische Techniken gebrauchen,
- ökonomische Fragestellungen im Bereich der diskreten Bewertung und Optimierung mathematisch analysieren,
- selbstorganisiert und reflexiv arbeiten.

Inhalt
- Endliche Finanzmärkte
- Das Cox-Ross-Rubinstein-Modell
 - Grenzübergang zu Black-Scholes
- Charakterisierung von No-Arbitrage
- Charakterisierung der Vollständigkeit
- Unvollständige Märkte
- Amerikanische Optionen
- Exotische Optionen
- Portfolio-Optimierung
- Präferenzen und stochastische Dominanz
Erwartungswert-Varianz Portfolios
Risikomaße

Empfehlungen
Die Inhalte des Moduls "Wahrscheinlichkeitstheorie" werden benötigt.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Finanzmathematik in stetiger Zeit (MATHST08) [M-MATH-102860]

Verantwortung: Nicole Bäuerle

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von:
- Mathematische Methoden/Stochastik
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Stochastik
- Wahlpflichtfach
- Zusatzleistungen

Leistungspunkte 8

Modulturnus Jedes Sommersemester

Dauer 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105930</td>
<td>Finanzmathematik in stetiger Zeit (S. 888)</td>
<td>8</td>
<td>Nicole Bäuerle, Vicky Fasen-Hartmann</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 30 min).

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Das Modul kann nicht zusammen mit der Lehrveranstaltung Stochastic Calculus and Finance geprüft werden.

Qualifikationsziele
Absolventinnen und Absolventen können

- grundlegende Techniken der modernen zeitstetigen Finanzmathematik nennen, erörtern und anwenden,
- spezifische probabilistische Techniken gebrauchen,
- ökonomische Fragestellungen im Bereich der Bewertung und Optimierung mathematisch analysieren,
- selbstorganisiert und reflexiv arbeiten.

Inhalt

- Stochastische Prozesse und Filtrationen
 - Martingale in stetiger Zeit
 - Stoppzeiten
 - Quadratische Variation
- Stochastisches Ito-Integral bzgl. stetiger Semimartingale
- Ito-Kalkül
 - Ito-Doeblin Formel
 - Stochastische Exponentiale
 - Satz von Girsanov
 - Martingaldarstellung
- Black-Scholes Finanzmarkt
 - Arbitrage und äquivalente Martingalmaße
 - Optionen und No-Arbitragepreise
 - Vollständigkeit
- Portfolio Optimierung
- Bonds, Forwards und Zinsstrukturmodelle

Empfehlungen

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Verantwortung: Willy Dörfler, Christian Wieners

Einrichtung: KIT-Fakultät für Mathematik

Curricula Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Angewandte und Numerische Mathematik, Optimierung
Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung
Wahlpflichtfach
Zusatzleistungen

Leistungspunkte: 8

Modulturnus: Jedes Wintersemester

Dauer: 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105857</td>
<td>Finite Elemente Methoden (S. 889)</td>
<td>8</td>
<td>Andreas Rieder, Tobias Jahnke, Marlis Hochbruck, Willy Dörfler, Christian Wieners</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 30 Minuten.

Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Absolventinnen und Absolventen können

- die grundlegenden Methoden, Techniken und Algorithmen der Behandlung elliptischer Randwertprobleme mit Finiten Elementen erklären (insbesondere die Stabilität, Konvergenz und Komplexität der Diskretisierungen)
- Konzepte der Modellierung mit partiellen Differentialgleichungen wiedergeben
- Einfache Randwertaufgaben mit Finiten Elementen numerisch lösen

Inhalt

- Theorie der Finiten Elemente für elliptische Randwertaufgaben zweiter Ordnung im IR^n
- Grundlegende Konzepte der Implementierung
- Elliptische Eigenwertprobleme
- Gemischte Methoden

Empfehlungen

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsentzeit: 90 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
M Modul: Fourieranalysis (MATHAN14) [M-MATH-102873]

Verantwortung: Lutz Weis

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Analysis
Mathematische Methoden/Wahlbereich Mathematische Methoden/Analysis
Wahlpflichtfach
Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105845</td>
<td>Fourieranalysis (S. 890)</td>
<td>8</td>
<td>Roland Schnaubelt, Lutz Weis</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung von 120 Minuten.

Modulnote
Die Modulnote ist die Note der Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Die Studenten kennen die Darstellung von (quadrat-)integrablen Funktionen durch Fourierreihen, die Konvergenztheorie dieser Reihen sowie den Zusammenhang zwischen Glattheit der Funktion und dem Abfall der Fourierkoeffizienten und können dies an einfachen Beispielen demonstrieren. Eigenschaften der Fouriertransformation beherrschen sie im Rahmen der Lebesgueräume und der Distributionen. Anhand expliziter Lösungen für die Wärmeleitungs-, die Wellen- und die Schrödingergleichung erkennen sie die Bedeutung der Fourieranalysis für die angewandte Mathematik. Sie beherrschen die grundlegenden Beschränktheitsaussagen für singuläre Integrale, z.B. für die Hilberttransformation. Dabei erkennen sie die Bedeutung und Anwendbarkeit von Interpolationsmethoden und Fouriermultiplikatorensätzen.

Inhalt
- Fourier Reihen
- Die Fourier Transformation auf L1 und L2
- Temperierte Distributionen und ihre Fourier Transformation
- Explizite Lösungen der Wärmeleitungs-, Schrödinger- und Wellengleichung im Rn
- Hilbert Transformation
- Der Interpolationssatz von Marcinkiewicz
- Singuläre Integraloperatoren
- Der Fourier Multiplikatorensatz von Mihlin

Empfehlungen
Das Modul "Funktionalanalysis" sollte bereits belegt worden sein.

Anmerkung
Turnus: Alle zwei Jahre.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden

Wirtschaftsmathematik (M.Sc.)
Modulhandbuch mit Stand 04.08.2016 für Wintersemester 16/17
Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Funktionalanalysis (MATHAN05) [M-MATH-101320]

Verantwortung: Roland Schnaubelt

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Analysis
Mathematische Methoden/Wahlbereich Mathematische Methoden/Analysis
Wahlpflichtfach
Zusatzleistungen

Leistungspunkte 8
Modulturnus Jedes Wintersemester
Dauer 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-102255</td>
<td>8</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Michael Plum, Christoph Schmoeger, Wolfgang Reichel, Gerd Herzog, Dirk Hundertmark, Roland Schnaubelt, Lutz Weis, Tobias Lamm</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung von 120 Minuten.

Modulnote
Die Modulnote ist die Note der Prüfung.

Voraussetzungen
Keine

Qualifikationsziele

Inhalt
- Metrische Räume (topologische Grundbegriffe, Kompaktheit)
- Stetige lineare Operatoren auf Banachräumen (Prinzip der gleichmäßigen Beschränktheit, Homomorphiesatz)
- Dualräume mit Darstellungssätzen, Sätze von Hahn-Banach und Banach-Alaoglu, schwache Konvergenz, Reflexivität
- Fouriertransformation, Satz von Plancherel, schwache Ableitung, Sobolevräume in L², partielle Differentialgleichungen mit konstanten Koeffizienten

Empfehlungen
Folgende Module sollten bereits belegt worden sein:
Lineare Algebra 1+2
Analysis 1-3

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
WAHLPLICHTFACH

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Generalisierte Regressionsmodelle (MATHST09) [M-MATH-102906]

Verantwortung: Bernhard Klar

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von:
- Mathematische Methoden/Stochastik
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Stochastik
- Wahlpflichtfach
- Zusatzleistungen

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105870</td>
<td>Generalisierte Regressionsmodelle (S. 895)</td>
<td>4</td>
<td>Bernhard Klar, Norbert Henze</td>
</tr>
</tbody>
</table>

Leistungspunkte 4 **Modulturnus** Jedes Sommersemester **Dauer** 1 Semester

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 20 min).

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Die Studierenden

- kennen die wichtigsten Regressionsmodelle und deren Eigenschaften,
- können die Anwendbarkeit dieser Modelle beurteilen und die Ergebnisse interpretieren,
- sind in der Lage, die Modelle zur Analyse komplexer Datensätze einzusetzen.

Inhalt
Die Vorlesung behandelt grundlegende Modelle der Statistik, die es ermöglichen, Zusammenhänge zwischen Größen zu erfassen. Themen sind:

- Lineare Regressionsmodelle
- Modeldiagnostik
- Multikollinearität
- Variablen-Selektion
- Verallgemeinerte Kleinste-Quadrate-Methode
- Nichtlineare Regressionsmodelle
- Parameterschätzung
- Asymptotische Normalität der Maximum-Likelihood-Schätzer

- Regressionsmodelle für Zähldaten
- Verallgemeinerte lineare Modelle
Parameterschätzung
Modelldiagnose
Überdispersion und Quasi-Likelihood

Empfehlungen
Die Inhalte des Moduls “Statistik” werden benötigt.

Arbeitsaufwand
Präsenzzeit: 45 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 75 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Geometrie der Schemata (MATHAG11) [M-MATH-102866]

Verantwortung: Frank Herrlich

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Wahlbereich Mathematische Methoden/Algebra und Geometrie
Wahlpflichtfach
Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105841</td>
<td>Geometrie der Schemata (S. 896)</td>
<td>8</td>
<td>Frank Herrlich, Stefan Kühnlein</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 30 min.)

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Absolventen und Absolventinnen können
- das Konzept der algebraischen Schemata erläutern und in Zusammenhang mit algebraischen Varietäten bringen,
- grundlegende Eigenschaften von Schemata nennen und erörtern,
- mit Garben auf Schemata umgehen und Eigenschaften von Garben untersuchen,
- und sind grundsätzlich in der Lage, Forschungsarbeiten zur algebraischen Geometrie zu lesen und eine Abschlussarbeit in diesem Bereich anzufertigen.

Inhalt
- Garben von Moduln
- affine Schemata
- Varietäten und Schemata
- Morphismen zwischen Schemata
- kohärente und quasikohärente Garben
- Kohomologie von Garben

Empfehlungen
Folgende Module sollten bereits belegt worden sein:
Algebra
Algebraische Geometrie

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
M

Modul: Geometrische Gruppentheorie (MATHAG12) [M-MATH-102867]

Verantwortung: Roman Sauer

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung:
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Algebra und Geometrie
- Wahlpflichtfach
- Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105842</td>
<td>Geometrische Gruppentheorie (S. 897)</td>
<td>8</td>
<td>Frank Herrlich, Gabriele Link, Petra Schwer, Wilderich Tuschmann, Enrico Leuzinger, Roman Sauer</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form einer schriftlichen Gesamtprüfung von 120 min.

Modulnote

Die Modulnote ist die Note der Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Absolventinnen und Absolventen

- erkennen Wechselwirkungen zwischen Geometrie und Gruppentheorie,
- verstehen grundlegende Strukturen und Techniken der Geometrischen Gruppentheorie und können diese nennen, diskutieren und anwenden,
- kennen und verstehen Konzepte und Resultate aus der Grobgeometrie,
- sind darauf vorbereitet, aktuelle Forschungsarbeiten aus dem Bereich der Geometrischen Gruppentheorie zu lesen.

Inhalt

- Endlich erzeugte Gruppen und Gruppenpräsentationen
- Cayley-Graphen und Gruppenaktionen
- Quasi-Isometrien von metrischen Räumen, quasi-isometrische Invarianten und der Satz von Schwarz-Milnor
- Beispielklassen für Gruppen, z.B. hyperbolische Gruppen, Fuchssche Gruppen, amenable Gruppen, Zopfgruppen, Thompson-Gruppe

Empfehlungen

Anmerkung

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Verantwortung: Tobias Jahnke

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung:
- Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Angewandte und Numerische Mathematik, Optimierung
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung
- Wahlpflichtfach

Zusatzleistungen

Leistungspunkte
- 6

Modulturnus
- Unregelmäßig

Dauer
- 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105919</td>
<td>Geometrische numerische Integration (S. 898)</td>
<td>6</td>
<td>Tobias Jahnke, Marlis Hochbruck</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Mündliche Prüfung im Umfang von ca. 20 Minuten.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele

Inhalt

- Newton’sche Bewegungsgleichung, Lagrange-Gleichungen, Hamiltonsysteme
- Eigenschaften von Hamiltonsystemen: symplektischer Fluss, Energieerhaltung, weitere Erhaltungsgrößen
- Symplektische numerische Verfahren: symplektisches Euler-Verfahren, Störmer-Verlet-Verfahren, symplektische (partitionierte) Runge-Kutta-Verfahren
- Konstruktion von symplektischen Verfahren, z.B. durch Komposition und Splitting
- Backward error analysis und Energieerhaltung über lange Zeitintervalle

In der danach noch verbleibenden Zeit können weiterführende Themen behandelt werden wie z.B.

- KAM-Theorie und lineares Fehlerwachstum
- Verfahren auf Mannigfaltigkeiten (Magnus-Verfahren, Liegruppenmethoden)
- Mechanische Systeme mit Zwangsbedingungen
Trigonometrische Verfahren für oszillatorische Probleme

Modulierte Fourierentwicklungen

Empfehlungen

Anmerkung
Turnus: Mindestens alle zwei Jahre

Arbeitsaufwand
Präsenzzeit: 60 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 120 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
M

Modul: Globale Differentialgeometrie (MATHAG27) [M-MATH-102912]

Verantwortung: Wilderich Tuschmann

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Mathematische Methoden/Wahlbereich Mathematische Methoden/Algebra und Geometrie

Bestandteil von: Wahlpflichtfach

Zusatzleistungen

Leistungspunkte: 8

Modulturnus: Unregelmäßig

Dauer: 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105885</td>
<td>Globale Differentialgeometrie (S. 900)</td>
<td>8</td>
<td>Wilderich Tuschmann, Sebastian Grensing</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 30 Minuten.

Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Absolventinnen und Absolventen

- haben ein tieferes Verständnis exemplarischer Konzepte und Methoden der Globalen Differentialgeometrie und Riemannschen Geometrie erworben,
- sind auf eigenständige Forschung und weiterführende Seminare im Gebiet der Differentialgeometrie vorbereitet.

Inhalt

- Existenz- und Hindernissätze für Metriken mit besonderen Eigenschaften
- Geometrische Endlichkeits- und Klassifikationsresultate
- Geometrische Limiten
- Gromov-Hausdorff- und Lipschitz-Konvergenz Riemannscher Mannigfaltigkeiten

Empfehlungen

Empfehlenswert sind Vorkenntnisse im Rahmen der Vorlesungen „Einführung in Geometrie und Topologie“ bzw. „Elementare Geometrie“ und „Differentialgeometrie“.

Arbeitsaufwand

Gesamter Arbeitsaufwand: 240 Stunden

Präsenzzeit: 90 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Graphentheorie (MATHAG26) [M-MATH-101336]

Verantwortung: Maria Aksenovich
Einrichtung: KIT-Fakultät für Mathematik
Curriculare Verankerung: Wahlpflicht
Bestandteil von: Mathematische Methoden/Wahlbereich Mathematische Methoden/Algebra und Geometrie Wahlpflichtfach Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
<th>Sprache</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
<td>Englisch</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-102273</td>
<td>Graphentheorie (S. 905)</td>
<td>8</td>
<td>Maria Aksenovich, Torsten Ueckerdt</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form einer schriftlichen Prüfung (3h). Durch die erfolgreiche Teilnahme am Übungsbetrieb kann ein Bonus erworben werden. Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note um eine Notenstufe (0,3 oder 0,4). Der Bonus gilt nur für ein Jahr nachdem er erworben wurde.

Modulnote

Die Modulnote ist Note der Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Inhalt

Empfehlungen

Grundkenntnisse in lineare Algebra und Analysis sind empfohlen.

Anmerkung

- Turnus: jedes zweite Jahr im Wintersemester
- Unterrichtssprache: Englisch

Arbeitsaufwand

Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Gruppenwirkungen in der Riemannschen Geometrie (MATHAG40) [M-MATH-102954]

Verantwortung: Wilderich Tuschmann

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Wahlbereich Mathematische Methoden/Algebra und Geometrie

Wahlpflichtfach

Zusatzleistungen

Leistungspunkte 5

Modulturnus Unregelmäßig

Dauer 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105925</td>
<td>Gruppenwirkungen in der Riemannschen Geometrie (S. 906)</td>
<td>5</td>
<td>Wilderich Tuschmann</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung von ca. 20 Minuten.

Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Absolventinnen und Absolventen

- verstehen grundlegende Fragestellungen aus der Theorie der Gruppenwirkungen auf Riemannschen Mannigfaltigkeiten,
- erkennen die Relevanz der Gruppenwirkungen für Probleme in der Riemannschen Geometrie,
- sind grundsätzlich in der Lage, aktuelle Forschungsarbeiten zu lesen und eine Abschlussarbeit auf dem Gebiet der Gruppenwirkungen auf Riemannschen Mannigfaltigkeiten zu schreiben.

Inhalt

Gruppenwirkungen

- Isotropiegruppen, Bahnen, Bahnenraum.
- Scheibensatz.
- Homogene Räume, Kohomogenität-Eins-Mannigfaltigkeiten.

Geometrie der Bahnenräume

- Elementare Alexandrov-Geometrie.
- Positive Krümmung und Abstandsfunktion.

Krümmung und Gruppenwirkungen

- Der Satz von Hsiang-Kleiner und seine Verallgemeinerungen.
- Symmetrierang von Mannigfaltigkeiten mit positiver Krümmung.
Empfehlungen
Die Inhalte des Moduls “Differentialgeometrie” werden empfohlen.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 150 Stunden
Präsenzzeit: 60 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 90 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Homotopietheorie (MATHAG44) [M-MATH-102959]

Verantwortung: Roman Sauer
Einrichtung: KIT-Fakultät für Mathematik
Curriculare Verankerung: Wahlpflicht
Bestandteil von: Mathematische Methoden/Wahlbereich Mathematische Methoden/Algebra und Geometrie
Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
<th>Sprache</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105933</td>
<td>Homotopietheorie (S. 907)</td>
<td>8</td>
<td>Roman Sauer</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Mündliche Prüfung im Umfang von ca. 25 min.

Modulnote
Notenbildung: Note der Prüfung
Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen
- können Homotopiegruppen und Kohomologiealgebren grundlegenden Beispielsräume berechnen
- beherrschen fortgeschrittene Techniken der homologischen Algebra
- können selbstorganisiert und reflexiv arbeiten

Inhalt
- Bordismustheorie
- höhere Homotopiegruppen
- Spektralsequenzen

Empfehlungen

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Wahlpflichtfach

Modul: Informatik (WW4INFO1) [M-WIWI-101472]

Verantwortung: Rudi Studer, Hartmut Schmeck, Andreas Oberweis, York Sure-Vetter, Johann Marius Zöllner

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Operations Management - Datenanalyse - Informatik

Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Wahlpflichtangebot

Wahlpflichtblock; min. 9, max. 10 Leistungspunkte

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102658</td>
<td>Algorithms for Internet Applications (S. 832)</td>
<td>5</td>
<td>Hartmut Schmeck</td>
</tr>
<tr>
<td>T-WIWI-102759</td>
<td>Anforderungsanalyse und -management (S. 834)</td>
<td>4</td>
<td>Ralf Kneuper</td>
</tr>
<tr>
<td>T-WIWI-102651</td>
<td>Angewandte Informatik II - Informatiksysteme für eCommerce (S. 835)</td>
<td>5</td>
<td>Johann Marius Zöllner</td>
</tr>
<tr>
<td>T-WIWI-102680</td>
<td>Computational Economics (S. 848)</td>
<td>4.5</td>
<td>Simon Caton, Pradyumn Kumar Shukla</td>
</tr>
<tr>
<td>T-WIWI-102661</td>
<td>Datenbanksysteme und XML (S. 854)</td>
<td>5</td>
<td>Andreas Oberweis</td>
</tr>
<tr>
<td>T-WIWI-102663</td>
<td>Dokumentenmanagement und Groupwaresysteme (S. 860)</td>
<td>4</td>
<td>Stefan Klink</td>
</tr>
<tr>
<td>T-WIWI-102655</td>
<td>Effiziente Algorithmen (S. 864)</td>
<td>5</td>
<td>Hartmut Schmeck</td>
</tr>
<tr>
<td>T-WIWI-102668</td>
<td>Enterprise Architecture Management (S. 876)</td>
<td>5</td>
<td>Thomas Wolf</td>
</tr>
<tr>
<td>T-WIWI-102666</td>
<td>Knowledge Discovery (S. 919)</td>
<td>5</td>
<td>Rudi Studer</td>
</tr>
<tr>
<td>T-WIWI-102667</td>
<td>Management von Informatik-Projekten (S. 928)</td>
<td>5</td>
<td>Roland Schätzle</td>
</tr>
<tr>
<td>T-WIWI-102697</td>
<td>Modellierung von Geschäftsprozessen (S. 943)</td>
<td>5</td>
<td>Andreas Oberweis</td>
</tr>
<tr>
<td>T-WIWI-102679</td>
<td>Naturinspirierte Optimierungsverfahren (S. 947)</td>
<td>5</td>
<td>Pradyumn Kumar Shukla</td>
</tr>
<tr>
<td>T-WIWI-102659</td>
<td>Organic Computing (S. 973)</td>
<td>5</td>
<td>Hartmut Schmeck</td>
</tr>
<tr>
<td>T-WIWI-102874</td>
<td>Semantic Web Technologien (S. 998)</td>
<td>5</td>
<td>Rudi Studer, Andreas Harth</td>
</tr>
<tr>
<td>T-WIWI-105801</td>
<td>Service Oriented Computing (S. 1019)</td>
<td>5</td>
<td>Barry Norton, Sudhir Agarwal, Rudi Studer</td>
</tr>
<tr>
<td>T-WIWI-102845</td>
<td>Smart Energy Distribution (S. 1023)</td>
<td>4</td>
<td>Hartmut Schmeck</td>
</tr>
<tr>
<td>T-WIWI-102895</td>
<td>Software-Qualitätsmanagement (S. 1028)</td>
<td>5</td>
<td>Andreas Oberweis</td>
</tr>
<tr>
<td>T-WIWI-102766</td>
<td>Spezialvorlesung Betriebliche Informationssysteme (S. 1032)</td>
<td>5</td>
<td>Andreas Oberweis</td>
</tr>
<tr>
<td>T-WIWI-102657</td>
<td>Spezialvorlesung Effiziente Algorithmen (S. 1033)</td>
<td>5</td>
<td>Hartmut Schmeck</td>
</tr>
<tr>
<td>T-WIWI-102678</td>
<td>Spezialvorlesung Software- und Systemsengineering (S. 1034)</td>
<td>5</td>
<td>Andreas Oberweis</td>
</tr>
<tr>
<td>T-WIWI-102671</td>
<td>Spezialvorlesung Wissensmanagement (S. 1035)</td>
<td>5</td>
<td>Rudi Studer</td>
</tr>
<tr>
<td>T-WIWI-102669</td>
<td>Strategisches Management der betrieblichen Informationsverarbeitung (S. 1061)</td>
<td>5</td>
<td>Thomas Wolf</td>
</tr>
<tr>
<td>T-WIWI-103112</td>
<td>Web Science (S. 1085)</td>
<td>5</td>
<td>York Sure-Vetter</td>
</tr>
<tr>
<td>T-WIWI-102662</td>
<td>Workflow-Management (S. 1086)</td>
<td>5</td>
<td>Andreas Oberweis</td>
</tr>
<tr>
<td>T-WIWI-103523</td>
<td>Praktikum Informatik (S. 982)</td>
<td>4</td>
<td>Rudi Studer, Hartmut Schmeck, Andreas Oberweis, York Sure-Vetter, Johann Marius Zöllner</td>
</tr>
</tbody>
</table>
Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form von Teilprüfungen (nach §4(2), 1-3 SPO) über die gewählten Lehrveranstaltungen des Moduls, mit denen in Summe die Mindestanforderung an Leistungspunkten erfüllt ist.

In jeder der ausgewählten Teilprüfungen müssen zum Bestehen die Mindestanforderungen erreicht werden. Wenn jede der Teilprüfungen bestanden ist, wird die Gesamtnote des Moduls aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Die Prüfungen werden in jedem Semester angeboten und können zu jedem ordentlichen Prüfungstermin wiederholt werden. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Bitte beachten Sie folgende Informationen zu den Teilleistungen von Prof. Dr. H. Schmeck:

Voraussetzungen

Es darf nur eine der belegten Lehrveranstaltungen ein Praktikum sein.

Qualifikationsziele

Der/die Studierende

- hat die Fähigkeit, Methoden und Instrumente in einem komplexen Fachgebiet zu beherrschen und Innovationsfähigkeit bezüglich der eingesetzten Methoden zu demonstrieren,
- kennt die Grundlagen und Methoden im Kontext ihrer Anwendungsmöglichkeiten in der Praxis,
- ist in der Lage, auf der Basis eines grundlegenden Verständnisses der Konzepte und Methoden der Informatik, die heute im Berufsleben auf ihn/sie zukommenden, rasanten Entwicklungen im Bereich der Informatik schnell zu erfassen und richtig einzusetzen,
- ist in der Lage, Argumente für die Problemlösung zu finden und zu vertreten.

Inhalt

Arbeitsaufwand

Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 Credits). Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls. Dabei beträgt der Arbeitsaufwand für Lehrveranstaltungen mit 5 Credits ca. 150h, für Lehrveranstaltungen mit 4.5 Credits ca. 135h, für Lehrveranstaltungen mit 4 Credits ca. 120h und für Lehrveranstaltungen mit 3 Credits ca. 90h.

Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.
Modul: Innovation und Wachstum (WW4VWLIWW1) [M-WIWI-101478]

Verantwortung: Ingrid Ott

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Finance - Risk Management - Managerial Economics
Wahlpflichtfach
Zusatzleistungen

Leistungspunkte 9
Modulturnus Jedes Semester
Dauer 1 Semester

Wahlpflichtangebot
Wahlpflichtblock; min. 9, max. 10 Leistungspunkte

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102840</td>
<td>Innovationstheorie und -politik (S. 909)</td>
<td>4,5</td>
<td>Ingrid Ott</td>
</tr>
<tr>
<td>T-WIWI-102785</td>
<td>Endogene Wachstumstheorie (S. 872)</td>
<td>4,5</td>
<td>Ingrid Ott</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Voraussetzungen
Keine

Qualifikationsziele
Der/ die Studierende

- kennt die wesentlichen Techniken zur Analyse statischer und dynamischer Optimierungsmodelle, die im Rahmen von mikro- und makroökonomischen Theorien angewendet werden
- lernt, die herausragende Rolle von Innovationen für das gesamtwirtschaftliche Wachstum sowie die Wohlfahrt zu verstehen
- ist in der Lage, die Bedeutung alternativer Anreizmechanismen für die Entstehung und Verbreitung von Innovationen zu identifizieren
- kann begründen, in welchen Fällen Markteingriffe durch den Staat, bspw. in Form von Steuern und Subventionen legitimiert werden können und sie vor dem Hintergrund wohlfahrtsökonomischer Maßstäbe bewerten

Inhalt
Das Modul umfasst Veranstaltungen, die sich im Rahmen mikro- und makroökonomischer Theorien mit Fragestellungen zu Innovation und Wachstum auseinandersetzen. Die dynamische Analyse ermöglicht es, die Konsequenzen individueller Entscheidungen im Zeitablauf zu analysieren und so insbesondere das Spannungsverhältnis zwischen statischer und dynamischer Effizienz zu verstehen. In diesem Kontext wird auch analysiert, welche Politik bei Vorliegen von Marktvorsagen geeignet ist, um korrigierend in das Marktgeschehen einzugreifen und so die Wohlfahrt zu erhöhen.

Empfehlungen
Arbeitsaufwand
Gesamtaufwand bei 9 Leistungspunkten: ca. 270 Stunden
Präsenzzeit pro gewählter Veranstaltung: 3x14h
Vor-/Nachbereitung pro gewählter Veranstaltung: 3x14h
Rest: Prüfungsvorbereitung
Die genaue Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.
WAHLPFLETFACH

M Modul: Insurance Management I (WW4BWLFBV6) [M-WIWI-101469]

Verantwortung: Ute Werner
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Curriculare Verankerung: Wahlpflicht

Bestandteil von: Finance - Risk Management - Managerial Economics
Wahlpflichtfach
Zusatzeleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Wahlpflichtangebot

Wahlpflichtblock; min. 9, max. 9 Leistungspunkte

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102603</td>
<td>Principles of Insurance Management (S. 987)</td>
<td>4,5</td>
<td>Ute Werner</td>
</tr>
<tr>
<td>T-WIWI-102601</td>
<td>Insurance Marketing (S. 911)</td>
<td>4,5</td>
<td>Edmund Schwake</td>
</tr>
<tr>
<td>T-WIWI-102648</td>
<td>Insurance Production (S. 912)</td>
<td>4,5</td>
<td>Ute Werner</td>
</tr>
<tr>
<td>T-WIWI-102637</td>
<td>Current Issues in the Insurance Industry (S. 852)</td>
<td>2</td>
<td>Wolf-Rüdiger Heilmann</td>
</tr>
<tr>
<td>T-WIWI-102636</td>
<td>Insurance Risk Management (S. 913)</td>
<td>2,5</td>
<td>Harald Maser</td>
</tr>
<tr>
<td>T-WIWI-102797</td>
<td>P&C Insurance Simulation Game (S. 976)</td>
<td>3</td>
<td>Ute Werner</td>
</tr>
<tr>
<td>T-WIWI-102649</td>
<td>Risk Communication (S. 997)</td>
<td>4,5</td>
<td>Ute Werner</td>
</tr>
<tr>
<td>T-WIWI-102841</td>
<td>Modelling, Measuring and Managing of Extreme Risks (S. 944)</td>
<td>2,5</td>
<td>Ute Werner</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Voraussetzungen

Keine

Qualifikationsziele

Der/die Studierende

- kennt und versteht den zufallsabhängigen Charakter der Dienstleistungserstellung in Versicherungsunternehmen,
- kann geeignete Handlungsoptionen zu wichtigen betriebswirtschaftlichen Funktionen in Versicherungsunternehmen auswählen und kombinieren.
- kennt die wirtschaftlichen, rechtlichen und soziopolitischen Rahmenbedingungen des Wirtschaftens im Versicherungsunternehmen.

Inhalt

Anmerkung

Arbeitsaufwand
Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 Credits). Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls. Dabei beträgt der Arbeitsaufwand für Lehrveranstaltungen mit 4,5 Credits ca. 135h.

Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.
Modul: Integralgleichungen (MATHAN07) [M-MATH-102874]

Verantwortung: Frank Hettlich

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Analysis
Mathematische Methoden/Wahlpflichtfach

Zusatzleistungen

Leistungspunkte

Modulturnus

Dauer

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105834</td>
<td>Integralgleichungen (S. 914)</td>
<td>8</td>
<td>Tilo Arens, Andreas Kirsch, Frank Hettlich</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 30min.).

Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden können Integralgleichungen klassifizieren und hinsichtlich Existenz und Eindeutigkeit mittels Methoden der Störungstheorie und der Fredholmtheorie untersuchen. Beweisideen der Herleitung der Fredholmtheorie sowie der Störungstheorie insbesondere bei Faltungsintegralgleichungen können sie beschreiben und erläutern. Darüberhinaus können die Studierenden klassische Randwertprobleme zu gewöhnlichen linearen Differentialgleichungen und zur Potentialtheorie durch Integralgleichungen formulieren und analysieren.

Inhalt

- Riesz- und Fredholmtheorie
- Fredholmsche und Volterrasche Integralgleichungen
- Anwendungen in der Potentialtheorie
- Faltungsungleichungen

Empfehlungen

Folgende Module sollten bereits belegt worden sein:
Lineare Algebra 1+2
Analysis 1-3

Arbeitsaufwand

Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden

Wirtschaftsmathematik (M.Sc.)

Modulhandbuch mit Stand 04.08.2016 für Wintersemester 16/17
WAHLPFlichtfach

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Inverse Probleme (MATHNM06) [M-MATH-102890]

Verantwortung: Andreas Kirsch

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von:
- Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Analysis
- Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Angewandte und Numerische Mathematik, Optimierung
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Analysis
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung
- Wahlpflichtfach
- Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105835</td>
<td>Inverse Probleme (S. 917)</td>
<td>8</td>
<td>Andreas Rieder, Tilo Arens, Andreas Kirsch, Frank Hettlich</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung von ca. 30 Minuten Dauer.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele

Inhalt
- Lineare Gleichungen 1. Art
- Schlecht gestellte Probleme
- Regularisierungstheorie
- Tikhonov Regularisierung bei linearen Gleichungen
- Iterative Regularisierungsverfahren
- Beispiele schlecht gestellter Probleme

Empfehlungen
Folgende Module sollten bereits belegt worden sein:
- Lineare Algebra 1+2
- Analysis 1-3
- Funktionalanalyse

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
• Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

• Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
• Bearbeitung von Übungsaufgaben
• Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
• Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Klassische Methoden für partielle Differentialgleichungen (MATHAN08) [M-MATH-102870]

Verantwortung: Michael Plum
Einrichtung: KIT-Fakultät für Mathematik
Curriculare Verankerung: Wahlpflicht
Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Analysis
Mathematische Methoden/Wahlbereich Mathematische Methoden/Analysis
Wahlpflichtfach
Zusatzleistungen

Leistungspunkte 8
Modulturnus Jedes Wintersemester
Dauer 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105832</td>
<td>Klassische Methoden für partielle Differentialgleichungen (S. 918)</td>
<td>8</td>
<td>Michael Plum, Wolfgang Reichel, Jens Rottmann-Matthes, Dirk Hundertmark, Roland Schnaubelt, Lutz Weis, Tobias Lamm</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer schriftlichen Gesamtprüfung (120 min).

Modulnote
Die Modulnote ist die Note der Prüfung.

Voraussetzungen
Keine

Qualifikationsziele

Inhalt
- Beispiele partieller Differentialgleichungen
- Wellengleichung
- Laplace- und Poisson-Gleichung
- Wärmeleitungsgleichung
- Klassische Lösungsmethoden

Empfehlungen
Analysis 1+2+3
Lineare Algebra 1+2

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung
Selbststudium: 150 Stunden

Wirtschaftsmathematik (M.Sc.)
Modulhandbuch mit Stand 04.08.2016 für Wintersemester 16/17

492
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Kombinatorik (MATHAG37) [M-MATH-102950]

Verantwortung: Maria Aksenovich

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung:
- Wahlpflicht
- Bestandteil von: Mathematische Methoden/Wahlbereich Mathematische Methoden/Algebra und Geometrie
- Wahlpflichtfach
- Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105916</td>
<td>Kombinatorik (S. 920)</td>
<td>8</td>
<td>Maria Aksenovich, Torsten Ueckerdt</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form einer schriftlichen Prüfung (3h).

Durch die erfolgreiche Teilnahme am Übungsbetrieb kann ein Bonus erworben werden. Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note um eine Notenstufe (0,3 oder 0,4). Der Bonus gilt nur für ein Jahr nachdem er erworben wurde.

Modulnote

Die Modulnote ist Note der schriftlichen Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Inhalt

Empfehlungen

Grundkenntnisse in lineare Algebra und Analysis sind empfohlen.

Anmerkung

- Turnus: jedes zweite Jahr im Sommersemester
- Unterrichtssprache: Englisch

Arbeitsaufwand

Gesamt Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
• Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

• Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
• Bearbeitung von Übungsaufgaben
• Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
• Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Kombinatorik in der Ebene (MATHAG28) [M-MATH-102925]

Verantwortung: Maria Aksenovich

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Wahlbereich Mathematische Methoden/Algebra und Geometrie

Zusatzleistungen

Leistungspunkte: 7
Modulturnus: Unregelmäßig
Dauer: 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105895</td>
<td>Kombinatorik in der Ebene (S. 921)</td>
<td>7</td>
<td>Maria Aksenovich, Torsten Ueckerdt</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 30 min.)

Modulnote

Notenbildung: Note der Prüfung

Voraussetzungen

Keine

Qualifikationsziele

Inhalt

Empfehlungen

Grundkenntnisse in linearer Algebra, Kombinatorik und Graphentheorie sind empfohlen.

Anmerkung

Unterrichtssprache: Englisch

Arbeitsaufwand

Gesamter Arbeitsaufwand: 210 Stunden
Präsenzzeit: 75 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 135 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Komplexe Analysis (MATHAN16) [M-MATH-102878]

Verantwortung: Christoph Schmoeger

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung:
- Wahlpflicht
- Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Analysis
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Analysis
- Wahlpflichtfach
- Zusatzleistungen

### Leistungspunkte	Modulturnus	Dauer
8 | Unregelmäßig | 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105849</td>
<td>Komplexe Analysis (S. 922)</td>
<td>8</td>
<td>Michael Plum, Christoph Schmoeger, Wolfgang Reichel, Gerd Herzog, Roland Schnaubelt, Lutz Weis</td>
</tr>
</tbody>
</table>

Erfolgkontrolle(n)
Die Modulprüfung Funktionentheorie II erfolgt in Form einer mündlichen Gesamtprüfung (ca. 30 min)

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen können die Gründzüge der unten genannten Inhalte nennen, erörtern und anwenden.

Inhalt
- unendliche Produkte
- Satz von Mittag-Leffler
- Satz von Montel
- Riemannscher Abbildungssatz
- Konforme Abbildungen
- schlichte Funktionen
- Automorphismen spezieller Gebiete
- harmonische Funktionen
- Schwarzsches Spiegelungsprinzip
- reguläre und singuläre Punkte von Potenzreihen

Empfehlungen
Folgende Module sollten bereits belegt worden sein:
- Funktionentheorie

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung
Selbststudium: 150 Stunden
• Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
• Bearbeitung von Übungsaufgaben
• Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
• Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Konvexe Geometrie (MATHAG07) [M-MATH-102864]

Verantwortung: Daniel Hug

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Wahlbereich Mathematische Methoden/Algebra und Geometrie Wahlpflichtfach Zusatzleistungen

Leistungspunkte Modulturnus Dauer
8 Unregelmäßig 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105831</td>
<td>Konvexe Geometrie (S. 924)</td>
<td>8</td>
<td>Daniel Hug</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 30 min).

Modulnote
Notenbildung: Note der Prüfung

Voraussetzungen
Keine

Qualifikationsziele
Die Studierenden
- kennen grundlegende kombinatorische, geometrische und analytische Eigenschaften von konvexen Mengen und konvexen Funktionen und wenden diese auf verwandte Problemstellungen an,
- sind mit grundlegenden geometrischen und analytischen Ungleichungen für Funktionale konvexer Mengen und ihren Anwendungen auf geometrische Extremalprobleme vertraut und können zentrale Beweisideen und Beweistechniken angeben,
- kennen ausgewählte Integralformeln für konvexe Mengen und die hierfür erforderlichen Grundlagen über invariante Maße.
- können selbstorganisiert und reflexiv arbeiten

Inhalt
1. Konvexe Mengen
 1.1. Kombinatorische Eigenschaften
 1.2. Trennungs- und Stützeigenschaften
 1.3. Extremale Darstellungen
2. Konvexe Funktionen
 2.1. Grundlegende Eigenschaften
 2.2. Regularität
 2.3. Stützfunktion
3. Brunn-Minkowski-Theorie
 3.1. Hausdorff-Metrik
 3.2. Volumen und Oberfläche
 3.3. Gemischte Volumina
4. Geometrische Ungleichungen
5. Oberflächenmaße
6. Projektionsfunktionen
7. Integralgeometrische Formeln
4.1. Invariante Maße
4.2. Projektions- und Schnittformeln

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: L2-Invarianten (MATHAG38) [M-MATH-102952]

Verantwortung: Holger Kammeyer

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Analysis
Mathematische Methoden/Wahlbereich Mathematische Methoden/Algebra und Geometrie
Mathematische Methoden/Wahlbereich Mathematische Methoden/Analysis
Wahlpflichtfach
Zusatzleistungen

Leistungspunkte 5 Modulturnus Unregelmäßig Dauer 1 Semester

Pflichtbestandteile

Kennung Teilleistung LP Verantwortung
T-MATH-105924 L2-Invarianten (S. 927) 5 Holger Kammeyer, Roman Sauer

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung von ca. 25 Minuten.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen
-verstehen Motivation und Umsetzung der Definitionen von L2-Invarianten,
-kennen Methodik und Werkzeuge, sie in einfachen Beispielen zu berechnen,
-wissen um die Relevanz der L2-Invarianten in verschiedenen mathematischen Gebieten und können sie in diesen Zusammenhängen einsetzen.

Inhalt
-Hilbertmoduln und von-Neumann-Dimension
-L2-Betti-Zahlen von CW-Komplexen und Gruppen
-Novikov-Shubin-Invarianten
-Fuglede-Kadison-Determinante und L2-Torsion

Empfehlungen
Inhalte der Module “Einführung in Geometrie und Topologie” bzw. “Elementare Geometrie” (Fundamentalgruppe und Überlagerungen) sowie “Algebraische Topologie” (CW-Komplexe, Kettenkomplexe, Homologie) werden benötigt.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 150 Stunden
Präsenzzeit: 60 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 90 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Marketing Management (WW4BWLMAR5) [M-WIWI-101490]

Verantwortung: Martin Klarmann

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Curriculare Verankerung:
Wahlpflicht

Bestandteil von:
Operations Management - Datenanalyse - Informatik
Wahlpflichtfach
Zusatzleistungen

Leistungspunkte: 9

Modulturnus:
Jedes Sommersemester

Dauer: 1 Semester

Wahlpflichtangebot
Wahlpflichtblock; min. 1 Teilleistungen, min. 9, max. 9 Leistungspunkte

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102812</td>
<td>Produkt- und Innovationsmanagement (S. 988)</td>
<td>3</td>
<td>Martin Klarmann</td>
</tr>
<tr>
<td>T-WIWI-102811</td>
<td>Marktforschung (S. 934)</td>
<td>4,5</td>
<td>Martin Klarmann</td>
</tr>
<tr>
<td>T-WIWI-102619</td>
<td>Verhaltenswissenschaftliches Marketing (S. 1071)</td>
<td>4,5</td>
<td>Bruno Neibecker</td>
</tr>
<tr>
<td>T-WIWI-102618</td>
<td>Strategische und innovative Marketingentscheidungen (S. 1059)</td>
<td>4,5</td>
<td>Bruno Neibecker</td>
</tr>
<tr>
<td>T-WIWI-102832</td>
<td>Business Plan Workshop (S. 844)</td>
<td>3</td>
<td>Martin Klarmann, Orestis Terzidis</td>
</tr>
<tr>
<td>T-WIWI-102835</td>
<td>Marketing Strategy Planspiel (S. 930)</td>
<td>1,5</td>
<td>Martin Klarmann</td>
</tr>
<tr>
<td>T-WIWI-102842</td>
<td>Strategic Brand Management (S. 1055)</td>
<td>1,5</td>
<td>Joachim Blickhäuser, Martin Klarmann</td>
</tr>
<tr>
<td>T-WIWI-102901</td>
<td>Open Innovation - Konzepte, Methoden und Best Practices (S. 964)</td>
<td>1,5</td>
<td>Alexander Hahn</td>
</tr>
<tr>
<td>T-WIWI-102902</td>
<td>Marketingkommunikation (S. 932)</td>
<td>4,5</td>
<td>Ju-Young Kim</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen

Qualifikationsziele
Studierende
- verfügen über fortgeschrittene Kenntnisse zentraler Marketinginhalte
- verfügen über einen vertieften Einblick in wichtige Instrumente des Marketing
- kennen und verstehen eine große Zahl an strategischen Konzepten und können diese einsetzen
- sind fähig, ihr vertieftes Marketingwissen sinnvoll in einem praktischen Kontext anzuwenden
- kennen eine Vielzahl von qualitativen und quantitativen Verfahren zur Vorbereitung von strategischen Entscheidungen im Marketing
- haben die nötigen theoretischen Kenntnisse, die für das Verfassen einer Masterarbeit im Bereich Marketing grundlegend sind
- haben die theoretischen Kenntnisse und Fertigkeiten, die vonnöten sind, um in der Marketingabteilung eines Unternehmens zu arbeiten oder mit dieser zusammenzuarbeiten
Inhalt
Ziel dieses Moduls ist es, zentrale Marketinginhalte im Rahmen des Masterstudiums zu vertiefen. Während im Bachelorstudium der Fokus auf Grundlagen liegt, gibt das Masterprogramm einen tieferen Einblick in wichtige Instrumente des Marketing. Studierende können im Rahmen dieses Moduls zwischen folgenden Kursen wählen:

Im Rahmen der Veranstaltung “Produkt- und Innovationsmanagement” erfahren Studenten Inhalte des Bereiches Produktpolitik. Der Kurs geht dabei auf strategische Konzepte des Innovationsmanagements ein, auf einzelne Stufen des Innovationsprozesses, sowie auf das Management bestehender Produkte.

Die Veranstaltung “Verhaltenswissenschaftliches Marketing” vermittelt Paradigmen der verhaltenswissenschaftlichen, empirischen Marketingforschung sowie sozialpsychologische und marketingtheoretische Lösungsansätze zur Gestaltung der Unternehmenskommunikation.

Der Kurs “Strategische und Innovative Marketingentscheidungen” konzentriert sich unter anderem auf die strategische Ableitung richtiger Entscheidungen sowohl bei Planungskonzepten im Marketingmanagement, als auch bei der Wahl der Unternehmensstrategie im globalen Wettbewerb sowie bei Entscheidungen in Innovationsprozessen.

Im “Business Plan Workshop” entwickeln die Studenten in Arbeitsgruppen Businesspläne und lernen bereits erlerntes Wissen sinnvoll einzusetzen, um strategische Entscheidungen treffen zu können.

Das “Marketing and Strategy Planspiel” ist sehr praxisorientiert ausgestaltet und stellt die Gruppen vor reale Entscheidungssituationen, in denen die Studenten ihr analytisches Entscheidungsvermögen einsetzen müssen, um strategische Entscheidungen in Marketingkontexten treffen zu können.

Empfehlungen
Keine

Anmerkung

Nähere Informationen erhalten Sie direkt bei der Forsergruppe Marketing & Vertrieb (marketing.ism.kit.edu).

Arbeitsaufwand
Gesamtaufwand bei 9 Leistungspunkten: ca. 270 Stunden
Die genaue Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.
Modul: Markovsche Entscheidungsprozesse (MATHST11) [M-MATH-102907]

Verantwortung: Nicole Bäuerle

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Mathematische Methoden/Stochastik
Mathematische Methoden/Wahlbereich Mathematische Methoden/Stochastik
Wahlpflichtfach
Zusatzleistungen

Leistungspunkte Modulturnus Dauer
5 Unregelmäßig 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105921</td>
<td>Markovsche Entscheidungsprozesse (S. 933)</td>
<td>5</td>
<td>Nicole Bäuerle</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 20 min).

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen können

- Die mathematischen Grundlagen der Markovschen Entscheidungsprozesse nennen und Lösungsverfahren anwenden,
- stochastische, dynamische Optimierungsprobleme als Markovschen Entscheidungsprozess formulieren,
- selbstorganisiert und reflexiv arbeiten.

Inhalt

- MDPs mit endlichem Horizont
 - Die Bellman Gleichung
 - Strukturierte Probleme
 - Anwendungsbeispiele

- MDPs mit unendlichem Horizont
 - kontrahierende MDPs
 - positive MDPs
 - Howards Politikverbesserung
 - Lösung durch lineare Programme

- Stopp-Probleme
 - endlicher und unendlicher Horizont
 - One-step-look-ahead-Regel

Empfehlungen
Das Modul “Wahrscheinlichkeitstheorie” sollte bereits absolviert sein. Das Modul “Markovsche Ketten” ist hilfreich.
Arbeitsaufwand
Gesamter Arbeitsaufwand: 150 Stunden
Präsenzzeit: 60 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 90 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Mathematische Methoden in Signal- und Bildverarbeitung (MATHNM16) [M-MATH-102897]

Verantwortung: Andreas Rieder

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Angewandte und Numerische Mathematik, Optimierung Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung Wahlpflichtfach Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105862</td>
<td>Mathematische Methoden in Signal- und Bildverarbeitung (S. 937)</td>
<td>8</td>
<td>Andreas Rieder</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 30 Minuten.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen kennen die wesentlichen mathematischen Werkzeuge der Signal- und Bildverarbeitung sowie deren Eigenschaften. Sie sind in der Lage, diese Werkzeuge adäquat anzuwenden, die erhaltenen Resultate zu hinterfragen und zu beurteilen.

Inhalt
- Digitale und analoge Systeme
- Integrale Fourier-Transformation
- Abtastung und Auflösung
- Diskrete und schnelle Fourier-Transformation
- Nichtuniforme Abtastung
- Anisotrope Diffusionsfilter
- Variationsmethoden

Empfehlungen
Das Modul “Funktionalanalyse” ist hilfreich.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
• Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

• Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
• Bearbeitung von Übungsaufgaben
• Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
• Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Mathematische Modellierung und Simulation in der Praxis (MATHNM27) [M-MATH-102929]

Verantwortung: Gudrun Thäter
Einrichtung: KIT-Fakultät für Mathematik
Curriculare Verankerung: Wahlpflicht
Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Angewandte und Numerische Mathematik, Optimierung
Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung
Wahlpflichtfach
Zusatzleistungen

Leistungspunkte 4 Modulturnus Unregelmäßig Dauer 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105889</td>
<td>Mathematische Modellierung und Simulation in der Praxis (S. 938)</td>
<td>4</td>
<td>Gudrun Thäter</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 20 Minuten.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen können
- Projektorientiert arbeiten,
- Überblickswissen verknüpfen,
- Typische Modellansätze weiterentwickeln

Inhalt
Mathematisches Denken (als Modellieren) und mathematische Techniken (als Handwerkszeug) treffen auf Anwendungsprobleme wie:
- Differenzengleichungen
- Bevölkerungsmodelle
- Verkehrsflussmodelle
- Wachstumsmodelle
- Spieltheorie
- Chaos
- Probleme aus der Mechanik
Empfehlungen
Analysis I-III, Numerische Mathematik 1,2 sowie Numerische Methoden für differentialgleichungen bzw. vergleichbare HM-Vorlesungen.

Anmerkung
Die Veranstaltung findet immer auf Englisch statt.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 120 Stunden
Präsenzzeit: 45 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 75 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
M

Modul: Mathematische Optimierung (WW4OR9) [M-WIWI-101473]

Verantwortung: Oliver Stein

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Operations Management - Datenanalyse - Informatik
Wahlpflichtfach
Zusatzleistungen

Leistungspunkte

<table>
<thead>
<tr>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jedes Semester</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Wahlpflichtangebot

Wahlpflichtblock; min. 9, max. 10 Leistungspunkte

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102719</td>
<td>Gemischt-ganzzahlige Optimierung I (S. 892)</td>
<td>4,5</td>
<td>Oliver Stein</td>
</tr>
<tr>
<td>T-WIWI-102720</td>
<td>Gemischt-ganzzahlige Optimierung II (S. 894)</td>
<td>4,5</td>
<td>Oliver Stein</td>
</tr>
<tr>
<td>T-WIWI-102723</td>
<td>Gemischt-ganzzahlige Optimierung I und II (S. 893)</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102726</td>
<td>Globale Optimierung I (S. 901)</td>
<td>4,5</td>
<td>Oliver Stein</td>
</tr>
<tr>
<td>T-WIWI-102727</td>
<td>Globale Optimierung II (S. 903)</td>
<td>4,5</td>
<td>Oliver Stein</td>
</tr>
<tr>
<td>T-WIWI-103638</td>
<td>Globale Optimierung I und II (S. 902)</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102723</td>
<td>Graph Theory and Advanced Location Models (S. 904)</td>
<td>4,5</td>
<td>Stefan Nickel</td>
</tr>
<tr>
<td>T-WIWI-102856</td>
<td>Konvexe Analysis (S. 923)</td>
<td>4,5</td>
<td>Oliver Stein</td>
</tr>
<tr>
<td>T-WIWI-103635</td>
<td>Vorleistung zu Nichtlineare Optimierung I (Master) (S. 1076)</td>
<td>4,5</td>
<td>Oliver Stein</td>
</tr>
<tr>
<td>T-WIWI-102724</td>
<td>Nichtlineare Optimierung I (S. 949)</td>
<td>4,5</td>
<td>Oliver Stein</td>
</tr>
<tr>
<td>T-WIWI-103636</td>
<td>Vorleistung zu Nichtlineare Optimierung II (Master) (S. 1078)</td>
<td>4,5</td>
<td>Oliver Stein</td>
</tr>
<tr>
<td>T-WIWI-102725</td>
<td>Nichtlineare Optimierung II (S. 951)</td>
<td>4,5</td>
<td>Oliver Stein</td>
</tr>
<tr>
<td>T-WIWI-103637</td>
<td>Nichtlineare Optimierung I und II (S. 950)</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102855</td>
<td>Parametrische Optimierung (S. 978)</td>
<td>4,5</td>
<td>Oliver Stein</td>
</tr>
<tr>
<td>T-WIWI-102721</td>
<td>Spezialvorlesung zur Optimierung I (S. 1036)</td>
<td>4,5</td>
<td>Oliver Stein</td>
</tr>
<tr>
<td>T-WIWI-102722</td>
<td>Spezialvorlesung zur Optimierung II (S. 1037)</td>
<td>4,5</td>
<td>Oliver Stein</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form von Teilprüfungen über die gewählten Lehrveranstaltungen des Moduls, mit denen in Summe die Mindestanforderung an Leistungspunkten erfüllt ist. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Voraussetzungen

Keine

Qualifikationsziele

Der/die Studierende
benennt und beschreibt die Grundbegriffe von fortgeschrittenen Optimierungsverfahren, insbesondere aus der konti-
nuierlichen und gemischt-ganzzahligen Optimierung, der Standorttheorie und der Graphentheorie,
kennt die für eine quantitative Analyse unverzichtbaren Methoden und Modelle,
modelliert und klassifiziert Optimierungsprobleme und wählt geeignete Lösungsverfahren aus, um auch anspruchsvolle
Optimierungsprobleme selbständig und gegebenenfalls mit Computerhilfe zu lösen,
validiert, illustriert und interpretiert erhaltene Lösungen,
erkennt Nachteile der Lösungsmethoden und ist gegebenenfalls in der Lage, Vorschläge für Ihre Anpassung an
Praxisprobleme zu machen.

Inhalt
Der Schwerpunkt des Moduls liegt auf der Vermittlung sowohl theoretischer Grundlagen als auch von Lösungsverfahren
für Optimierungsprobleme mit kontinuierlichen und gemischt-ganzzahligen Entscheidungsvariablen, für Standortprobleme
und für Probleme auf Graphen.

Anmerkung
Die Lehrveranstaltungen werden zum Teil unregelmäßig angeboten. Das für drei Studienjahre im Voraus geplante Lehr-
angebot kann im Internet (www.ior.kit.edu) nachgelesen werden.
Bei den Vorlesungen von Professor Stein ist jeweils eine Prüfungsvorleistung (30% der Übungspunkte) zu erbringen. Die
jeweiligen Lehrveranstaltungsbeschreibungen enthalten weitere Einzelheiten.

Arbeitsaufwand
Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 Credits). Die Aufteilung erfolgt nach den
Leistungspunkten der Lehrveranstaltungen des Moduls.
Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und
Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen
durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.
Modul: Mathematische Statistik (MATHST15) [M-MATH-102909]

Verantwortung: Bernhard Klar
Einrichtung: KIT-Fakultät für Mathematik
Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Stochastik
Mathematische Methoden/Wahlbereich Mathematische Methoden/Stochastik
Wahlpflichtfach
Zusatzleistungen

Leistungspunkte 4
Modulturnus Unregelmäßig
Dauer 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105872</td>
<td>Mathematische Statistik (S. 939)</td>
<td>4</td>
<td>Bernhard Klar, Norbert Henze</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 20 min).

Voraussetzungen
Keine

Qualifikationsziele
Die Studierenden
- kennen die grundlegenden Konzepte der mathematischen Statistik,
- können diese bei einfachen Fragestellungen und Beispielen eigenständig anwenden,
- kennen spezifische probabilistische Techniken und können damit Schätz- und Test-Verfahren mathematisch analy-
sieren.

Inhalt
Die Vorlesung behandelt grundlegende Konzepte der mathematischen Statistik, insbesondere die finite Optimalitätstheorie
von Schätzern und Tests. Themen sind:
- Optimale erwartungstreue Schätzer
- Beste lineare erwartungstreue Schätzer
- Cramér-Rao-Schranke in Exponentialfamilien
- Suffizienz und Vollständigkeit
- Satz von Lehmann-Scheffé
- Neyman-Pearson-Tests
- Optimale unverfälschte Tests

Empfehlungen
Die Inhalte des Moduls “Wahrscheinlichkeitstheorie” werden benötigt. Das Modul “Statistik” ist hilfreich.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 120 Stunden
Präsenzzeit: 45 Stunden

Wirtschaftsmathematik (M.Sc.)
Modulhandbuch mit Stand 04.08.2016 für Wintersemester 16/17
Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 75 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
M Modul: Matrixfunktionen (MATHNM39) [M-MATH-102937]

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105906</td>
<td>8</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Verantwortung: Volker Grimm

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von:
- Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Angewandte und Numerische Mathematik, Optimierung
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung
- Wahlpflichtfach
- Zusatzleistungen

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 30 Minuten.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele

Inhalt
Definition von Matrixfunktionen
Approximation an Matrixfunktionen für große Matrixen
Krylov-Verfahren und rationale Krylov-Verfahren
Anwendung auf die numerische Lösung partieller Differentialgleichungen

Empfehlungen
Numerische Mathematik 1 und 2

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung
- Selbststudium: 150 Stunden
 - Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
 - Bearbeitung von Übungsaufgaben
 - Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
 - Vorbereitung auf die studienbegleitende Modulprüfung
M
Modul: Maxwellgleichungen (MATHAN28) [M-MATH-102885]

Verantwortung: Andreas Kirsch

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von:
- Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Analysis
- Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Analysis
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung
- Wahlpflichtfach
- Zusatzleistungen

Leistungspunkte 8
Modulturnus Unregelmäßig
Dauer 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105856</td>
<td>Maxwellgleichungen (S. 942)</td>
<td>8</td>
<td>Tilo Arens, Andreas Kirsch, Frank Hettlich</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung von ca. 30 Minuten Dauer.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Die Studierenden sind in der Lage, die mathematischen Fragestellungen aus der Theorie der Maxwellschen Gleichungen an Beispielen zu erläutern.

Sie können die Hauptsätze wiedergeben, beweisen, auf Spezialfälle anwenden und mit den Eigenschaften einfacherer Differentialgleichungen (z.B. der Helmholtzgleichung) vergleichen.

Inhalt
Spezielle Beispiele von Lösungen der Maxwellgleichungen, Eigenschaften der Lösungen (z.B. Darstellungssätze), Spezialfälle (E-Mode, H-Mode), Randwertaufgaben

Empfehlungen
Erwünscht sind grundlegende Kenntnisse aus der Funktionalanalyse

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche

Wirtschaftsmathematik (M.Sc.)
Modulhandbuch mit Stand 04.08.2016 für Wintersemester 16/17
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Methodische Grundlagen des OR (WW3OR6) [M-WIWI-101414]

Verantwortung:
Oliver Stein

Einrichtung:
KIT-Fakultät für Wirtschaftswissenschaften

Curriculare Verankerung:
- Operations Management - Datenanalyse - Informatik
- Wahlpflichtfach
- Zusatzleistungen

Leistungspunkte
- Modulturnus: Jedes Semester
- Dauer: 1 Semester

Wahlpflichtangebot
Wahlpflichtblock; min. 1, max. 3 Teilleistungen

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102726</td>
<td>Globale Optimierung I (S. 901)</td>
<td>4,5</td>
<td>Oliver Stein</td>
</tr>
<tr>
<td>T-WIWI-103062</td>
<td>Vorleistung zu Nichtlineare Optimierung I (Bachelor) (S. 1075)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102724</td>
<td>Nichtlineare Optimierung I (S. 949)</td>
<td>4,5</td>
<td>Oliver Stein</td>
</tr>
</tbody>
</table>

Ergänzungsangebot
Wahlpflichtblock; max. 1 Teilleistungen

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102727</td>
<td>Globale Optimierung II (S. 903)</td>
<td>4,5</td>
<td>Oliver Stein</td>
</tr>
<tr>
<td>T-WIWI-103638</td>
<td>Globale Optimierung I und II (S. 902)</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-103060</td>
<td>Vorleistung zu Nichtlineare Optimierung II (Bachelor) (S. 1077)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102725</td>
<td>Nichtlineare Optimierung II (S. 951)</td>
<td>4,5</td>
<td>Oliver Stein</td>
</tr>
<tr>
<td>T-WIWI-103637</td>
<td>Nichtlineare Optimierung I und II (S. 950)</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-103061</td>
<td>Vorleistung zu Standortplanung und strategisches Supply Chain Management (S. 1079)</td>
<td></td>
<td>Stefan Nickel</td>
</tr>
<tr>
<td>T-WIWI-102704</td>
<td>Standortplanung und strategisches Supply Chain Management (S. 1040)</td>
<td>4,5</td>
<td>Stefan Nickel</td>
</tr>
<tr>
<td>T-WIWI-102710</td>
<td>Stochastische Entscheidungsmodelle I (S. 1050)</td>
<td>5</td>
<td>Karl-Heinz Waldmann</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen

Qualifikationsziele
Der/die Studierende

- benennt und beschreibt die Grundbegriffe von Optimierungsverfahren, insbesondere aus der nichtlinearen und aus der globalen Optimierung,
- kennt die für eine quantitative Analyse unverzichtbaren Methoden und Modelle,
modelliert und klassifiziert Optimierungsprobleme und wählt geeignete Lösungsverfahren aus, um auch anspruchsvolle Optimierungsprobleme selbständig und gegebenenfalls mit Computerhilfe zu lösen,
• validiert, illustriert und interpretiert erhaltene Lösungen.

Inhalt
Der Schwerpunkt des Moduls liegt auf der Vermittlung sowohl theoretischer Grundlagen als auch von Lösungsverfahren für Optimierungsprobleme mit kontinuierlichen Entscheidungsvariablen. Die Vorlesungen zur nichtlinearen Optimierung behandeln lokale Lösungskonzepte, die Vorlesungen zur globalen Optimierung die Möglichkeiten zur globalen Lösung.

Anmerkung
Das für drei Studienjahre im Voraus geplante Lehrangebot kann im Internet unter http://www.ior.kit.edu nachgelesen werden.
Bei den Vorlesungen von Professor Stein ist jeweils eine Prüfungsvorleistung (30% der Übungspunkte) zu erbringen. Die jeweiligen Lehrveranstaltungsbeschreibungen enthalten weitere Einzelheiten.

Arbeitsaufwand
Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 Credits). Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.
Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.
M

Modul: Microeconomic Theory (WW4VWL15) [M-WIWI-101500]

Verantwortung: Clemens Puppe

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Finance - Risk Management - Managerial Economics

Wahlpflichtfach

Zusatzleistungen

Leistungspunkte: 9

Sprache: Deutsch

Wahlpflichtangebot

Wahlpflichtblock; min. 1, max. 1 Teilleistungen, min. 9, max. 9 Leistungspunkte

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102609</td>
<td>Advanced Topics in Economic Theory (S. 826)</td>
<td>4,5</td>
<td>Kay Mitusch, Marten Hillebrand</td>
</tr>
<tr>
<td>T-WIWI-102861</td>
<td>Advanced Game Theory (S. 824)</td>
<td>4,5</td>
<td>Karl-Martin Ehrhart, Clemens Puppe, Johannes Philipp Reiß</td>
</tr>
<tr>
<td>T-WIWI-102859</td>
<td>Social Choice Theory (S. 1025)</td>
<td>4,5</td>
<td>Clemens Puppe</td>
</tr>
<tr>
<td>T-WIWI-102613</td>
<td>Auktionstheorie (S. 840)</td>
<td>4,5</td>
<td>Karl-Martin Ehrhart</td>
</tr>
<tr>
<td>T-WIWI-105781</td>
<td>Incentives in Organizations (S. 908)</td>
<td>4,5</td>
<td>Petra Nieken</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden

- sind in der Lage, praktische Problemstellungen der Mikroökonomik mathematisch zu modellieren und im Hinblick auf positive und normative Fragestellungen zu analysieren,
- verstehen die individuellen Anreize und gesellschaftlichen Auswirkungen verschiedener institutioneller ökonomischer Rahmenbedingungen.

Inhalt

Die Studierenden verstehen weiterführende Themen der Wirtschaftstheorie, Spieltheorie und Wohlfahrtsstheorie. Die thematischen Schwerpunkte sind unter anderem die strategische Interaktion in Märkten, kooperative und nichtkooperative Verhandlungen (Advanced Game Theory), Allokation unter asymmetrischer Information und allgemeine Gleichgewichte über einen längeren Zeitraum (Advanced Topics in Economic Theory), sowie Wahlen und die Aggregation von Präferenzen und Urteilen (Social Choice Theory).

Arbeitsaufwand

Gesamtaufwand bei 9 Leistungspunkten: ca. 270 Stunden

Die genaue Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.
Modul: Nichtparametrische Statistik (MATHST16) [M-MATH-102910]

Verantwortung: Norbert Henze

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Stochastik
Mathematische Methoden/Wahlbereich Mathematische Methoden/Stochastik
Wahlpflichtfach
Zusatzleistungen

Leistungspunkte: 4
Modulturnus: Unregelmäßig
Dauer: 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105873</td>
<td>Nichtparametrische Statistik (S. 952)</td>
<td>4</td>
<td>Bernhard Klar, Norbert Henze</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 20 min).

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele

- Absolventinnen und Absolventen können verschiedene nichtparametrische statistische Testmethoden an Hand folgender Beispiele erklären und gegen parametrische Methoden abgrenzen:
 - Einstichproben-Lage-Problem
 - Zweistichproben-Lage-Problem

Sie können die Effizienz verschiedener Tests mittels asymptotischer Methoden vergleichen.

- Sie können verschiedene Abhängigkeitsmaße nennen und gegeneinander abgrenzen.

- Sie können verschiedene nichtparametrische Schätzmethoden an Hand folgender Beispiele nennen und erklären:
 - Dichteschätzung
 - Nichtparametrische Regression

Inhalt

- Ordnungsstatistiken und Quantilsschätzung
- Rang-Statistiken
- Abhängigkeitsmaße
- Nichtparametrische Dichte- und Regressionsschätzung
Empfehlungen
Die Inhalte des Moduls 'Wahrscheinlichkeitsetheorie' werden benötigt. Das Modul 'Asymptotische Stochastik' ist hilfreich.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 120 Stunden
Präsenzzeit: 45 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 75 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Numerische Fortsetzungsmethoden (MATHNM42) [M-MATH-102944]

Verantwortung: Jens Rottmann-Matthes

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Angewandte und Numerische Mathematik, Optimierung
Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung
Wahlpflichtfach
Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105912</td>
<td>Numerische Fortsetzungsmethoden (S. 953)</td>
<td>5</td>
<td>Jens Rottmann-Matthes</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 20-30min.).

Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Absolventinnen und Absolventen können

- grundlegende Verfahren zur Parameterfortsetzung und Bestimmung von Verzweigungspunkten beschreiben und anwenden,
- die benutzten numerischen Algorithmen analysieren,
- selbstständig Verzweigungsdiagramme in konkreten Fällen mit den numerischen Algorithmen erzeugen und interpretieren.

Inhalt

- Beispiele parameterabhängiger Differentialgleichungen
- Prädiktor-Korrektorverfahren zur Parameterfortsetzung
- Detektion von Umkehrpunkten
- Detektion einfacher Verzweigungspunkte
- Newtonverfahren in der Nähe von Verzweigungspunkten

Empfehlungen

Gute Kenntnisse der Linearen Algebra, Analysis, Numerik I und gewöhnlichen Differentialgleichungen

Arbeitsaufwand

Gesamter Arbeitsaufwand: 150 Stunden
Präsenzzeit: 60 Stunden
Wahlprogrammfach

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 90 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Numerische Methoden für Differentialgleichungen (MATHNM03) [M-MATH-102888]

Verantwortung: Tobias Jahnke, Willy Dörfler
Einrichtung: KIT-Fakultät für Mathematik
Curriculare Verankerung: Wahlpflicht
Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Angewandte und Numerische Mathematik, Optimierung
Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung
Wahlpflichtfach
Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teileistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105836</td>
<td>Numerische Methoden für Differentialgleichungen (S. 954)</td>
<td>8</td>
<td>Andreas Rieder, Tobias Jahnke, Marlis Hochbruck, Willy Dörfler, Christian Wieners</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Modulnote
Die Modulnote ist die Note der schriftlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen können

- die grundlegenden Methoden, Techniken und Algorithmen zur Behandlung von Differentialgleichungen nennen, erörtern und anwenden (insbesondere die Stabilität, Konvergenz und Komplexität der numerischen Verfahren)
- Konzepte der Modellierung mit Differentialgleichungen wiedergeben
- Differentialgleichungen numerisch lösen

Inhalt

- Numerische Methoden für Anfangswertaufgaben (Runge-Kutta-Verfahren, Mehrschrittverfahren, Ordnung, Stabilität, steife Probleme)
- Numerische Methoden für Randwertaufgaben (Finite-Differenzen/Finite-Elemente-Verfahren für elliptische Gleichungen zweiter Ordnung)
- Numerische Methoden für Anfangsrandwertaufgaben (Finite-Differenzen/Finite-Elemente-Verfahren für Parabolische Gleichungen und Hyperbolische Gleichungen)

Empfehlungen

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105900</td>
<td>Numerische Methoden für hyperbolische Gleichungen (S. 955)</td>
<td>6</td>
<td>Willy Dörfler</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 25 Minuten.

Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Absolventinnen und Absolventen können

- die grundlegenden Methoden, Techniken und Algorithmen der Behandlung
- hyperbolischer Anfangswertprobleme erklären
- Konzepte der Modellierung mit hyperbolischen Differentialgleichungen wiedergeben
- Einfache skalare oder vektorwertige hyperbolische Gleichungen numerisch lösen

Inhalt

- Modellierung mit Erhaltungsgleichungen
- Schocks, Verdünnungswellen und schwache Lösungen
- Aspekte der Existenz und Regularitätstheorie skalarer Probleme
- Diskretisierung von skalaren Erhaltungsgleichungen
- Eigenschaften und Diskretisierung hyperbolischer Systeme

Empfehlungen

Grundlagenkenntnisse in Finite Element Methoden, in einer Programmiersprache und der Analysis von Randwertproblemen werden benötigt. Kenntnisse in
Funktionalanalysis sind hilfreich.

Arbeitsaufwand

Präsenzzeit: 60 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 120 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
M Modul: Numerische Methoden für Integralgleichungen (MATHNM29) [M-MATH-102930]

Verantwortung: Tilo Arens

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Angewandte und Numerische Mathematik, Optimierung Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung Wahlpflichtfach Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

Kennung | Teilleistung | LP | Verantwortung |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105901</td>
<td>Numerische Methoden für Integralgleichungen (S. 956)</td>
<td>8</td>
<td>Tilo Arens, Andreas Kirsch, Frank Hettlich</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 30 min.). Durch die erfolgreiche Teilnahme am Übungsbetrieb kann ein Bonus erworben werden. Liegt die Note der mündlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note um eine Notenstufe (0,3 oder 0,4).

Modulnote

Die Modulnote ist die Note der mündlichen Prüfung, ggf. modifiziert durch den Bonus aus dem Übungsbetrieb.

Voraussetzungen

Keine

Qualifikationsziele

Inhalt

- Randintegraloperatoren
- Interpolation
- Quadraturformeln
- Approximation durch degenerierte Kernfunktionen
- Nyström-Verfahren
- Projektionsverfahren

Empfehlungen

Numerische Mathematik 1
Integralgleichungen
Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Numerische Methoden für zeitabhängige partielle Differentialgleichungen (MATHMWNM20) [M-MATH-102928]

Verantwortung: Marlis Hochbruck

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Angewandte und Numerische Mathematik, Optimierung Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung Wahlpflichtfach Zusatzleistungen

Leistungspunkte Modulturnus Dauer
8 Unregelmäßig 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105899</td>
<td>Numerische Methoden für zeitabhängige partielle Differentialgleichungen (S. 957)</td>
<td>8</td>
<td>Tobias Jahnke, Marlis Hochbruck</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 30 Minuten.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele

Inhalt
- Runge-Kutta-Verfahren und Exponentielle Integratoren für lineare, semilineare und quasilineare Evolutionsgleichungen
- Zeitintegration für hochoszillatorische Probleme, z. B. exponentielle Integratoren, Magnus-Methoden, trigonometrische Integratoren

Empfehlungen
Numerische Methoden für Differentialgleichungen, Einführung in das Wissenschaftliche Rechnen

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorleseinhaltes
• Bearbeitung von Übungsaufgaben
• Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
• Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Numerische Methoden in der Elektrodynamik (MATHNM13) [M-MATH-102894]

Verantwortung: Willy Dörfler

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Angewandte und Numerische Mathematik, Optimierung
Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung
Wahlpflichtfach
Zusatzleistungen

Leistungspunkte Modulturnus Dauer
6 Unregelmäßig 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105860</td>
<td>Numerische Methoden in der Elektrodynamik (S. 958)</td>
<td>6</td>
<td>Andreas Rieder, Tobias Jahnke, Marlis Hochbruck, Willy Dörfler, Christian Wieners</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 25 Minuten.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen

- können elektrostatische oder -dynamische Effekte mit mathematischen Modellen beschreiben,
- erkennen die grundlegenden Probleme der korrekten Approximation,
- können stabile Diskretisierungen der Maxwellgleichungen angeben.

Inhalt

- Die Maxwell Gleichungen, Modellierung
- Rand- und Übergangsbedingungen
- Analytische Hilfsmittel
- Das Quellenproblem
- Das Eigenwertproblem
- Finite Elemente für die Maxwell-Gleichungen
- Interpolationsabschätzungen

Wirtschaftsmathematik (M.Sc.)
Modulhandbuch mit Stand 04.08.2016 für Wintersemester 16/17
Empfehlungen
Grundkenntnisse in der Analysis von Randwertproblemen und der Finite Elemente Methode.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 180 Stunden
Präsenzzeit: 60 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 120 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Numerische Methoden in der Finanzmathematik (MATHNM18) [M-MATH-102901]

Verantwortung: Tobias Jahnke
Einrichtung: KIT-Fakultät für Mathematik
Curriculare Verankerung: Wahlpflicht
Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Angewandte und Numerische Mathematik, Optimierung Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung

Leistungspunkte: 8
Modulturnus: Unregelmäßig
Dauer: 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105865</td>
<td>8</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 30 Minuten.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele

Inhalt
Modellierung:
- Optionen, Arbitrage und andere Grundbegriffe
- Wiener-Prozess, Ito-Integral, Ito-Formel
- Black-Scholes-Gleichung und Black-Scholes-Formel

Numerische Verfahren:
- Binomialbaumverfahren
- Erzeugung von Pseudo-Zufallszahlen, Monte-Carlo-Methode, Quasi-Monte-Carlo-Methode
- Numerische Verfahren für stochastische Differentialgleichungen
- Finite-Differenzen-Verfahren für eindimensionale Black-Scholes-Gleichungen
- Bewertung von amerikanischen Optionen
Empfehlungen
Grundlegende Inhalte des Moduls „Wahrscheinlichkeitstheorie“ und Grundkenntnisse über gewöhnliche Differentialgleichungen sowie Programmierkenntnisse in MATLAB werden benötigt.

Anmerkung
Wird jedes 4. Semester angeboten, jeweils im Wintersemester.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Numerische Methoden in der Finanzmathematik II (MATHNM26) [M-MATH-102914]

Verantwortung: Tobias Jahnke

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Angewandte und Numerische Mathematik, Optimierung Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung Wahlpflichtfach Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105880</td>
<td>Numerische Methoden in der Finanzmathematik II (S. 960)</td>
<td>8</td>
<td>Tobias Jahnke</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 30 Minuten.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Im Mittelpunkt der Vorlesung steht die Bewertung von Optionen durch numerische Verfahren, wobei die Kenntnisse aus Teil 1 der Vorlesung erweitert und vertieft werden. Absolventinnen und Absolventen kennen nicht nur grundlegende, sondern auch raffinierte numerische Verfahren zur Lösung von stochastischen bzw. partiellen Differentialgleichungen und hochdimensionalen Problemen. Sie können diese Verfahren nicht nur implementieren und zur Bewertung von verschiedenen Optionen anwenden, sondern auch die Stabilität und Konvergenz der Verfahren analysieren und durch theoretische Resultate erklären.

Inhalt
- Multi-Level Monte-Carlo-Methoden
- Historische, implizite und lokale Volatilität
- Sprung-Diffusions-Prozesse und Integro-Differentialgleichungen,
- Lösung von Black-Scholes-Gleichungen mit der Methode der Finiten Elemente
- Dünnägermetoden (Sparse Grids) für die Bewertung von Basketoptionen

Empfehlungen
Empfehlungen: Grundlegende Inhalte des Moduls “Numerische Methoden in der Finanzmathematik” und Programmierkenntnisse (möglichst in MATLAB) werden benötigt.

Anmerkung
Arbeitsaufwand
Präsenzzeit: 90 Stunden
• Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden
• Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
• Bearbeitung von Übungsaufgaben
• Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
• Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Numerische Methoden in der Strömungsmechanik (MATHNM34) [M-MATH-102932]

Verantwortung: Gudrun Thäter, Willy Dörfler

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung:

Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Angewandte und Numerische Mathematik, Optimierung
Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung
Wahlpflichtfach
Zusatzleistungen

Leistungspunkte Modulturnus Dauer
4 Unregelmäßig 1 Semester

Pflichtbestandteile

Kennenwert Teilleistung LP Verantwortung
T-MATH-105902 Numerische Methoden in der Strömungsmechanik (S. 961) 4 Gudrun Thäter, Willy Dörfler

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 20 Minuten.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Studierende können die Modellierung und die physikalischen Annahmen erläutern, die zu den Navier-Stokes Gleichungen führen. Sie können die Finite Elemente Methode auf die Strömungsrechnung anwenden und insbesondere mit der Inkompressibilität numerisch umgehen. Sie können die Konvergenz und Stabilität der Verfahren erläutern und begründen.

Inhalt

- Modellbildung und Herleitung der Navier-Stokes Gleichungen
- Mathematische und physikalische Repräsentation von Energie und Spannung
- Analytische und numerische Behandlung des Stokes-Problems
- Stabilitäts- und Konvergenztheorie
- Lax-Milgram Theorem, Céa-Lemma und Sattelpunkttheorie
- Numerische Behandlung der stationären nichtlinearen Gleichung
- Numerische Verfahren für das instationäre Problem
- Turbulenzmodelle

Empfehlungen
Arbeitsaufwand
Gesamter Arbeitsaufwand: 120 Stunden
Präsenzzeit: 45 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 75 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Numerische Optimierungsmethoden (MATHNM25) [M-MATH-102892]

Verantwortung: Christian Wieners

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Angewandte und Numerische Mathematik, Optimierung
Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung
Wahlpflichtfach
Zusatzleistungen

Leistungspunkte Modulturnus Dauer
8 Unregelmäßig 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105858</td>
<td>Numerische Optimierungsmethoden (S. 962)</td>
<td>8</td>
<td>Andreas Rieder, Tobias Jahnke, Marlis Hochbruck, Willy Dörfler, Christian Wieners</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 30 Minuten.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen können

- verschiedene numerische Verfahren für restringierte und unrestringierte Optimierungsprobleme beschreiben.
- Aussagen über lokale und globale Konvergenz erklären
- exemplarische Anwendungen skizzieren

Inhalt

- Allgemeine unrestringierte Minimierungsverfahren
- Newton-Verfahren
- Inexakte Newton-Verfahren
- Quasi-Newton-Verfahren
- Nichtlineare cg-Verfahren
- Trust-Region-Verfahren
- Innere-Punkte-Verfahren
- Penalty-Verfahren
Aktive-Mengen Strategien
SQP-Verfahren
Nicht-glatte Optimierung

Empfehlungen
Optimierungstheorie

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Numerische Verfahren für die Maxwellgleichungen (MATHNM33) [M-MATH-102931]

Verantwortung: Tobias Jahnke

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Angewandte und Numerische Mathematik, Optimierung
Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung
Wahlpflichtfach
Zusatzleistungen

Leistungspunkte 6
Modulturnus Unregelmäßig
Dauer 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105920</td>
<td>Numerische Verfahren für die Maxwellgleichungen (S. 963)</td>
<td>6</td>
<td>Tobias Jahnke</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 20 Minuten.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele

Inhalt
- Maxwellgleichungen: Integral- und Differentialform, Materialgesetze, Randbedingungen, Wohlgestelltheit
- Raumdiskretisierung (z.B. finite Differenzen, konforme oder nichtkonforme finite Elemente)
- Zeitintegration (z.B Splitting-Verfahren, (lokal)-implizite Verfahren, exponentielle Integratoren)

Empfehlungen
Grundkenntnisse über gewöhnliche und/oder partielle Differentialgleichungen
Das Modul “Numerische Methoden für Differentialgleichungen” sollte besucht worden sein.

Anmerkung
Turnus: Mindestens alle zwei Jahre

Arbeitsaufwand
Gesamter Arbeitsaufwand: 180 Stunden
Präsenzzeit: 60 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Wirtschaftsmathematik (M.Sc.)
Modulhandbuch mit Stand 04.08.2016 für Wintersemester 16/17
Selbststudium: 120 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
M Modul: Ökonometrie und Statistik I [M-WIWI-101638]

Verantwortung: Melanie Schienle

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Finance - Risk Management - Managerial Economics

Wahlpflichtfach

Zusatzleistungen

Leistungspunkte

- **9**

Modulturnus

- Jedes Semester

Dauer

- 1 Semester

Sprache

- Deutsch

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-103125</td>
<td>Angewandte Ökonometrie (S. 836)</td>
<td>4,5</td>
<td>Melanie Schienle</td>
</tr>
</tbody>
</table>

Ergänzungsangebot

Wahlpflichtblock; min. 4,5, max. 5 Leistungspunkte

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-103066</td>
<td>Data Mining and Applications (S. 853)</td>
<td>4,5</td>
<td>Rheza Nakhaeizadeh</td>
</tr>
<tr>
<td>T-WIWI-103064</td>
<td>Financial Econometrics (S. 885)</td>
<td>4,5</td>
<td>Melanie Schienle</td>
</tr>
<tr>
<td>T-WIWI-103126</td>
<td>Nicht- und Semiparametrik (S. 948)</td>
<td>4,5</td>
<td>Melanie Schienle</td>
</tr>
<tr>
<td>T-WIWI-103127</td>
<td>Paneldaten (S. 977)</td>
<td>4,5</td>
<td>Wolf-Dieter Heller</td>
</tr>
<tr>
<td>T-WIWI-103065</td>
<td>Statistische Modellierung von allgemeinen Regressionsmodellen (S. 1043)</td>
<td>4,5</td>
<td>Wolf-Dieter Heller</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Voraussetzungen

Qualifikationsziele

Der/die Studierende besitzt umfassende Kenntnisse fortgeschrittener ökonometrischer Methoden für unterschiedliche Datentypen. Er/Sie ist in der Lage diese kenntnissreich anzuwenden, sie mit Hilfe von statistischer Software umzusetzen und kritisch zu evaluieren.

Inhalt

In den Modulveranstaltungen wird den Studierenden ein umfassendes Portfolio an weiterführenden ökonometrischen Methoden für unterschiedliche Datentypen vermittelt.

Anmerkung

Arbeitsaufwand
Modul: Ökonometrie und Statistik II [M-WIWI-101639]

Verantwortung: Melanie Schienle

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Finance - Risk Management - Managerial Economics

Zusatzleistungen

Leistungspunkte: 9

Modulturnus: Jedes Semester

Dauer: 1 Semester

Sprache: Deutsch

Wahlpflichtangebot

Wahlpflichtblock; min. 9, max. 10 Leistungspunkte

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-103125</td>
<td>Angewandte Ökonometrie (S. 836)</td>
<td>4,5</td>
<td>Melanie Schienle</td>
</tr>
<tr>
<td>T-WIWI-103066</td>
<td>Data Mining and Applications (S. 853)</td>
<td>4,5</td>
<td>Rhea Nakhaeizadeh</td>
</tr>
<tr>
<td>T-WIWI-103064</td>
<td>Financial Econometrics (S. 885)</td>
<td>4,5</td>
<td>Melanie Schienle</td>
</tr>
<tr>
<td>T-WIWI-103124</td>
<td>Multivariate Verfahren (S. 946)</td>
<td>4,5</td>
<td>Oliver Grothe</td>
</tr>
<tr>
<td>T-WIWI-103126</td>
<td>Nicht- und Semiparametrik (S. 948)</td>
<td>4,5</td>
<td>Melanie Schienle</td>
</tr>
<tr>
<td>T-WIWI-103127</td>
<td>Paneldaten (S. 977)</td>
<td>4,5</td>
<td>Wolf-Dieter Heller</td>
</tr>
<tr>
<td>T-WIWI-103128</td>
<td>Portfolio and Asset Liability Management (S. 980)</td>
<td>4,5</td>
<td>Mher Safarian</td>
</tr>
<tr>
<td>T-WIWI-103065</td>
<td>Statistische Modellierung von allgemeinen Regressionsmodellen (S. 1043)</td>
<td>4,5</td>
<td>Wolf-Dieter Heller</td>
</tr>
<tr>
<td>T-WIWI-103129</td>
<td>Stochastic Calculus and Finance (S. 1047)</td>
<td>4,5</td>
<td>Mher Safarian</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Voraussetzungen

Das Modul ist erst dann bestanden, wenn zusätzlich das Modul “Ökonometrie und Statistik I” zuvor erfolgreich mit der letzten Teilprüfung abgeschlossen wurde.

Modellierte Voraussetzungen

Es müssen die folgenden Bestandteile erfüllt werden:

- Das Modul kann nur dann begonnen werden, wenn zugleich das Modul [M-WIWI-101638] Ökonometrie und Statistik I begonnen wurde.

Qualifikationsziele

Der/die Studierende besitzt umfassende Kenntnisse fortgeschrittener ökonometrischer Methoden für unterschiedliche Datentypen. Er/Sie ist in der Lage diese kenntnisreich anzuwenden, sie mit Hilfe von statistischer Software umzusetzen und kritisch zu evaluieren.

Inhalt

Dieses Modul baut inhaltlich auf dem Modul “Ökonometrie und Statistik I” auf. In den Modulveranstaltungen wird den
WAHLPFICHTFACH

Studierenden ein umfassendes Portfolio an weiterführenden ökonometrischen Methoden für unterschiedliche Datentypen vermittelt.

Anmerkung

Arbeitsaufwand
Modul: Ökonomische Theorie und ihre Anwendung in Finance (WW4VWL14) [M-WIWI-101502]

Verantwortung: Kay Mitusch
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Curriculare Verankerung: Wahlpflicht
Bestandteil von: Finance - Risk Management - Managerial Economics
Wahlpflichtfach
Zusatzleistungen

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102609</td>
<td>Advanced Topics in Economic Theory (S. 826)</td>
<td>4,5</td>
<td>Kay Mitusch, Marten Hillebrand</td>
</tr>
<tr>
<td>T-WIWI-102622</td>
<td>Corporate Financial Policy (S. 851)</td>
<td>4,5</td>
<td>Martin Ruckes</td>
</tr>
<tr>
<td>T-WIWI-102623</td>
<td>Finanzintermediation (S. 886)</td>
<td>4,5</td>
<td>Martin Ruckes</td>
</tr>
<tr>
<td>T-WIWI-102647</td>
<td>Asset Pricing (S. 837)</td>
<td>4,5</td>
<td>Marliese Uhrig-Homburg, Martin Ruckes</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen
Keine

Qualifikationsziele
Die Studierenden

- beherrschen anhand der Allgemeinen Gleichgewichtstheorie und der Vertragstheorie die Methoden des formalen ökonomischen Modellierens
- können diese Methoden auf finanzwirtschaftliche Fragestellungen anwenden
- erhalten viele nützliche Einsichten in das Verhältnis von Unternehmen und Investoren und das Funktionieren von Finanzmärkten

Inhalt

Anmerkung
Das Modul wird für die Masterstudiengänge Wirtschaftsingenieurwesen und Technische Volkswirtschaftslehre nur im Wahlpflichtbereich angeboten.

Arbeitsaufwand
Gesamtaufwand bei 9 Leistungspunkten: ca. 270 Stunden
Die genaue Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.
Modul: Operations Research im Supply Chain Management (WW4OR11) [M-WIWI-102832]

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102704</td>
<td>Standortplanung und strategisches Supply Chain Management (S. 1040)</td>
<td>4,5</td>
<td>Stefan Nickel</td>
</tr>
<tr>
<td>T-WIWI-103061</td>
<td>Vorleistung zu Standortplanung und strategisches Supply Chain Management (S. 1079)</td>
<td></td>
<td>Stefan Nickel</td>
</tr>
<tr>
<td>T-WIWI-102714</td>
<td>Taktisches und operatives Supply Chain Management (S. 1064)</td>
<td>4,5</td>
<td>Stefan Nickel</td>
</tr>
<tr>
<td>T-WIWI-105940</td>
<td>Vorleistung zu Taktisches und operatives Supply Chain Management (S. 1080)</td>
<td></td>
<td>Stefan Nickel</td>
</tr>
<tr>
<td>T-WIWI-102715</td>
<td>Operations Research in Supply Chain Management (S. 968)</td>
<td>4,5</td>
<td>Stefan Nickel</td>
</tr>
<tr>
<td>T-WIWI-102784</td>
<td>Software-Praktikum: OR-Modelle II (S. 1027)</td>
<td>4,5</td>
<td>Stefan Nickel</td>
</tr>
<tr>
<td>T-WIWI-102718</td>
<td>Ereignisdiskrete Simulation in Produktion und Logistik (S. 877)</td>
<td>4,5</td>
<td>Stefan Nickel</td>
</tr>
<tr>
<td>T-WIWI-102723</td>
<td>Graph Theory and Advanced Location Models (S. 904)</td>
<td>4,5</td>
<td>Stefan Nickel</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Gesamtnote des Moduls wird aus den mit Leistungspunkten gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Voraussetzungen

Keine

Qualifikationsziele

Der/die Studierende

- ist vertraut mit wesentlichen Konzepten und Begriffen des Supply Chain Managements,
- kennt die verschiedenen Teilgebiete des Supply Chain Managements und die zugrunde liegenden Optimierungsprobleme,
- ist mit den klassischen Standortmodellen (in der Ebene, auf Netzwerken und diskret), sowie mit den grundlegenden Methoden zur Ausliefer- und Transportplanung, Warenlagerplanung und Lagermanagements vertraut
- ist in der Lage praktische Problemstellungen mathematisch zu modellieren und kann deren Komplexität abschätzen sowie geeignete Lösungsverfahren auswählen und anpassen.
Supply Chain Management befasst sich mit der Planung und Optimierung des gesamten, unternehmensübergreifenden Beschaffungs-, Herstellungs- und Distributionsprozesses mehrerer Produkte zwischen allen beteiligten Geschäftspartnern (Lieferanten, Logistikdienstleistern, Händlern). Ziel ist, unter Berücksichtigung verschiedenster Rahmenbedingungen die Befriedigung der (Kunden-) Bedarfe, so dass die Gesamtkosten minimiert werden.

Empfehlungen

Anmerkung
Einige Veranstaltungen werden unregelmäßig angeboten. Das für drei Studienjahre im Voraus geplante Lehrangebot kann im Internet nachgelesen werden.

Arbeitsaufwand
Gesamtaufwand bei 9 Leistungspunkten: ca. 270 Stunden

- Präsenzzeit: 84 Stunden
- Vor- /Nachbereitung: 112 Stunden
- Prüfung und Prüfungsvorbereitung: 74 Stunden
Modul: Operatorfunktionen (MATHNM38) [M-MATH-102936]

Verantwortung: Volker Grimm

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung:
- Wahlpflicht

Bestandteil von:
- Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Angewandte und Numerische Mathematik, Optimierung
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung
- Wahlpflichtfach
- Zusatzleistungen

Leistungspunkte: 6
Modulturnus: Unregelmäßig
Dauer: 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105905</td>
<td>Operatorfunktionen (S. 969)</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 20 Minuten.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele

Inhalt
- Definition von Operatorfunktionen
- Stark stetige und analytische Halbgruppen
- Feste rationale Approximationen an Operatorfunktionen
- Rationale Krylov-Verfahren zur Approximation von Operatorfunktionen
- Anwendungen in der Numerik von Evolutionsgleichungen

Empfehlungen
- Numerische Mathematik 1 und 2, Funktionalanalysis

Arbeitsaufwand
-Gesamter Arbeitsaufwand: 180 Stunden
- Präsenzzeit: 60 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 120 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Optimierung in Banachräumen (MATHNM32) [M-MATH-102924]

Verantwortung: Andreas Kirsch

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Analysis
Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Angewandte und Numerische Mathematik, Optimierung
Mathematische Methoden/Wahlbereich Mathematische Methoden/Analysis
Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung
Wahlpflichtfach
Zusatzleistungen

Leistungspunkte: 8
Modulturnus: Unregelmäßig
Dauer: 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105893</td>
<td>Optimierung in Banachräumen (S. 970)</td>
<td>8</td>
<td>Andreas Kirsch</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 30 Minuten.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Die Studierenden sind in der Lage, Eigenschaften endlichdimensionaler Optimierungsprobleme auf unendlichdimensionale Fälle zu übertragen und diese auf Probleme der Approximationstheorie, der Variationsrechnung und der optimalen Steuerungstheorie anzuwenden. Sie können die Hauptsätze wiedergeben, beweisen und anhand von Beispielen erläutern.

Inhalt

Empfehlungen
Erwünscht sind grundlegende Kenntnisse aus der Funktionalanalyse

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Optimierung und optimale Kontrolle bei Differentialgleichungen (MATH-NM09) [M-MATH-102899]

Verantwortung: Christian Wieners
Einrichtung: KIT-Fakultät für Mathematik
Curriculare Verankerung: Wahlpflicht
Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Angewandte und Numerische Mathematik, Optimierung Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung Wahlpflichtfach Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105864</td>
<td>Optimierung und optimale Kontrolle bei Differentialgleichungen (S. 972)</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 20 Minuten.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen können
- den Überblick zur Modellierung mit optimaler Kontrolle gewinnen
- erlangen Kenntnisse zum funktionalanalytischen Rahmen
- Lösungsverfahren auf elliptische und parabolische Kontrollprobleme anwenden

Inhalt
- Einleitung und Motivation
- Linear-quadratische elliptische Probleme
- Parabolische Probleme
- Steuerung semilinearer elliptischer Gleichungen
- semilineare parabolische Kontrollprobleme

Arbeitsaufwand
Gesamter Arbeitsaufwand: 120 Stunden
Präsenzzeit: 45 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung
Selbststudium: 75 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
WAHLPFLECHTFACH

Modul: Perkolation (MATHST13) [M-MATH-102905]

Verantwortung: Günter Last

Einrichtung: KIT-Fakultät für Mathematik
Curriculare Verankerung: Wahlpflicht
Bestandteil von: Mathematische Methoden/Stochastik
Mathematische Methoden/Wahlbereich Mathematische Methoden/Stochastik
Wahlpflichtfach
Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105869</td>
<td>Perkolation (S. 979)</td>
<td>6</td>
<td>Günter Last</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 30 min).

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Die Studierenden

- kennen grundlegende Modelle der diskreten und stetigen Perkolation,
- erwerben die Fähigkeit, spezifische probabilistische und graphentheoretische Methoden zur Analyse dieser Modelle einzusetzen,
- können selbstorganisiert und reflexiv arbeiten.

Inhalt

- Kanten- und Knoten-Perkolation auf Graphen
- Satz von Harris-Kesten
- Asymptotik der Clustergröße im sub- und superkritischen Fall
- Eindeutigkeit des unendlichen Clusters im quasitransitiven Fall
- Perkolation auf dem Gilbert-Graphen
- Stetige Perkolation

Empfehlungen
Das Modul Wahrscheinlichkeitstheorie sollte bereits belegt worden sein.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 180 Stunden
Präsenzzeit: 60 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 120 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
Bearbeitung von Übungsaufgaben
Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
Vorbereitung auf die studienbegleitende Modulprüfung
M Modul: Potentialtheorie (MATHAN20) [M-MATH-102879]

Verantwortung: Andreas Kirsch
Einrichtung: KIT-Fakultät für Mathematik
Curriculare Verankerung: Wahlpflicht
Bestandteil von:
 - Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Analysis
 - Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung
 - Mathematische Methoden/Wahlbereich Mathematische Methoden/Analysis
 - Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung
 - Wahlpflichtfach
 - Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105850</td>
<td>Potentialtheorie (S. 981)</td>
<td>8</td>
<td>Tilo Arens, Wolfgang Reichel, Andreas Kirsch, Frank Hettlich</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung (ca. 30 Min).

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Die Studierenden sind in der Lage, die Begriffe der Potentialtheorie in der Theorie und an Beispielen zu erläutern. Sie können die Hauptsätze wiedergeben, beweisen, anhand von Beispielen verdeutlichen, auf Spezialfälle reduzieren und auf verwandte Fragestellungen anwenden.

Inhalt
Eigenschaften harmonischer Funktionen, Existenz und Eindeutigkeit der Randwertaufgaben für die Laplace- und Poisson-gleichung, Greensche Funktion für die Kugel, Kugelflächenfunktionen, Flächenpotential, räumliche Potentialen

Empfehlungen
Erwünscht sind grundlegende Kenntnisse aus der Funktionalanalysis

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Projektorientiertes Softwarepraktikum (MATHNM40) [M-MATH-102938]

Verantwortung: Gudrun Thäter

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung:
- Wahlpflicht
- Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Angewandte und Numerische Mathematik, Optimierung
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung
- Wahlpflichtfach
- Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105907</td>
<td>Projektorientiertes Softwarepraktikum (S. 990)</td>
<td>4</td>
<td>Gudrun Thäter</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Zu jedem Projekt fertigen die Studierenden eine schriftliche Ausarbeitung im Umfang von in der Regel 10-15 Seiten an, die benotet wird. Die Gesamtnote wird als Durchschnitt der Teilnoten bestimmt.

Modulnote

Die Modulnote ist das Mittel aus den Teilnoten der Projekte.

Voraussetzungen

Keine

Qualifikationsziele

Inhalt

Vorlesungsanteil: Einführung in Modellbildung und Simulationen, Wiederholung zugehöriger numerischer Verfahren, Einführung in zugehörige Software

Eigene Gruppenarbeit: Bearbeitung von 1-2 Projekten in denen Modellbildung, Diskretisierung, Simulation und Auswertung (z.B. Visualisierung) für konkrete Themen aus dem Katalog durchgeführt werden. Der Katalog umfasst z.B:

- Solving the Poisson equation: Diffusion im Rechteckgebiet;
- Incompressible Navier-Stokes equations: Strömung im Kanal;
- Applying an Inexact Newton Method in HiFlow3: Nutzen nichtlinearer Tools;
- Distributed Control Problem for Poisson Equation: Backofensteuerung;
- Stabilization Schemes for Advection Dominated Steady Convection-Diffusion

Empfehlungen

Kenntnisse einer Programmiersprache

Grundkenntnisse in der Analysis von Randwertproblemen, der numerischen Methoden für Differentialgleichungen und der Finite Elemente Methode.

Arbeitsaufwand

Gesamter Arbeitsaufwand: 120 Stunden
Präsenzzeit: 60 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 60 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
WAHLPFlichtFach

Modul: Rand- und Eigenwertprobleme (MATHAN09) [M-MATH-102871]

Verantwortung: Wolfgang Reichel

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung:
- Wahlpflicht
- Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Analysis
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Analysis
- Wahlpflichtfach

Bestandteil von:
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Analysis

Leistungspunkte 8

Modulturnus
- Jedes Sommersemester

Dauer
- 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105833</td>
<td>Rand- und Eigenwertprobleme (S. 995)</td>
<td>8</td>
<td>Michael Plum, Wolfgang Reichel, Jens Rottmann-Matthes, Dirk Hundertmark, Roland Schnaubelt, Lutz Weis, Tobias Lamm</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 30 min).

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen können
- die Bedeutung von Rand- und Eigenwertproblemen innerhalb der Mathematik und/oder Physik beurteilen und an Hand von Beispielen illustrieren,
- qualitative Eigenschaften von Lösungen beschreiben,
- mit Hilfe funktionalanalytischer Methoden die Existenz von Lösungen von Randwertproblemen beweisen,

Inhalt
- Beispiele von Rand- und Eigenwertproblemen
- Maximumprinzipien für Gleichungen 2. Ordnung
- Funktionenräume, z.B. Sobolev-Räume
- Schwache Formulierung linearer elliptischer Gleichungen 2. Ordnung
- Existenz- und Regularitätstheorie elliptischer Gleichungen
- Eigenwerttheorie für schwach formulierte elliptische Eigenwertprobleme
Empfehlungen
Folgende Module sollten bereits belegt worden sein:

- Lineare Algebra 1+2
- Analysis 1-3

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
M

Modul: Räumliche Stochastik (MATHST14) [M-MATH-102903]

Verantwortung: Günter Last

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von:
- Mathematische Methoden/Stochastik
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Stochastik
- Wahlpflichtfach
- Zusatzleistungen

Leistungspunkte
- Modulturnus: Jedes Wintersemester
- Dauer: 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105867</td>
<td>Räumliche Stochastik (S. 996)</td>
<td>8</td>
<td>Günter Last, Daniel Hug</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 30 min).

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Die Studierenden kennen grundlegende räumliche stochastische Prozesse. Dabei verstehen sie nicht nur allgemeine Verteilungseigenschaften, sondern können auch konkrete Modelle (Poissonscher Prozess, Gaußsche Zufallsfelder) beschreiben und anwenden. Sie können ferner selbstorganisiert und reflexiv arbeiten.

Inhalt
- Punktprozesse
- Zufällige Maße
- Poissonprozess
- Gebbißche Punktprozesse
- Palmsehe Verteilung
- Räumlicher Ergodensatz
- Spektraltheorie zufälliger Felder
- Gaußsche Felder

Empfehlungen
Die Inhalte des Moduls Wahrscheinlichkeitstheorie werden zum Teil benötigt.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Seminar (MATHMWSEM02) [M-WIWI-102971]

Verantwortung: Oliver Stein, Hagen Lindstädt

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Wirtschaftswissenschaftliches Seminar

Wahlpflichtfach

Leistungspunkte 3
Sprache Deutsch

Wahlpflichtangebot

Wahlpflichtblock; min. 3, max. 3 Leistungspunkte

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-103474</td>
<td>Seminar Betriebswirtschaftslehre A (Master) (S. 1000)</td>
<td>3</td>
<td>Martin Klarmann, Marliese Uhrig-Homburg, Christof Weinhardt, Andreas Geyer-Schulz, Ju-Young Kim, Hagen Lindstädt, Thomas Lützkendorf, Stefan Nickel, Marcus Wouters, Petra Nieken, Wolf Fichtner, Hansjörg Fromm, Ute Werner, David Lorenz, Gerhard Satzger, Frank Schultmann, Bruno Neibecker, Orestis Terzidis, Marion Weissenberger-Eibl, Martin Ruckes</td>
</tr>
<tr>
<td>T-WIWI-103478</td>
<td>Seminar Volkswirtschaftslehre A (Master) (S. 1017)</td>
<td>3</td>
<td>Kay Mittusch, Ingrid Ott, Jan Kowalski, Marten Hillebrand, Clemens Puppe, Johannes Philipp Reiß, Berthold Wigger</td>
</tr>
<tr>
<td>T-WIWI-103483</td>
<td>Seminar Statistik A (Master) (S. 1015)</td>
<td>3</td>
<td>Wolf-Dieter Heller, Melanie Schienle, Oliver Grothe</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen

Keine.

Qualifikationsziele

Die Studierenden
- können sich selbständig mit einer aktuellen, forschungsorientierten Fragestellung nach wissenschaftlichen Kriterien auseinandersetzen.
- Sie sind in der Lage zu recherchieren, die Informationen zu analysieren, zu abstrahieren und kritisch zu betrachten.
- Aus den wenig strukturierten Informationen können sie eigene Schlüsse unter Einbeziehung ihres interdisziplinären Wissens ziehen und die aktuellen Forschungsergebnisse punktuell weiter entwickeln.
- Die gewonnenen Ergebnisse wissen sie zu validieren und unter Berücksichtigung der wissenschaftlichen Arbeitsweise (Strukturierung, Fachterminologie, Quellenangabe) logisch und systematisch in schriftlicher und mündlicher Form präsentieren. Dabei können sie fachlich argumentieren und die Ergebnisse in der Diskussion mit Fachvertretern verteidigen.
Inhalt
Die im Rahmen des Seminarmoduls erworbenen Kompetenzen dienen im Besonderen der Vorbereitung auf die Thesis. Begleitet durch die entsprechenden Prüfer übt sich der Studierende beim Verfassen der abschließenden Seminararbeiten und bei der Präsentation derselben im selbstständigen wissenschaftlichen Arbeiten.
Darüber hinaus werden im Modul auch additiven Schlüsselqualifikationen in den SQ-Veranstaltungen vermittelt.

Empfehlungen
Keine.

Anmerkung

Arbeitsaufwand
Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 90 Stunden (3 Credits).
Modul: Seminar (MATHMWSEM04) [M-WIWI-102972]

Verantwortung: Oliver Stein, Hagen Lindstädt

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Wahlpflichtfach

Leistungspunkte: 3

Modulturnus: Jedes Semester

Dauer: 1 Semester

Sprache: Deutsch/Englisch

Wahlpflichtangebot
Wahlpflichtblock; min. 1, max. 1 Teilleistungen

Kennung	Teilleistung	LP	Verantwortung
T-WIWI-103476 | Seminar Betriebswirtschaftslehre B (Master) (S. 1002) | 3 | Martin Klarmann, Marliese Uhrig-Homburg, Christof Weinhardt, Andreas Geyer-Schulz, Ju-Young Kim, Hagen Lindstädt, Thomas Lützkendorf, Stefan Nickel, Marcus Wouters, Petra Nieken, Wolf Fichtner, Hansjörg Fromm, Ute Werner, David Lorenz, Gerhard Satzger, Frank Schultmann, Bruno Neibecker, Orestis Terzidis, Marion Weissenger-Eibl, Martin Ruckes |
T-WIWI-103477 | Seminar Volkswirtschaftslehre B (Master) (S. 1018) | 3 | Kay Mitsch, Ingrid Ott, Jan Kowalski, Marten Hillebrand, Clemens Puppe, Johannes Philipp Reiß, Berthold Wigger |
T-WIWI-103484 | Seminar Statistik B (Master) (S. 1016) | 3 | Wolf-Dieter Heller, Melanie Schienle, Oliver Grothe |

Erfolgskontrolle(n)

Die Gesamtnote des Moduls ist die Note des Seminars.

Voraussetzungen
Keine.

Qualifikationsziele
Die Studierenden

- können sich selbständig mit einer aktuellen, forschungsorientierten Fragestellung nach wissenschaftlichen Kriterien auseinandersetzen.
- Sie sind in der Lage zu recherchieren, die Informationen zu analysieren, zu abstrahieren und kritisch zu betrachten.
- Aus den wenig strukturierten Informationen können sie eigene Schlüsse unter Einbeziehung ihres interdisziplinären Wissens ziehen und die aktuellen Forschungsergebnisse punktuell weiter entwickeln.
- Die gewonnenen Ergebnisse wissen sie zu validieren und unter Berücksichtigung der wissenschaftlichen Arbeitsweise (Strukturierung, Fachterminologie, Quellenangabe) logisch und systematisch in schriftlicher und mündlicher Form präsentieren. Dabei können sie fachlich argumentieren und die Ergebnisse in der Diskussion mit Fachvertretern verteidigen.
Inhalt
Die im Rahmen des Seminarmodul erworben Kompetenzen dienen im Besonderen der Vorbereitung auf die Thesis. Begleitet durch die entsprechenden Prüfer übt sich der Studierende beim Verfassen der abschließenden Seminararbeiten und bei der Präsentation derselben im selbstständigen wissenschaftlichen Arbeiten.
Mit dem Besuch der Seminarveranstaltungen werden neben Techniken des wissenschaftlichen Arbeitens auch Schlüsselqualifikationen (SQ) integrativ vermittelt.

Anmerkung

Arbeitsaufwand
Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 90 Stunden (3 Credits).
Modul: Seminar (MATHMWSEM03) [M-WIWI-102973]

Verantwortung: Oliver Stein, Hagen Lindstädt

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Wirtschaftswissenschaftliches Seminar Wahlpflichtfach

Leistungspunkte 3 Sprache Deutsch

Wahlpflichtangebot
Wahlpflichtblock; min. 3, max. 3 Leistungspunkte

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-103479</td>
<td>Seminar Informatik A (Master) (S. 1004)</td>
<td>3</td>
<td>Rudi Studer, Hartmut Schmeck, Andreas Oberweis, York Sure-Vetter, Johann Marius Zöllner</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Gesamtnote des Moduls ist die Note des Seminars.

Voraussetzungen
Keine.

Qualifikationsziele
Die Studierenden
- können sich selbständig mit einer aktuellen, forschungsorientierten Fragestellung nach wissenschaftlichen Kriterien auseinandersetzen.
- Sie sind in der Lage zu recherchieren, die Informationen zu analysieren, zu abstrahieren und kritisch zu betrachten.
- Aus den wenig strukturierten Informationen können sie eigene Schlüsse unter Einbeziehung ihres interdisziplinären Wissens ziehen und die aktuellen Forschungsergebnisse punktuell weiter entwickeln.
- Die gewonnenen Ergebnisse wissen sie zu validieren und unter Berücksichtigung der wissenschaftlichen Arbeitsweise (Strukturierung, Fachterminologie, Quellenangabe) logisch und systematisch in schriftlicher und mündlicher Form präsentieren. Dabei können sie fachlich argumentieren und die Ergebnisse in der Diskussion mit Fachvertretern verteidigen.

Inhalt
Die im Rahmen des Seminarmoduls erworbenen Kompetenzen dienen im Besonderen der Vorbereitung auf die Thesis. Begleitet durch die entsprechenden Prüfer übt sich der Studierende beim Verfassen der abschließenden Seminararbeiten und bei der Präsentation derselben im selbstständigen wissenschaftlichen Arbeiten.

Darüber hinaus werden im Modul auch additiven Schlüsselqualifikationen in den SQ-Veranstaltungen vermittelt.

Empfehlungen
Keine.

Anmerkung
Die im Modulhandbuch aufgeführten Seminartitel sind als Platzhalter zu verstehen. Die für jedes Semester aktuell angebotenen Seminare werden jeweils im Vorlesungsverzeichnis und auf den Internetseiten der Institute bekanntgegeben.

Wirtschaftsmathematik (M.Sc.)
Modulhandbuch mit Stand 04.08.2016 für Wintersemester 16/17
In der Regel werden die aktuellen Seminarthemen eines jeden Semesters bereits zum Ende des vorangehenden Semesters bekanntgegeben. Bei der Planung des Seminarmoduls sollte darauf geachtet werden, dass für manche Seminare eine Anmeldung bereits zum Ende des vorangehenden Semesters erforderlich ist.

Arbeitsaufwand

Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 90 Stunden (3 Credits).
Modul: Seminar (MATHMWSEM05) [M-WIWI-102974]

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
<th>Sprache</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
<td>Deutsch/Englisch</td>
</tr>
</tbody>
</table>

Wahlpflichtangebot
Wahlpflichtblock; min. 1, max. 1 Teilleistungen

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-103480</td>
<td>Seminar Informatik B (Master) (S. 1008)</td>
<td>3</td>
<td>Rudi Studer, Hartmut Schmeck, Andreas Oberweis, York Sure-Vetter, Johann Marius Zöllner</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Gesamtnote des Moduls ist die Note des Seminars.

Voraussetzungen
Keine.

Qualifikationsziele
Die Studierenden

- können sich selbständig mit einer aktuellen, forschungsorientierten Fragestellung nach wissenschaftlichen Kriterien auseinandersetzen.
- Sie sind in der Lage zu recherchieren, die Informationen zu analysieren, zu abstrahieren und kritisch zu betrachten.
- Aus den wenig strukturierten Informationen können sie eigene Schlüsse unter Einbeziehung ihres interdisziplinären Wissens ziehen und die aktuellen Forschungsergebnisse punktuell weiter entwickeln.
- Die gewonnenen Ergebnisse wissen sie zu validieren und unter Berücksichtigung der wissenschaftlichen Arbeitsweise (Strukturierung, Fachterminologie, Quellenangabe) logisch und systematisch in schriftlicher und mündlicher Form präsentieren. Dabei können sie fachlich argumentieren und die Ergebnisse in der Diskussion mit Fachvertretern verteidigen.

Inhalt
Die im Rahmen des Seminarmoduls erworbenen Kompetenzen dienen im Besonderen der Vorbereitung auf die Thesis. Begleitet durch die entsprechenden Prüfer übt sich der Studierende beim Verfassen der abschließenden Seminararbeiten und bei der Präsentation derselben im selbstständigen wissenschaftlichen Arbeiten.
Mit dem Besuch der Seminarveranstaltungen werden neben Techniken des wissenschaftlichen Arbeitens auch Schlüsselqualifikationen (SQ) integrativ vermittelt.

Anmerkung

Arbeitsaufwand
Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 90 Stunden (3 Credits).
M Modul: Sobolevräume (MATHAN37) [M-MATH-102926]

Verantwortung: Andreas Kirsch

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung:

Bestandteil von:
Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Analysis
Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung
Mathematische Methoden/Wahlbereich Mathematische Methoden/Analysis
Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung
Wahlpflichtfach
Zusatzleistungen

Leistungspunkte Modulturnus Dauer
5 Unregelmäßig 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105896</td>
<td>Sobolevräume (S. 1024)</td>
<td>5</td>
<td>Andreas Kirsch</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung von ca. 20 Minuten Dauer.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Die Studierenden können die Bedeutung der Sobolevräume in der Theorie partieller Differentialgleichungen erläutern. Sie sind in der Lage, die wichtigsten Eigenschaften wiederzugeben und zu beweisen.

Inhalt
Definition der Sobolevräume für skalare und vektorwertige Funktionen für Lipschitzgebiete, Fortsetzungs- und Spursätze, kompakte Einbettungen, Helmholtzzerlegung, einfache Randwertprobleme

Empfehlungen
Basisvorlesungen der Mathematik oder HM I-III

Arbeitsaufwand
Gesamter Arbeitsaufwand: 150 Stunden
Präsenzzeit: 60 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 90 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Spektraltheorie [M-MATH-101768]

Verantwortung: Lutz Weis

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Analysis

Bestandteil von: Mathematische Methoden/Wahlbereich Mathematische Methoden/Analysis

Zusatzleistungen

Leistungspunkte Modulturnus Dauer Sprache
8 Jedes Sommersemester 1 Semester Deutsch

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-103414</td>
<td>Spektraltheorie - Prüfung (S. 1031)</td>
<td>8</td>
<td>Christoph Schmoeger, Gerd Herzog, Peer Kunstmann, Roland Schnaubelt, Lutz Weis</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung von ca. 30 Minuten.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele

Inhalt
- Abgeschlossene Operatoren auf Banachräumen
- Spektrum und Resolvente
- Kompakte Operatoren und Fredholm’sche Alternative
- Funktionalkalkül von Dunford, Spektralprojektionen
- Unbeschränkte selbstadjungierte Operatoren auf Hilberträumen
- Spektralsatz
- Durch Formen definierte Operatoren
- Sektorielle Operatoren
- Anwendungen auf partielle Differentialgleichungen

Empfehlungen
Folgende Module sollten bereits belegt worden sein:
- Lineare Algebra 1+2
- Analysis 1-3
Funktionalanalysis

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Spezielle Themen der numerischen linearen Algebra (MATHNM30) [M-MATH-102920]

<table>
<thead>
<tr>
<th>Modulturnus</th>
<th>Leistungspunkte</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unregelmäßig</td>
<td>8</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Verantwortung: Marlis Hochbruck

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von:
- Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Angewandte und Numerische Mathematik, Optimierung
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung
- Wahlpflichtfach
- Zusatzleistungen

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105891</td>
<td>Spezielle Themen der numerischen linearen Algebra (S. 1038)</td>
<td>8</td>
<td>Marlis Hochbruck</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Mündliche Prüfung im Umfang von ca. 30 Minuten.

Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Inhalt

- Direkte Verfahren für dünn besetzte Gleichungssysteme
- Krylov-Verfahren zur Lösung großer linearer Gleichungssysteme und Eigenwertprobleme
- Matrixfunktionen

Empfehlungen

Numerische Mathematik 1 und 2

Arbeitsaufwand

Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Spin-Mannigfaltigkeiten, alpha-Invariante und positive Skalarkrümmung (MA-THAG43) [M-MATH-102958]

Verantwortung: Wilderich Tuschmann

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Wahlbereich Mathematische Methoden/ Algebra und Geometrie
Wahlpflichtfach
Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
<th>Sprache</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105932</td>
<td>Spin-Mannigfaltigkeiten, alpha-Invariante und positive Skalarkrümmung (S. 1039)</td>
<td>5</td>
<td>Stephan Klaus, Wilderich Tuschmann</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung von ca. 20 Minuten.

Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Absolventinnen und Absolventen
- verstehen grundlegende Fragestellungen aus der Theorie der Spin-Geometrie und Riemannschen Mannigfaltigkeiten mit positiver Skalarkrümmung;
- erkennen die Relevanz der charakteristischen Klassen und Bordismustheorien für Probleme in der Differentialgeometrie und Riemannschen Geometrie;
- sind grundsätzlich in der Lage, aktuelle Forschungsarbeiten zu lesen und eine Abschlussarbeit auf dem Gebiet der Spin-Geometrie und Riemannschen Mannigfaltigkeiten mit positiver Skalarkrümmung zu schreiben.

Inhalt

Empfehlungen

Folgende Module sollten bereits belegt worden sein:
Differentialgeometrie und Globale Differentialgeometrie, Algebraische Topologie

Arbeitsaufwand

Gesamter Arbeitsaufwand: 150 Stunden
Präsenzzeit: 60 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung
Selbststudium: 90 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Steinsche Methode (MATHST24) [M-MATH-102946]

Verantwortung: Matthias Schulte

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung:
- Wahlpflicht

Bestandteil von:
- Mathematische Methoden/Stochastik
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Stochastik
- Wahlpflichtfach

Zusatzleistungen

Leistungspunkte
- 5

Modulturnus
- Unregelmäßig

Dauer
- 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105914</td>
<td>Steinsche Methode (S. 1044)</td>
<td>5</td>
<td>Matthias Schulte</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 20 min).

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen können
- die Grundlagen der Steinschen Methode und ihrer Anwendungen auf ausgewählte Probleme nennen und erörtern,
- können zentrale Grenzwertsätze und Poissonsche Grenzwertsätze mit Hilfe der Steinschen Methode beweisen,
- selbstorganisiert und reflexiv arbeiten.

Inhalt
- Steinsche Gleichungen für die uni- und multivariate Normalverteilung sowie für die Poisson-Verteilung
- Kopplungen (Zero Bias und Size Bias)
- Austauschbare Paare
- lokale Abhängigkeiten und Abhängigkeitsgraphen
- Anwendungen der o.g. Techniken auf ausgewählte Probleme wie z.B. Zufallsgraphen

Empfehlungen
Die Inhalte des Moduls "Wahrscheinlichkeitstheorie" werden benötigt.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 150 Stunden
Präsenzzeit: 60 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 90 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Steuerung stochastischer Prozesse (MATHST12) [M-MATH-102908]

Verantwortung: Nicole Bäuerle

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung:
- Mathematische Methoden/Stochastik
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Stochastik
- Wahlpflichtfach

Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105871</td>
<td>Steuerung stochastischer Prozesse (S. 1045)</td>
<td>4</td>
<td>Nicole Bäuerle</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 20 min).

Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Absolventinnen und Absolventen können
- Die mathematischen Grundlagen der Stochastischen Steuerung nennen und Lösungsverfahren anwenden,
- Zeitstetige, stochastische, dynamische Optimierungsprobleme als stochastisches Steuerproblem formulieren,
- selbstorganisiert und reflexiv arbeiten.

Inhalt

- Verifikationstechnik, Hamilton-Jacobi-Bellman Gleichung
- Viskositätslösung
- Singuläre Steuerung
- Feynman-Kac Darstellungen
- Anwendungsbeispiele aus der Finanz- und Versicherungsmathematik

Empfehlungen

Arbeitsaufwand

Gesamter Arbeitsaufwand: 120 Stunden
Präsenzzeit: 45 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung
Selbststudium: 75 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Steuerungstheorie (MATHAN18) [M-MATH-102941]

Verantwortung: Roland Schnaubelt

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von:
- Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Analysis
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Analysis
- Wahlpflichtfach
- Zusatzleistungen

Leistungspunkte

<table>
<thead>
<tr>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105909</td>
<td>Steuerungstheorie (S. 1046)</td>
<td>6</td>
<td>Roland Schnaubelt, Lutz Weis</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung von ca. 20 Minuten.

Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden können die zentralen Konzepte der Behandlung kontrollierter linearer Differentialgleichungssysteme (Steuerbarkeit, Beobachtbarkeit, Stabilisierbarkeit und Entdeckbarkeit) und die zugehörigen Charakterisierungen erläutern und in Beispielen anwenden. Sie sind in der Lage die Grundzüge der Theorie der Transferfunktionen und der Realisierungstheorie zu beschreiben. Die Lösung des quadratischen optimalen Kontrollproblems können sie diskutieren und auf die Feedback Synthese anwenden. Sie können die Grundbegriffe der Steuerungstheorie samt der zugehörigen Kriterien auch für nichtlineare System beschreiben und auf Beispiele anwenden.

Inhalt

- Kontrollierte lineare Differentialgleichungssysteme: Steuerbarkeit und Beobachtbarkeit,
- Stabilisierbarkeit und Entdeckbarkeit,
- Transferfunktionen,
- Realisierungstheorie,
- Quadratische optimale Kontrolle, Feedback-Synthese
- Nichtlineare Kontrolltheorie: Grundbegriffe, Kriterien via Linearisierung, Lie Klammern und Lyapunov Funktionen

Arbeitsaufwand

Gesamter Arbeitsaufwand: 180 Stunden

Präsenzzeit: 60 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 120 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Stochastische Differentialgleichungen (MATHAN24) [M-MATH-102881]

Verantwortung: Lutz Weis

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Analysis
Mathematische Methoden/Wahlbereich Mathematische Methoden/Analysis
Wahlpflichtfach
Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105852</td>
<td>Stochastische Differentialgleichungen (S. 1049)</td>
<td>8</td>
<td>Roland Schnaubelt, Lutz Weis</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung von ca. 30 Minuten.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Die Studenten beherrschen die stochastischen Methoden, die den stochastischen Differentialgleichungen zu Grunde liegen, z.B. die Brownsche Bewegung, Martingale und Martingalgleichungen. Sie kennen die Konstruktion stochastischer Integrale und sie können die Itô-Formel formulieren und auf konkrete Beispiele anwenden. Sie können stochastische Differentialgleichungen auf Existenz, Eindeutigkeit und Stabilität untersuchen und erkennen dabei das Zusammenspiel analytischer und stochastischer Methoden. Sie sind in der Lage, die allgemeine Theorie auf konkrete Gleichungen aus den Naturwissenschaften und den Wirtschaftswissenschaften anzuwenden.

Inhalt
- Brownsche Bewegung
- Martingale und Martingalungleichungen
- Stochastische Integrale und Ito-Formel
- Existenz- und Eindeutigkeitssätze für Systeme von stochastischen Differentialgleichungen
- Störungs- und Stabilitätstheorie
- Anwendung auf Gleichungen der Finanzmathematik, Physik und technische Systeme
- Zusammenhang mit Diffusionsgleichungen und Potentialtheorie

Empfehlungen
Das Modul "Funktionalanalysis" sollte bereits belegt worden sein.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden
Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
Bearbeitung von Übungsaufgaben
Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
Vorbereitung auf die studienbegleitende Modulprüfung
M
Modul: Stochastische Evolutionsgleichungen (MATHAN40) [M-MATH-102942]

Verantwortung: Lutz Weis

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung:
- Wahlpflicht
- Bestandteil von: Mathematische Methoden/Stochastik
- Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Analysis
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Analysis
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Stochastik
- Wahlpflichtfach
- Zusatzleistungen

Leistungspunkte: 8
Modulturnus: Unregelmäßig
Dauer: 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105910</td>
<td>Stochastische Evolutionsgleichungen (S. 1053)</td>
<td>8</td>
<td>Lutz Weis</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung von ca. 30 Minuten Dauer.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Die Studenten können stochastische Störungen von PDE’s als stochastische partielle Differentialgleichungen modellieren. Sie kennen grundlegende Existenzaussagen für stochastische PDE und wesentliche qualitative Eigenschaften ihrer Lösungen. Sie verstehen das Zusammenspiel analytischer und stochastischer Methoden (Fernique), insbesondere beherrschen sie Methoden der stochastischen Analysis und die Besonderheiten, die bei der stochastischen Integration Banachraumwertiger Prozesse auftreten.

Inhalt
- Gauß’sche Maße auf Banachräumen, Satz von Fernique
- Wiener Prozesse auf Banachräumen und die Loewe- Kahunen Darstellung
- Banachraumwertige Martingale und die UMD- Eigenschaft eines Banachraumes
- Ito- Integrale für Prozesse in UMD-Räumen und Burkholder-Gundy Ungleichungen, Decoupling
- Modellierung stochastischer Störungen von PDE’s
- Existenz- Eindeutigkeits-Aussagen und Regularitäts-Aussagen für parabolische stochastische Differentialgleichungen
- Stochastische Wärmeleitungsgleichung.
- Beispiele für stochastische Schrödinger- und Wärmeleitungsgleichungen.

Empfehlungen
Folgende Module sollten bereits belegt worden sein:
Wahrscheinlichkeitstheorie, Spektraltheorie.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
M Modul: Stochastische Geometrie (MATHST06) [M-MATH-102865]

Verantwortung: Daniel Hug

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Stochastik
Mathematische Methoden/Wahlbereich Mathematische Methoden/Algebra und Geometrie
Mathematische Methoden/Wahlbereich Mathematische Methoden/Stochastik
Wahlpflichtfach

Zusatzleistungen

Leistungspunkte Modulturnus Dauer
8 Jedes Sommersemester 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105840</td>
<td>Stochastische Geometrie (S. 1054)</td>
<td>8</td>
<td>Günter Last, Daniel Hug</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 30 min).

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Die Studierenden
- kennen die grundlegenden geometrischen Modelle und Kenngrößen der Stochastischen Geometrie,
- sind mit Eigenschaften von Poissonprozessen geometrischer Objekte vertraut,
- kennen exemplarisch Anwendungen von Modellen der Stochastischen Geometrie,
- können reflexiv und selbstorganisiert arbeiten.

Inhalt
- Zufällige Mengen
- Geometrische Punktprozesse
- Stationarität und Isotropie
- Keim-Korn-Modelle
- Boolesche Modelle
- Grundlagen der Integralgeometrie
- Geometrische Dichten und Kenngrößen
- Zufällige Mosaik

Empfehlungen
Die Inhalte des Moduls Räumliche Stochastik werden zum Teil benötigt.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung
Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
M Modul: Stochastische Methoden und Simulation (WW3OR7) [M-WIWI-101400]

Verantwortung: Karl-Heinz Waldmann

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Operations Management - Datenanalyse - Informatik
Wahlpflichtfach
Zusatzleistungen

Leistungspunkte 9 Modulturnus Jedes Semester Dauer 1 Semester

Wahlpflichtangebot
Wahlpflichtblock; min. 1, max. 2 Teilleistungen

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102710</td>
<td>Stochastische Entscheidungsmodelle I (S. 1050)</td>
<td>5</td>
<td>Karl-Heinz Waldmann</td>
</tr>
<tr>
<td>T-WIWI-102627</td>
<td>Simulation I (S. 1020)</td>
<td>4,5</td>
<td>Karl-Heinz Waldmann</td>
</tr>
</tbody>
</table>

Ergänzungsangebot
Wahlpflichtblock; max. 2 Teilleistungen

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102711</td>
<td>Stochastische Entscheidungsmodelle II (S. 1051)</td>
<td>4,5</td>
<td>Karl-Heinz Waldmann</td>
</tr>
<tr>
<td>T-WIWI-102703</td>
<td>Simulation II (S. 1022)</td>
<td>4,5</td>
<td>Karl-Heinz Waldmann</td>
</tr>
<tr>
<td>T-WIWI-103062</td>
<td>Vorleistung zu Nichtlineare Optimierung I (Bachelor) (S. 1075)</td>
<td>4,5</td>
<td>Karl-Heinz Waldmann</td>
</tr>
<tr>
<td>T-WIWI-102724</td>
<td>Nichtlineare Optimierung I (S. 949)</td>
<td>4,5</td>
<td>Oliver Stein</td>
</tr>
<tr>
<td>T-WIWI-105940</td>
<td>Vorleistung zu Taktisches und operatives Supply Chain Management (S. 1080)</td>
<td>4,5</td>
<td>Stefan Nickel</td>
</tr>
<tr>
<td>T-WIWI-102714</td>
<td>Taktisches und operatives Supply Chain Management (S. 1064)</td>
<td>4,5</td>
<td>Stefan Nickel</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen

Qualifikationsziele
Der/die Studierende
- besitzt fundierte Kenntnisse der Modellierung, Analyse und Optimierung stochastischer Systeme in Ökonomie und Technik.

Inhalt
Stochastische Entscheidungsmodelle I: Markov Ketten, Poisson Prozesse.
Stochastische Entscheidungsmodelle II: Warteschlangen, Stochastische Entscheidungsprozesse
Simulation I: Erzeugung von Zufallszahlen, Monte Carlo Integration, Diskrete Simulation, Zufallszahlen diskreter und stetiger Zufallsvariablen, statistische Analyse simulierter Daten.
Simulation II: Varianzreduzierende Verfahren, Simulation stochastischer Prozesse, Fallstudien.

Anmerkung
Das für zwei Studienjahre im Voraus geplante Lehrangebot kann im Internet unter http://www.ior.kit.edu/ nachgelesen werden.
M Modul: Stochastische Modellierung und Optimierung (WW4OR10) [M-WIWI-101454]

Verantwortung: Karl-Heinz Waldmann

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Operations Management - Datenanalyse - Informatik

Wahlpflichtfach

Leistungspunkte

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102628</td>
<td>Optimierung in einer zufälligen Umwelt (S. 971)</td>
<td>4,5</td>
<td>Karl-Heinz Waldmann</td>
</tr>
<tr>
<td>T-WIWI-102730</td>
<td>OR-nahe Modellierung und Analyse realer Probleme (Projekt) (S. 975)</td>
<td>4,5</td>
<td>Karl-Heinz Waldmann</td>
</tr>
<tr>
<td>T-WIWI-102728</td>
<td>Qualitätssicherung I (S. 993)</td>
<td>4,5</td>
<td>Karl-Heinz Waldmann</td>
</tr>
<tr>
<td>T-WIWI-102729</td>
<td>Qualitätssicherung II (S. 994)</td>
<td>4,5</td>
<td>Karl-Heinz Waldmann</td>
</tr>
<tr>
<td>T-WIWI-102627</td>
<td>Simulation I (S. 1020)</td>
<td>4,5</td>
<td>Karl-Heinz Waldmann</td>
</tr>
<tr>
<td>T-WIWI-102703</td>
<td>Simulation II (S. 1022)</td>
<td>4,5</td>
<td>Karl-Heinz Waldmann</td>
</tr>
<tr>
<td>T-WIWI-102710</td>
<td>Stochastische Entscheidungsmodelle I (S. 1050)</td>
<td>5</td>
<td>Karl-Heinz Waldmann</td>
</tr>
<tr>
<td>T-WIWI-102711</td>
<td>Stochastische Entscheidungsmodelle II (S. 1051)</td>
<td>4,5</td>
<td>Karl-Heinz Waldmann</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form von Teilprüfungen über die gewählten Lehrveranstaltungen des Moduls, mit denen in Summe die Mindestanforderung an Leistungspunkten erfüllt ist. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Voraussetzungen

Keine

Qualifikationsziele

Der/die Studierende

- besitzt vertiefte Kenntnisse der Modellierung, Analyse und Optimierung stochastischer Systeme in Ökonomie und Technik.

Inhalt

Stochastische Entscheidungsmodelle I: Markov Ketten, Poisson Prozesse.

Stochastische Entscheidungsmodelle II: Warteschlangen, Stochastische Entscheidungsprozesse

Simulation I: Erzeugung von Zufallszahlen, Monte Carlo Integration, Diskrete Simulation, Zufallszahlen diskreter und stetiger Zufallsvariablen, statistische Analyse simulierter Daten.

Simulation II: Varianzreduzierende Verfahren, Simulation stochastischer Prozesse, Fallstudien.
Wahlplichtfach

Qualitätssicherung I: Statistische Fertigungsüberwachung, Acceptance Sampling, Statistische Versuchsplanung
Qualitätssicherung II: Zuverlässigkeit komplexer Systeme mit und ohne Reparatur, Instandhaltung
OR-nahe Modellierung und Analyse realer Probleme: Projektbezogene Modellierung und Analyse

Anmerkung
Das für zwei Studienjahre im Voraus geplante Lehrangebot kann im Internet unter http://www.ior.kit.edu/ nachgelesen werden.

Arbeitsaufwand
Gesamtaufwand bei 9 Leistungspunkten: ca. 270 Stunden
Die genaue Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.
Modul: Variationsrechnung (MATHAN25) [M-MATH-102882]

Verantwortung: Wolfgang Reichel

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Analysis
Mathematische Methoden/Wahlbereich Mathematische Methoden/Analysis
Wahlpflichtfach
Zusatzleistungen

Leistungspunkte 8 Modulturnus Unregelmäßig Dauer 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105853</td>
<td>Variationsrechnung (S. 1069)</td>
<td>8</td>
<td>Michael Plum, Wolfgang Reichel, Andreas Kirsch, Tobias Lamm</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 30 min).

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen können

- die Bedeutung von Variationsproblemen in Bezug auf ihre Anwendungen in den Natur- bzw. Ingenieurswissenschaften oder der Geometrie beurteilen und an Hand von Beispielen illustrieren,

- eigenständig variationelle Probleme formulieren,

- die spezifischen Schwierigkeiten innerhalb der Variationsrechnung erkennen,

- konkrete, prototypische Probleme analysieren und lösen,

- Techniken einsetzen, um die Existenz von Lösungen gewisser Klassen variationeller Probleme zu beweisen, und in Spezialfällen diese Lösungen berechnen.

Inhalt

- eindimensionale Variationsprobleme
- Euler-Lagrange-Gleichung
- notwendige und hinreichende Kriterien
- mehrdimensionale Variationsprobleme
- direkte Methoden der Variationsrechnung
- Existenz kritischer Punkte von Funktionalen
Empfehlungen
Funktionalanalysis
Klassische Methoden für partielle Differentialgleichungen
Rand- und Eigenwertprobleme

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Moduleprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Vergleichsgeometrie (MATHAG30) [M-MATH-102940]

Verantwortung: Wilderich Tuschmann

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Wahlbereich Mathematische Methoden/Algebra und Geometrie
Wahlpflichtfach
Zusatzleistungen

Leistungspunkte: 5
Modulturnus: Unregelmäßig
Dauer: 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105917</td>
<td>Vergleichsgeometrie (S. 1070)</td>
<td>5</td>
<td>Wilderich Tuschmann</td>
</tr>
</tbody>
</table>

Ergebnskontrolle(n)
Die Ergebnskontrolle erfolgt in Form einer mündlichen Prüfung von ca. 20 Minuten.

Modulnote
Die Modulnote ist Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen haben ein tieferes Verständnis exemplarischer Konzepte und Methoden der Vergleichsgeometrie, einem Teilgebiet der modernen Differentialgeometrie und Riemannschen Geometrie erworben und sind auf eigenständige Forschung und weiterführende Seminare im Gebiet der Differentialgeometrie vorbereitet.

Inhalt
The course provides a thorough introduction to comparison theory in Riemannian geometry: What can be said about a complete Riemannian manifold when (mainly lower) bounds for the sectional or Ricci curvature are given? Starting from the comparison theory for the Riccati ODE which describes the evolution of the principal curvatures of equidistant hypersurfaces, we discuss the global estimates for volume and length given by Bishop-Gromov and Toponogov. An application is Gromov’s estimate of the number of generators of the fundamental group and the Betti numbers when lower curvature bounds are given. Using convexity arguments, we prove the “soul theorem” of Cheeger and Gromoll and the sphere theorem of Berger and Klingenberg for nonnegative curvature. If lower Ricci curvature bounds are given we exploit subharmonicity instead of convexity and show the rigidity theorems of Myers-Cheng and the splitting theorem of Cheeger and Gromoll. The Bishop-Gromov inequality shows polynomial growth of finitely generated subgroups of the fundamental group of a space with nonnegative Ricci curvature (Milnor). We also discuss briefly Bochner’s method.

Empfehlungen
Vorlesung 'Differentialgeometrie'.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 150 Stunden
Präsenzzeit: 60 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 90 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Vorhersagen: Theorie und Praxis (MATHST28) [M-MATH-102956]

Verantwortung: Tilman Gneiting

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von:
- Mathematische Methoden/Stochastik
- Wahlpflichtfach
- Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Unregelmäßig</td>
<td>2 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105928</td>
<td>Vorhersagen: Theorie und Praxis (S. 1074)</td>
<td>8</td>
<td>Tilman Gneiting</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 30 Minuten.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen können

- grundlegende Begriffe der maß- und wahrscheinlichkeitstheoretisch begründeten Theorie der Vorhersage nennen und an Beispielen verdeutlichen
- grundlegende Begriffe der entscheidungstheoretisch begründeten Evaluierung von Vorhersagen nennen und an Beispielen verdeutlichen
- Regressionsverfahren für Vorhersagen adaptieren, interpretieren und implementieren
- prinzipielle Vorgehensweisen bei der Erstellung und Evaluierung meteorologischer und ökonomischer Prognosen erläutern
- in Simulationsstudien und Fallbeispielen Vorhersage- und Evaluierungsverfahren selbständig entwickeln und programmieren

Inhalt

- Fallstudien aus Meteorologie und Ökonomie
- Punktvorhersagen und Wahrscheinlichkeitsvorhersagen
- Vorhersageräume, Kalibration und Schärfe
- Proper scoring rules und consistent scoring functions
- Aggregation von Vorhersagen
- prädiktive Aspekte von Regressionsverfahren
Empfehlungen
Die Inhalte des Moduls “Wahrscheinlichkeitstheorie” werden benötigt. Das Modul “Statistik” ist hilfreich.

Anmerkung
- Turnus: jedes zweite Jahr, beginnend Wintersemester 16/17
- Unterrichtssprache: Englisch

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Wachstum und Agglomeration (WW4VWL12) [M-WIWI-101496]

Verantwortung: Ingrid Ott

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Finance - Risk Management - Managerial Economics

Wahlpflichtfach

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Wahlpflichtangebot

Wahlpflichtblock; min. 9, max. 9 Leistungspunkte

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102785</td>
<td>Endogene Wachstumstheorie (S. 872)</td>
<td>4,5</td>
<td>Ingrid Ott</td>
</tr>
<tr>
<td>T-WIWI-103107</td>
<td>Spatial Economics (S. 1030)</td>
<td>4,5</td>
<td>Ingrid Ott</td>
</tr>
<tr>
<td>T-WIWI-102897</td>
<td>Internationale Wirtschaftspolitik (S. 916)</td>
<td>4,5</td>
<td>Jan Kowalski</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form von schriftlichen Teilprüfungen (siehe Lehrveranstaltungsbeschreibungen). Die Gesamtnote des Moduls wird aus den mit LP gewichteten Note der Teilprüfungen gebildet.

Voraussetzungen

Keine

Qualifikationsziele

Der/ die Studierende

- erzielt vertiefende Kenntnisse mikrobasierter allgemeiner Gleichgewichtsmodelle
- versteht, wie auf Grundlage individueller Optimierungsentscheidungen aggregierte Phänomene wie gesamtwirtschaftliches Wachstum oder Agglomerationen (Städte/Metropolen) resultieren
- kann den Beitrag dieser Phänomene zur Entstehung ökonomischer Trends einordnen und bewerten
- kann theoriebasierte Politikempfehlungen ableiten

Inhalt

Die gemeinsame Klammer der Vorlesungen in diesem Modul ist, dass in allen Veranstaltungen, basierend auf verschiedenen theoretischen Modellen, wirtschaftspolitische Empfehlungen abgeleitet werden.

Empfehlungen

Der Besuch der Veranstaltung Einführung in die Wirtschaftspolitik [2560280] wird empfohlen.

Der Besuch der Veranstaltungen VWL1: Mikroökonomie und VWL2: Makroökonomie wird vorausgesetzt.

Arbeitsaufwand

Gesamtaufwand bei 9 Leistungspunkten: ca. 270 Stunden

Die genaue Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.
Modul: Wahrscheinlichkeitstheorie und kombinatorische Optimierung (MATHST27) [M-MATH-102947]

Verantwortung: Daniel Hug
Einrichtung: KIT-Fakultät für Mathematik
Curriculare Verankerung: Wahlpflicht
Bestandteil von: Mathematische Methoden/Stochastik
Mathematische Methoden/Wahlbereich Mathematische Methoden/Stochastik
Wahlpflichtfach
Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105923</td>
<td>Wahrscheinlichkeitstheorie und kombinatorische Optimierung (S. 1081)</td>
<td>8</td>
<td>Günter Last, Daniel Hug</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 30 min).

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen

- kennen die behandelten Fragestellungen der kombinatorischen Optimierung und können diese erläutern,
- kennen typische Methoden zur probabilistischen Analyse von Algorithmen und kombinatorischen Optimierungsproblemen und können diese zur Lösung von konkreten Optimierungsproblemen einsetzen,
- können selbstorganisiert und reflexiv arbeiten.

Inhalt

- das Problem langer gemeinsamer Teilfolgen,
- Packungsprobleme,
- das euklidische Problem des Handlungsreisenden,
- minimale euklidische Paarungen,
- minimale euklidische Spannbäume.
Für die Analyse von Problemen dieser Art wurden Techniken und Konzepte entwickelt, die in der Vorlesung vorgestellt
und angewendet werden. Hierzu gehören

- Konzentrationsungleichungen und Konzentration von Maßen,
- Subadditivität und Superadditivität,
- Martingalmethoden,
- Isoperimetrie,
- Entropie.

Empfehlungen
Die Inhalte des Moduls "Wahrscheinlichkeitstheorie" werden benötigt.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Wandernde Wellen (MATHAN38) [M-MATH-102927]

Verantwortung: Jens Rottmann-Matthes

Einrichtung: KIT-Fakultät für Mathematik

Wahlpflicht

Curriculare Verankerung:
Wahlpflichtfach

Bestandteil von:
Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Analysis
Mathematische Methoden/Wahlbereich Mathematische Methoden/Analysis
Wahlpflichtfach
Zusatzleistungen

Leistungspunkte 6
Modulturnus Unregelmäßig
Dauer 1 Semester

Pflichtbestandteile

Kennenheit Teilleistung LP Verantwortung
T-MATH-105897 Wandernde Wellen (S. 1082) 6 Jens Rottmann-Matthes

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung von ca. 30 Minuten Dauer am Ende des Semesters.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Die Studierenden kennen die grundlegenden, aktuellen analytische und numerische Methoden zur Untersuchung wandernder Wellen. Sie sind in der Lage, diese auf ähnliche Problemstellungen anzuwenden.

Inhalt
- Beispiele für partielle Differentialgleichungen mit wandernden Wellen Lösungen
- Stabilitätsanalyse wandernder Wellen
- Analyse der spektralen Stabilität, unter anderem Evansfunktionstechniken
- Lineare Stabilität
- Nichtlineare Stabilität
- Techniken zur Approximation und numerischen Untersuchung

Empfehlungen
Zu einem besseren Verständnis ist Vorwissen aus den folgenden Vorlesungen hilfreich, aber nicht erforderlich: Funktionalanalyse, Spektraltheorie, Dynamische Systeme, Numerische Methoden für Differentialgleichungen

Arbeitsaufwand
Gesamter Arbeitsaufwand: 180 Stunden
Präsenzzeit: 60 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 120 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Wavelets (MATHNM14) [M-MATH-102895]

Verantwortung: Andreas Rieder

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung
Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung
Wahlpflichtfach

Zusatzleistungen

Leistungspunkte: 8
Modulturnus: Unregelmäßig
Dauer: 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105838</td>
<td>Wavelets (S. 1084)</td>
<td>8</td>
<td>Andreas Rieder</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 30 Minuten.

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen können

- die funktionalanalytischen Grundlagen der kontinuierlichen und diskreten Wavelet-Transformation nennen, erörtern und analysieren.
- die Wavelet-Transformation als Analysewerkzeug in der Signal- und Bildverarbeitung anwenden sowie die erzielten Ergebnisse bewerten.
- Designaspekte von Wavelet-Systemen erläutern.

Inhalt

- Gefensterte Fourier-Transformation
- Integrale Wavelet-Transformation
- Wavelet-Frames
- Wavelet-Basen
- Schnelle Wavelet-Transformation
- Konstruktion orthogonalen und bi-orthogonalen Wavelets
- Anwendungen in Signal- und Bildverarbeitung

Empfehlungen
Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Zeitreihenanalyse (MATHST18) [M-MATH-102911]

Verantwortung: Bernhard Klar

Einrichtung: KIT-Fakultät für Mathematik
Curriculare Verankerung: Wahlpflicht
Bestandteil von: Mathematische Methoden/Stochastik
Mathematische Methoden/Wahlbereich Mathematische Methoden/Stochastik
Wahlpflichtfach
Zusatzleistungen

Leistungspunkte Modulturnus Dauer
4 Jedes Sommersemester 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105874</td>
<td>Zeitreihenanalyse (S. 1088)</td>
<td>4</td>
<td>Bernhard Klar, Norbert Henze</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 20 min).

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Die Studierenden

- kennen und verstehen die Standardmodelle der Zeitreihenanalyse,
- kennen exemplarisch statistische Methoden zur Modellwahl und Modellvalidierung,
- wenden Modelle und Methoden der Vorlesung eigenständig auf reale und simulierte Daten an,
- kennen spezifische mathematische Techniken und können damit Zeitreihenmodelle analysieren.

Inhalt
Die Vorlesung behandelt die grundlegenden Begriffe der klassischen Zeitreihenanalyse:

- Stationäre Zeitreihen
- Trends und Saisonalitäten
- Autokorrelation
- Autoregressive Modelle
- ARMA-Modelle
- Parameterschätzung
- Vorhersage
- Spektraldichte und Periodogramm
Empfehlungen
Die Inhalte des Moduls “Wahrscheinlichkeitstheorie” werden benötigt. Das Modul “Statistik” ist hilfreich.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 120 Stunden
Präsenzzeit: 45 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 75 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des
- Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Zufällige Graphen (MATHST29) [M-MATH-102951]

Verantwortung: Matthias Schulte

Einrichtung: KIT-Fakultät für Mathematik
Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Stochastik
Mathematische Methoden/Wahlbereich Mathematische Methoden/Stochastik
Wahlpflichtfach
Zusatzleistungen

Leistungspunkte 6
Modulturnus Unregelmäßig
Dauer 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105929</td>
<td>Zufällige Graphen (S. 1089)</td>
<td>6</td>
<td>Matthias Schulte</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 25 Minuten.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Die Studierenden

- kennen die grundlegenden Modelle für zufällige Graphen und deren Eigenschaften,
- sind mit probabilistischen Techniken zur Untersuchung zufälliger Graphen vertraut,
- können selbstorganisiert und reflexiv arbeiten.

Inhalt

- Erdös-Renyi-Graphen
- Konfigurationsmodelle
- Preferential-Attachment-Graphen
- Geometrische zufällige Graphen

Empfehlungen
Die Inhalte des Moduls "Wahrscheinlichkeitstheorie" werden benötigt.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 180 Stunden
Präsenzzeit: 60 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 120 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
Bearbeitung von Übungsaufgaben
Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
Vorbereitung auf die studienbegleitende Modulprüfung
8 Zusatzleistungen

Modul: Adaptive Finite Elemente Methoden (MATHNM19) [M-MATH-102900]

Verantwortung: Willy Dörfler

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung

Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung

Wahlpflichtfach

Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105898</td>
<td>Adaptive Finite Elemente Methoden (S. 823)</td>
<td>6</td>
<td>Willy Dörfler</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 25 Minuten.

Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Absolventinnen und Absolventen können

- können die Notwendigkeit adaptiver Methoden darstellen
- die grundlegenden Methoden, Techniken und Algorithmen der Behandlung elliptischer Randwertprobleme mit adaptiven Finiten Elementen erklären
- Konzepte der Modellierung mit partiellen Differentialgleichungen wiedergeben
- Einfache Randwertaufgaben mit Adaptiven Finiten Elementen numerisch lösen

Inhalt

- Notwendigkeit adaptiver Methoden
- Residuenfehlerschätzer
- Aspekte der Implementierung
- Optimalität der adaptiven Methode
- Funktionalfehlerschätzer
- hpFinite Elemente
Empfehlungen

Arbeitsaufwand
Gesamter Arbeitsaufwand: 180 Stunden
Präsenzzeit: 60 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 120 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Advanced Inverse Problems: Nonlinearity and Banach Spaces (MATH-NM44) [M-MATH-102955]

Verantwortung: Andreas Rieder

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Angewandte und Numerische Mathematik, Optimierung Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung Wahlpflichtfach Zusatzleistungen

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Kennung

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105927</td>
<td>Advanced Inverse Problems: Nonlinearity and Banach Spaces (S. 825)</td>
<td>5</td>
<td>Andreas Rieder</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 20 Minuten.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele

Inhalt
Inexakte Newton-Verfahren in Hilbert-Räumen, Approximative Inverse in Banach-Räumen, Tikhonov-Regularisierung mit konvexem Strafterm, Kaczmarz-Newton Verfahren in Banach-Räumen

Empfehlungen
Inverse Probleme, Funktionalanalysis

Arbeitsaufwand

Gesamter Arbeitsaufwand: 150 Stunden

- Präsenzzeit: 60 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung
- Selbststudium: 90 Stunden
 - Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
 - Bearbeitung von Übungsaufgaben
 - Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
• Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Algebra (MATHAG05) [M-MATH-101315]

Verantwortung: Frank Herrlich

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Mathematische Methoden/Wahlbereich Mathematische Methoden/Algebra und Geometrie

Bestandteil von: Wahlpflichtfach

Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-102253</td>
<td>Algebra (S. 827)</td>
<td>8</td>
<td>Frank Herrlich, Stefan Kühnlein, Claus-Günther Schmidt</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 30 min.)

Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Absolventinnen und Absolventen können

- wesentliche Konzepte der Algebra nennen und erörtern,
- den Aufbau der Galoistheorie nachvollziehen und ihre Aussagen auf konkrete Fragestellungen anwenden,
- grundlegende Resultate über Bewertungsringe und ganze Ringerweiterungen nennen und zueinander in Beziehung setzen,
- und sind darauf vorbereitet, eine Abschlussarbeit im Bereich Algebra zu schreiben

Inhalt

- **Körper:** algebraische Körpererweiterungen, Galoistheorie, Einheitswurzeln und Kreisteilung, Lösen von Gleichungen durch Radikale
- **Bewertungen:** Beträge, Bewertungsringe
- **Ringtheorie:** Tensorprodukt von Moduln, ganze Ringerweiterungen, Normalisierung, noethersche Ringe, Hilbertscher Basissatz

Empfehlungen

Folgende Module sollten bereits belegt worden sein:

- Lineare Algebra
- Einführung in Algebra und Zahlentheorie

Arbeitsaufwand

Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
8 ZUSATZLEISTUNGEN

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Algebraische Geometrie [M-MATH-101724]

Verantwortung: Frank Herrlich
Einrichtung: KIT-Fakultät für Mathematik
Curriculare Verankerung: Mathematische Methoden/Wahlbereich Mathematische Methoden/Algebra und Geometrie Wahlpfllichtfach Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-103340</td>
<td>Algebraische Geometrie (S. 828)</td>
<td>8</td>
<td>Frank Herrlich, Stefan Kühnlein</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung von ca. 30 Minuten Dauer.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Absolventen und Absolventinnen können
- grundlegende Konzepte der Theorie der algebraischen Varietäten nennen und erörtern,
- Hilfsmittel aus der Algebra, insbesondere der Theorie der Polynomringe, auf geometrische Fragestellungen anwenden,
- wichtige Resultate der klassischen algebraischen Geometrie erläutern und auf Beispiele anwenden,
- und sind darauf vorbereitet, Forschungsarbeiten aus der algebraischen Geometrie zu lesen und eine Abschlussarbeit in diesem Bereich zu schreiben.

Inhalt
- Hilbertscher Nullstellensatz
- affine und projektive Varietäten
- Morphismen und rationale Abbildungen
- nichtsinguläre Varietäten
- algebraische Kurven
- Satz von Riemann-Roch

Empfehlungen
Folgende Module sollten bereits belegt worden sein:
Einführung in Algebra und Zahlentheorie
Algebra

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
ZUSATZLEISTUNGEN

- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Algebraische Topologie (MATHAG34) [M-MATH-102948]

Verantwortung: Roman Sauer

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Wahlbereich Mathematische Methoden/Algebra und Geometrie Wahlpflichtfach Zusatzleistungen

Leistungspunkte 8
Modulturnus Unregelmäßig
Dauer 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105915</td>
<td>Algebraische Topologie (S. 829)</td>
<td>8</td>
<td>Holger Kammeyer, Roman Sauer</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Schriftliche Prüfung im Umfang von 120 min.

Modulnote
Notenbildung: Note der Prüfung

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen

- können die Homologie grundlegender Beispielsräume berechnen,
- beherrschen elementare Techniken der homologischen Algebra (Diagrammjagd),
- können selbstorganisiert und reflexiv arbeiten

Inhalt

- CW-Komplexe
- Satz von Seifert und van Kampen
- Homotopiegruppen
- Singuläre Homologie und Kohomologie
- Grundzüge der homologischen Algebra (Projektive Auflösung, Tor, Ext)

Empfehlungen

Anmerkung

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
ZUSATZLEISTUNGEN

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
ZUSATZLEISTUNGEN

Mehrmalige Modulzuweisungen

ZUSATZLEISTUNGEN

M

Modul: Algebraische Topologie II (MATHAG41) [M-MATH-102953]

Verantwortung: Roman Sauer
Einrichtung: KIT-Fakultät für Mathematik
Curriculare Verankerung: Wahlpflicht
Bestandteil von:
Mathematische Methoden/Wahlbereich Mathematische Methoden/Algebra und Geometrie
Wahlpflichtfach
Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105926</td>
<td>Algebraische Topologie II (S. 830)</td>
<td>8</td>
<td>Roman Sauer</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Schriftliche Prüfung im Umfang von 120 min.

Modulnote
Die Modulnote ist die Note der Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen

- können die Kohomologieringe grundlegender Beispielsräume berechnen,
- beherrschen grundlegende Techniken der homologischen Algebra,
- können selbstorganisiert und reflexiv arbeiten

Inhalt

- Singuläre Kohomologie
- Produktstrukturen in der Kohomologie
- Universelle Koeffiziententheoreme der homologischen Algebra
- Poincare Dualität

Empfehlungen

Anmerkung
Turnus: Alle zwei Jahre.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung
ZUSATZLEISTUNGEN

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Algebraische Zahlentheorie [M-MATH-101725]

Verantwortung: Claus-Günther Schmidt

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Wahlbereich Mathematische Methoden/Algebra und Geometrie

Wahlpflichtfach Zusatzleistungen

Leistungspunkte 8 Modulturnus Unregelmäßig Dauer 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-103346</td>
<td>Algebraische Zahlentheorie (S. 831)</td>
<td>8</td>
<td>Stefan Kühnlein, Claus-Günther Schmidt</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 30 min.)

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen
- verstehen grundlegende Strukturen und Denkweisen der Algebraischen Zahlentheorie,
- erkennen die Bedeutung der abstrakten Begriffsbildungen für konkrete Fragestellungen,
- sind grundsätzlich in der Lage, aktuelle Forschungsarbeiten zu lesen und eine Abschlussarbeit auf dem Gebiet der Algebraischen Zahlentheorie zu schreiben.

Inhalt
- Algebraische Zahlkörper: Ganzheitsringe, Minkowskitheorie, Klassengruppe und Dirichletscher Einheitensatz
- Erweiterung von Zahlkörpern: Verzweigungstheorie, Galoistheoretische Fragestellungen
- Lokale Körper: Satz von Ostrowski, Bewertungstheorie, Lemma von Hensel, Erweiterungen lokaler Körper

Empfehlungen
Die Inhalte des Moduls „Algebra“ werden vorausgesetzt.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Analytics und Statistik [M-WIWI-101637]

Verantwortung: Oliver Grothe

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Finance - Risk Management - Managerial Economics

Wahlpflichtfach

Zusatzleistungen

Leistungspunkte: 9
Sprache: Deutsch

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-103123</td>
<td>Statistik für Fortgeschrittene (S. 1042)</td>
<td>4,5</td>
<td>Oliver Grothe</td>
</tr>
</tbody>
</table>

Ergänzungsangebot

Wahlpflichtblock; min. 4,5, max. 5 Leistungspunkte

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-103124</td>
<td>Multivariate Verfahren (S. 946)</td>
<td>4,5</td>
<td>Oliver Grothe</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen

Die Lehrveranstaltung "Statistik für Fortgeschrittene" des Moduls muss geprüft werden.

Qualifikationsziele

Der/die Studierende

- Vertieft Grundlagen der schließenden Statistik.
- Lernt mit Simulationsmethoden umzugehen und diese sinnvoll einzusetzen.
- Lernt grundlegende und erweiterte Methoden der statistischen Auswertung mehr- und hochdimensionaler Daten kennen.

Inhalt

- Schätzen und Testen
- Stochastische Prozesse
- Multivariate Statistik, Copulas
- Abhängigkeitsmessung
- Dimensionsreduktion
- Hochdimensionale Methoden
- Vorhersagen

Anmerkung

Das für drei Studienjahre im Voraus geplante Lehrangebot kann im Internet nachgelesen werden.

Arbeitsaufwand

Modul: Anwendungen des Operations Research (WW3OR5) [M-WIWI-101413]

Verantwortung: Stefan Nickel

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Operations Management - Datenanalyse - Informatik

Leistungspunkte

<table>
<thead>
<tr>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jedes Semester</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Wahlpflichtangebot

Wahlpflichtangebot
Wahlpflichtblock; min. 1, max. 4 Teilleistungen

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-103061</td>
<td>Vorleistung zu Standortplanung und strategisches Supply Chain Management (S. 1079)</td>
<td>4,5</td>
<td>Stefan Nickel</td>
</tr>
<tr>
<td>T-WIWI-102704</td>
<td>Standortplanung und strategisches Supply Chain Management (S. 1040)</td>
<td>4,5</td>
<td>Stefan Nickel</td>
</tr>
<tr>
<td>T-WIWI-105940</td>
<td>Vorleistung zu Taktisches und operatives Supply Chain Management (S. 1080)</td>
<td>4,5</td>
<td>Stefan Nickel</td>
</tr>
<tr>
<td>T-WIWI-102714</td>
<td>Taktisches und operatives Supply Chain Management (S. 1064)</td>
<td>4,5</td>
<td>Stefan Nickel</td>
</tr>
</tbody>
</table>

Ergänzungsangebot

Wahlpflichtblock; max. 1 Teilleistungen

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102717</td>
<td>Software-Praktikum: OR-Modelle I (S. 1026)</td>
<td>4,5</td>
<td>Stefan Nickel</td>
</tr>
<tr>
<td>T-WIWI-102726</td>
<td>Globale Optimierung I (S. 901)</td>
<td>4,5</td>
<td>Oliver Stein</td>
</tr>
<tr>
<td>T-WIWI-102627</td>
<td>Simulation I (S. 1020)</td>
<td>4,5</td>
<td>Karl-Heinz Waldmann</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form von Teilprüfungen (nach § 4(2), 1 SPO) über die gewählten Lehrveranstaltungen des Moduls, mit denen in Summe die Mindestanforderungen an Leistungspunkten erfüllt ist.

Die Erfolgskontrolle wird bei jeder Lehrveranstaltung beschrieben.

Die Gesamtnote des Moduls wird aus den mit Leistungspunkten gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Voraussetzungen

Keine

Qualifikationsziele

Der/ die Studierende

- ist vertraut mit wesentlichen Konzepten und Begriffen des Supply Chain Managements,
- kennt die verschiedenen Teilgebiete des Supply Chain Managements und die zugrunde liegenden Optimierungsprobleme,
- ist mit den klassischen Standortmodellen (in der Ebene, auf Netzwerken und diskret), sowie mit den grundlegenden Methoden zur Ausliefer- und Transportplanung, Warenlagerplanung und Lagermanagement vertraut,
- ist in der Lage praktische Problemstellungen mathematisch zu modellieren und kann deren Komplexität abschätzen sowie geeignete Lösungsverfahren auswählen und anpassen.

Anmerkung
Das für drei Studienjahre im Voraus geplante Lehrangebot kann im Internet nachgelesen werden.
ZUSATZLEISTUNGEN

M Modul: Asymptotische Stochastik (MATHST07) [M-MATH-102902]

Verantwortung: Norbert Henze
Einrichtung: KIT-Fakultät für Mathematik
Curriculare Verankerung: Wahlpflicht
Bestandteil von: Mathematische Methoden/Stochastik
Mathematische Methoden/Wahlbereich Mathematische Methoden/Stochastik
Wahlpflichtfach
Zusatzleistungen

Leistungspunkte 8
Modulturnus Jedes Wintersemester
Dauer 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105866</td>
<td>Asymptotische Stochastik (S. 839)</td>
<td>8</td>
<td>Bernhard Klar, Vicky Fasen-Hartmann, Norbert Henze</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 30 min).

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Die Absolvent(inn)en

- sind mit grundlegenden probabilistischen Techniken im Zusammenhang mit dem Nachweis der Verteilungskonvergenz von Zufallsvektoren vertraut und können diese anwenden,
- kennen das asymptotische Verhalten von Maximum-Likelihood-Schätzern und des verallgemeinerten Likelihood-Quotienten bei parametrischen Testproblemen,
- können das Limesverhalten von nichtdegenerierten und einfach degenerierten U-Statistiken erläutern,
- kennen den Satz von Donsker und können dessen Beweis skizzieren.

Inhalt

- Poissonscher Grenzwertsatz für Dreiecksschemata,
- Momentenmethode,
- Zentraler Grenzwertsatz für stationäre m-abhängige Folgen,
- allgemeine multivariate Normalverteilung,
- Verteilungskonvergenz und Zentraler Grenzwertsatz im \mathbb{R}^d,
- Satz von Glivenko-Cantelli,
- Grenzwertsätze für U-Statistiken,
- asymptotische Schätztheorie (Maximum-Likelihood- und Momentenschätzer),
ZUSATZLEISTUNGEN

• asymptotische Effizienz und relative Effizienz von Schätzern,
• asymptotische Tests in parametrischen Modellen, parametrischer Bootstrap,
• schwache Konvergenz in metrischen Räumen,
• Satz von Prokhorov,
• Brown-Wiener-Prozess, Satz von Donsker, funktionaler Zentraler Grenzwertsatz, Brownsche Brücke
• Anpassungstests.

Empfehlungen
Die Inhalte des Moduls "Wahrscheinlichkeitstheorie" werden benötigt.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzeit: 90 Stunden

Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

• Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
• Bearbeitung von Übungsaufgaben
• Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
• Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Bildgebende Verfahren in der Medizintechnik (MATHNM15) [M-MATH-102896]

Verantwortung: Andreas Rieder
Einrichtung: KIT-Fakultät für Mathematik
Curriculare Verankerung: Pflicht
Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Angewandte und Numerische Mathematik, Optimierung Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung Wahlpflichtfach Zusatzleistungen

Leistungspunkte Modulturnus Dauer
8 Unregelmäßig 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105861</td>
<td>Bildgebende Verfahren in der Medizintechnik (S. 841)</td>
<td>8</td>
<td>Andreas Rieder</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 30 Minuten.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele

Inhalt
- Varianten der Computer-Tomographie (Röntgen-, Impedanz-, etc.)
- Eigenschaften der Radon-Transformation
- Abtastung und Auflösung
- Schlechtgestelltheit und Regularisierung
- Rekonstruktionsalgorithmen

Empfehlungen
Das Modul “Funktionalanalysis” ist hilfreich.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung
ZUSATZLEISTUNGEN

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Brownsche Bewegung (MATHST10) [M-MATH-102904]

Verantwortung: Nicole Bäuerle

Einrichtung: KIT-Fakultät für Mathematik
Curriculare Verankerung: Wahlpflicht
Bestandteil von: Mathematische Methoden/Stochastik
Mathematische Methoden/Wahlbereich Mathematische Methoden/Stochastik
Wahlpflichtfach
Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105868</td>
<td>Brownsche Bewegung (S. 843)</td>
<td>4</td>
<td>Günter Last, Nicole Bäuerle, Vicky Fasen-Hartmann</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 20 min).

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen können

- Eigenschaften der Brownschen Bewegung nennen, erklären und begründen,
- die Brownsche Bewegung zur Modellierung von stochastischen Phänomenen anwenden,
- spezifische probabilistische Techniken gebrauchen,
- selbstorganisiert und reflexiv arbeiten.

Inhalt

- Existenz und Konstruktion der Brownschen Bewegung
- Pfadeigenschaften der Brownschen Bewegung
- Starke Markov-Eigenschaft der Brownschen Bewegung mit Anwendungen
- Skorohod Darstellung der Brownschen Bewegung

Empfehlungen
Die Inhalte des Moduls “Wahrscheinlichkeitstheorie” werden benötigt.

Arbeitsaufwand
Präsenzzeit: 45 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung
Selbststudium: 75 Stunden
ZUSATZLEISTUNGEN

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
M Modul: Collective Decision Making (WW4VWL16) [M-WIWI-101504]

Verantwortung: Clemens Puppe

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Curriculare Verankerung: Wahlpflichtfach

Bestandteil von: Finance - Risk Management - Managerial Economics

Leistungspunkte	Modulturnus	Dauer
9 | Jedes Semester | 1 Semester

Wahlpflichtangebot

Wahlpflichtblock; min. 9, max. 9,5 Leistungspunkte

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102617</td>
<td>Mathematische Theorie der Demokratie (S. 940)</td>
<td>4,5</td>
<td>Andranik Melik-Tangian</td>
</tr>
<tr>
<td>T-WIWI-102859</td>
<td>Social Choice Theory (S. 1025)</td>
<td>4,5</td>
<td>Clemens Puppe</td>
</tr>
<tr>
<td>T-WIWI-102740</td>
<td>Public Management (S. 991)</td>
<td>4,5</td>
<td>Berthold Wigger</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form von Teilprüfungen (nach §4(2), 1 o. 2 SPO) über die gewählten Lehrveranstaltungen des Moduls, mit denen in Summe die Mindestanforderung an Leistungspunkten erfüllt ist. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden

- sind in der Lage, praktische Problemstellungen der Ökonomie des öffentlichen Sektors zu modellieren und im Hinblick auf positive und normative Fragestellungen zu analysieren,
- verstehen die individuellen Anreize und gesellschaftlichen Auswirkungen verschiedener institutioneller ökonomischer Rahmenbedingungen,
- sind vertraut mit der Funktionsweise und Ausgestaltung demokratischer Wahlverfahren und können diese im Hinblick auf ihre Anreizwirkung analysieren.

Arbeitsaufwand

Gesamtaufwand bei 9 Leistungspunkten: ca. 270 Stunden

Die genaue Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.
M Modul: Compressive Sensing (MATHNM37) [M-MATH-102935]

Verantwortung: Andreas Rieder

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung:
- Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Angewandte und Numerische Mathematik, Optimierung
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung
- Wahlpflichtfach
- Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105894</td>
<td>Compressive Sensing (S. 847)</td>
<td>5</td>
<td>Andreas Rieder</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 20 Minuten.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele

Inhalt
- Was ist Compressive Sensing und wo kommt es zum Einsatz
- Dünnbesetzte Lösungen unterbestimmter Gleichungssysteme
- Grundlegende Algorithmen
- Restricted Isometry Property
- Dünnbesetzte Lösungen unterbestimmter Gleichungssysteme mit Zufallsmatrizen

Empfehlungen
Die Inhalte der Module “Analysis 1 und 2”, “Lineare Algebra 1 und 2” werden benötigt.
Das Modul “Einführung in die Stochastik” ist hilfreich.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 150 Stunden
Präsenzzeit: 60 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung
Selbststudium: 90 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
ZUSATZLEISTUNGEN

- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
M Modul: Computerunterstützte analytische Methoden für Rand- und Eigenwertprobleme (MATHAN11) [M-MATH-102883]

Verantwortung: Michael Plum

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Analysis
Mathematische Methoden/Wahlbereich Mathematische Methoden/Analysis
Wahlpflichtfach
Zusatzleistungen

Leistungspunkte 8
Modulturnus Unregelmäßig
Dauer 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105854</td>
<td>Computerunterstützte analytische Methoden für Rand- und Eigenwertprobleme (S. 850)</td>
<td>8</td>
<td>Michael Plum</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 20 min).

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele

Inhalt

Empfehlungen
- Klassische Methoden für partielle Differentialgleichungen
- Rand- und Eigenwertprobleme
- Funktionalanalyse

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
8 ZUSATZLEISTUNGEN

- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Der Poisson-Prozess (MATHST20) [M-MATH-102922]

Verantwortung: Günter Last

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Mathematische Methoden/Stochastik

Bestandteil von: Mathematische Methoden/Stochastik

Leistungspunkte: 5

Modulturnus: Unregelmäßig

Dauer: 1 Semester

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105922</td>
<td>Der Poisson-Prozess (S. 856)</td>
<td>5</td>
<td>Günter Last, Vicky Fasen-Hartmann, Daniel Hug</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 30 min).

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele

Inhalt
- Verteilungseigenschaften des Poisson-Prozesses
- Der Poisson-Prozess als spezieller Punktprozess
- Stationäre Poisson- und Punktprozesse
- Zufällige Maße und Coxprozesse
- Poisson-Cluster Prozesse und zusammengesetzte Poisson-Prozesse
- Der räumliche Gale-Shapley Algorithmus

Empfehlungen
Die Inhalte des Moduls Wahrscheinlichkeitstheorie werden zum Teil benötigt.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 150 Stunden
Präsenzzeit: 60 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung
Selbststudium: 90 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes

Wirtschaftsmathematik (M.Sc.)
Modulhandbuch mit Stand 04.08.2016 für Wintersemester 16/17
ZUSATZLEISTUNGEN

- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
ZUSATZLEISTUNGEN

Modul: Die Riemannsche Zeta-Funktion (MATHAG45) [M-MATH-102960]

Verantwortung: Fabian Januszewski

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Mathematische Methoden/Wahlbereich Mathematische Methoden/Algebra und Geometrie

Wahlpflichtfach

Zusatzleistungen

Leistungspunkte 4

Modulturnus Unregelmäßig

Dauer 1 Semester

Sprache Deutsch

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105934</td>
<td>Die Riemannsche Zeta-Funktion (S. 858)</td>
<td>4</td>
<td>Fabian Januszewski</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung von ca. 20 Minuten Dauer.

Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden kennen die fundamentalen Eigenschaften der Riemannschen Zeta-Funktion, insbesondere als Prototyp allgemeiner LFunktionen (Euler-Produkt, meromorphe Fortsetzung, Funktionalgleichung). Weiterhin können die Studierenden aus den Eigenschaften der Zeta-Funktion den Primzahlsatz ableiten und die Relevanz der Riemannschen Vermutung für die Verteilung der Primzahlen erklären.

Inhalt

- Definition und Konvergenz, Euler-Produkt-Entwicklung
- Analytische Fortsetzung und Funktionalgleichung
- Anwendungen auf den Primzahlsatz, Riemannsche Vermutung

Empfehlungen

Das Modul "Einführung in Algebra Zahlentheorie" sollte bereits belegt worden sein.

Arbeitsaufwand

Gesamter Arbeitsaufwand: 120 Stunden

Präsenzzeit: 45 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 75 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
ZUSATZLEISTUNGEN

M Modul: Differentialgeometrie (MATHAG04) [M-MATH-101317]

Verantwortung: Wilderich Tuschmann

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung:

Bestandteil von: Mathematische Methoden/Wahlbereich Mathematische Methoden/Algebra und Geometrie
Wahlpflichtfach
Zusatzleistungen

Leistungspunkte Modulturnus Dauer
8 Jedes Wintersemester 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-102275</td>
<td>Differentialgeometrie (S. 859)</td>
<td>8</td>
<td>Wilderich Tuschmann, Enrico Leuzinger, Sebastian Grensing</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung von 120 Minuten Dauer.

Modulnote
Die Modulnote ist die Note der schriftlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen

- können grundlegende Aussagen und Techniken der modernen Differentialgeometrie näher erörtern und anwenden,
- sind mit exemplarischen Anwendungen der Differentialgeometrie vertraut,
- können weiterführende Seminare und Vorlesungen im Bereich der Differentialgeometrie und Topologie besuchen.

Inhalt
Mannigfaltigkeiten
Tensoren
Riemannsche Metriken
Lineare Zusammenhänge
Kovariante Ableitung
Parallelverschiebung
Geodätische
Krümmungstensor und Krümmungsbegriffe

Optional:

Bündel
Differentialformen
Satz von Stokes

Empfehlungen
Folgende Module sollten bereits belegt worden sein:

Wirtschaftsmathematik (M.Sc.)
Modulhandbuch mit Stand 04.08.2016 für Wintersemester 16/17
ZUSATZLEISTUNGEN

Lineare Algebra I, II
Analysis I, II
Einführung in Geometrie und Topologie bzw. Elementare Geometrie

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
ZUSATZLEISTUNGEN

M Modul: Dynamische Systeme (MATHAN43) [M-MATH-103080]

Verantwortung: Jens Rottmann-Matthes
Einrichtung: KIT-Fakultät für Mathematik
Curriculare Verankerung:
Bestandteil von:
 - Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Analysis
 - Mathematische Methoden/Wahlbereich Mathematische Methoden/Analysis
 - Wahlpflichtfach
 - Zusatzleistungen

Leistungspunkte 8 Modulturnus Unregelmäßig Dauer 1 Semester Sprache Deutsch

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-106114</td>
<td>Dynamische Systeme (S. 861)</td>
<td>8</td>
<td>Jens Rottmann-Matthes</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Prüfung: mündliche Prüfung (ca. 30 Min)

Modulnote
Notenbildung: Note der Prüfung.

Voraussetzungen
keine

Qualifikationsziele
Absolventinnen und Absolventen können

- die Bedeutung Dynamischer Systeme an Hand von Beispielen erläutern,
- die Konzepte eines zeitdiskreten und zeitkontinuierlichen dynamischen Systems zueinander in Beziehung setzen,
- wichtige Methoden zur Analyse dynamischer Systeme beschreiben und mit ihrer Hilfe das asymptotische Verhalten von Lösungen in der Nähe von Gleichgewichten für verschiedene dynamische Systeme analysieren,
- das Verhalten invarianter Mengen unter Diskretisierung beschreiben.

Inhalt

- Beispiele endlich- und unendlich-dimensionaler Dynamischer Systeme
- Fixpunkte, periodische Orbits, Limesmengen
- Invariante Mengen
- Attraktoren
- Ober- und Unteralbstetigkeit von Attraktoren
- Stabile und instabile Mannigfaltigkeiten
- Zentrumsmannigfaltigkeiten

Empfehlungen
Analysis 1-3, Funktionalanalysis

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung
Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
ZUSATZLEISTUNGEN

Modul: Einführung in das Wissenschaftliche Rechnen (MATHNM05) [M-MATH-102889]

Verantwortung: Tobias Jahnke, Willy Dörfler

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung:
Wahlpflicht

Bestandteil von:
Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Angewandte und Numerische Mathematik, Optimierung
Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung
Wahlpflichtfach
Zusatzleistungen

Leistungspunkte
8

Modulturnus
Jedes Sommersemester

Dauer
1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105837</td>
<td>Einführung in das Wissenschaftliche Rechnen (S. 868)</td>
<td>8</td>
<td>Andreas Rieder, Tobias Jahnke, Marlis Hochbruck, Willy Dörfler, Christian Wieners</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 30 Minuten.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen können

- die Verzahnung aller Aspekte des Wissenschaftlichen Rechnens an einfachen Beispielen entwickeln: von der Modellbildung über die algorithmische Umsetzung bis zur Stabilitäts- und Fehleranalyse.

- Konzepte der Modellierung mit Differentialgleichungen erklären

- Einfache Anwendungsbeispiele algorithmisch umsetzen, den Code evaluieren und die Ergebnisse darstellen und diskutieren.

Inhalt

- Numerische Methoden für Anfangswertaufgaben, Randwertaufgaben und Anfangsrandwertaufgaben (Finite Differenzen, Finite Elemente)

- Modellierung mit Differentialgleichungen

- Algorithmische Umsetzung von Anwendungsbeispielen

- Präsentation der Ergebnisse wissenschaftlicher Rechnungen
Empfehlungen

Anmerkung
3 Stunden Vorlesung und 3 Stunden Praktikum

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Einführung in die geometrische Maßtheorie (MATHAG35) [M-MATH-102949]

Verantwortung: Steffen Winter

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Wahlbereich Mathematische Methoden/Algebra und Geometrie

Wahlpflichtfach

Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105918</td>
<td>Einführung in die geometrische Maßtheorie (S. 869)</td>
<td>6</td>
<td>Steffen Winter</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung von ca. 20 Minuten.

Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden
- kennen grundlegende Aussagen und Beweistechniken der geometrischen Maßtheorie,
- sind mit exemplarischen Anwendungen von Methoden der geometrischen Maßtheorie vertraut und wenden diese an,
- können reflexiv und selbstorganisiert arbeiten.

Inhalt

- Maß und Integral
- Überdeckungssätze
- Hausdorff-Maße
- Differentiation von Maßen
- Lipschitzfunktionen und Rektifizierbarkeit
- Flächen- und Koflächenformel
- Ströme
- Anwendungen

Empfehlungen

Folgende Module sollten bereits belegt worden sein:
Lineare Algebra 1+2, Analysis 1-3

Arbeitsaufwand

Gesamter Arbeitsaufwand: 180 Stunden
Präsenzzeit: 60 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 120 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
• Vorbereitung auf die studienbegleitende Modulprüfung
ZUSATZLEISTUNGEN

Modul: Einführung in Matlab und numerische Algorithmen (MATHNM43) [M-MATH-102945]

Verantwortung: Daniel Weiß
Einrichtung: KIT-Fakultät für Mathematik
Curriculare Verankerung: Wahlpflicht
Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Angewandte und Numerische Mathematik, Optimierung
Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung
Wahlpflichtfach
Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105913</td>
<td>Einführung in Matlab und numerische Algorithmen (S. 870)</td>
<td>5</td>
<td>Christian Wieners, Daniel Weiß</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 75 Minuten.

Modulnote
Die Modulnote ist die Note der schriftlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen können

- grundlegende numerische Algorithmen auch in Hinblick auf die Implementierung verstehen und in der Programmierumgebung Matlab effizient programmieren.
- vorhandene Tools und Toolboxen numerischer Algorithmen, welche in Matlab bereits implementiert sind, benutzen und in ihrer Funktionsweise verstehen.
- Matlab als Schnittstelle zu anderen Programmiersprachen und zu anderer mathematischer Software nutzen.

Inhalt

- Matlab als Programmierumgebung:
 1. Programmierung
 2. Debugging
 3. Visualisierung
 - Funktionsweise elementarer Matlab-Funktionen
 - Verschiedene Toolboxen von Matlab, z.B. PDE-Toolbox
 - Spezielle Speicherformate

Wirtschaftsmathematik (M.Sc.)
Modulhandbuch mit Stand 04.08.2016 für Wintersemester 16/17
Parallelisierung

Empfehlungen

Arbeitsaufwand
Gesamter Arbeitsaufwand: 150 Stunden
Präsenzzeit: 60 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 90 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Einführung in Partikuläre Strömungen (MATHNM41) [M-MATH-102943]

Verantwortung: Willy Dörfler
Einrichtung: KIT-Fakultät für Mathematik
Curriculare Verankerung: Wahlpflicht
Bestandteil von:
- Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Angewandte und Numerische Mathematik, Optimierung
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung
- Wahlpflichtfach
- Zusatzleistungen

#### Leistungspunkte	Modulturnus	Dauer
3 | Einmalig | 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105911</td>
<td>Einführung in Partikuläre Strömungen (S. 871)</td>
<td>3</td>
<td>Willy Dörfler</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 20 Minuten.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen können

- die grundlegenden Modelle der mathematischen Beschreibung von Strömungen erklären
- Konzepte der Modellierung teilchenbehafter Strömung erklären
- verstehen die numerischen Ansätze zur Berechnung solcher Strömungen

Inhalt

- Mathematische Beschreibung von Strömungen
- Modelle zur Beschreibung von Teilchen in einer Strömung
- Bewegung starrer Körper in einer Strömung
- Bewegung starrer Körper in einer viskosen Strömung
- Einbeziehung verschiedener Kräfte zwischen Strömung und Partikel, zum Beispiel bei ionischen Strömungen

Empfehlungen
Grundlagenkenntnisse in der numerischen Behandlung von Differentialgleichungen, in numerischer Strömungsmechanik und in einer Programmiersprache.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 90 Stunden
Präsenzzeit: 30 Stunden
8 ZUSATZLEISTUNGEN

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 60 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
M

Modul: Energiewirtschaft und Technologie (WW4BWL1IP5) [M-WIWI-101452]

Verantwortung: Wolf Fichtner

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Curriculare Verankerung: Wahlpflichtfach

Bestandteil von: Operations Management - Datenanalyse - Informatik

Leistungspunkte

<table>
<thead>
<tr>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jedes Semester</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Wahlpflichtangebot

Wahlpflichtblock; min. 9, max. 9 Leistungspunkte

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102650</td>
<td>Energie und Umwelt (S. 874)</td>
<td>4,5</td>
<td>Ute Karl</td>
</tr>
<tr>
<td>T-WIWI-102633</td>
<td>Strategische Aspekte der Energiewirtschaft (S. 1057)</td>
<td>3,5</td>
<td>Armin Ardone</td>
</tr>
<tr>
<td>T-WIWI-102694</td>
<td>Technologischer Wandel in der Energiewirtschaft (S. 1065)</td>
<td>3</td>
<td>Martin Wietschel</td>
</tr>
<tr>
<td>T-WIWI-102695</td>
<td>Wärmewirtschaft (S. 1083)</td>
<td>3</td>
<td>Wolf Fichtner</td>
</tr>
<tr>
<td>T-WIWI-102830</td>
<td>Energy Systems Analysis (S. 875)</td>
<td>3</td>
<td>Valentin Bertsch</td>
</tr>
<tr>
<td>T-WIWI-102793</td>
<td>Efficient Energy Systems and Electric Mobility (S. 862)</td>
<td>3,5</td>
<td>Russell McKenna, Patrick Jochem</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen

Qualifikationsziele

Der/die Studierende

- besitzt detaillierte Kenntnisse zu heutigen und zukünftigen Energieversorgungstechnologien (Fokus auf die Endenergieträger Elektrizität und Wärme),
- kennt die techno-ökonomischen Charakteristika von Anlagen zur Energiebereitstellung, zum Energietransport sowie der Energieverteilung und Energienachfrage,
- kann die wesentlichen Umweltauswirkungen dieser Technologien einordnen.

Inhalt

- **Strategische Aspekte der Energiewirtschaft**: Langfristige Planungsmethoden, Erzeugungstechnologien
- **Technologischer Wandel in der Energiewirtschaft**: Zukünftige Energietechnologien, Lernkurven, Energienachfrage
- **Wärmewirtschaft**: Fernwärme, Heizungsanlagen, Wärmebedarfsreduktion, gesetzliche Vorgaben
- **Energiesystemanalyse**: Interdependenzen in der Energiewirtschaft, Modelle der Energiewirtschaft
- **Energie und Umwelt**: Emissionsfaktoren, Emissionsminderungsmaßnahmen, Umweltauswirkungen

Wirtschaftsmathematik (M.Sc.)

Modulhandbuch mit Stand 04.08.2016 für Wintersemester 16/17
Arbeitsaufwand
Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 Credits). Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls. Dabei beträgt der Arbeitsaufwand für Lehrveranstaltungen mit 3 Credits ca. 90h, für Lehrveranstaltungen mit 3,5 Credits ca. 105h und für Lehrveranstaltungen mit 5 Credits ca. 150h. Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.
Verantwortung: Clemens Puppe

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Finance - Risk Management - Managerial Economics

Wahlpflichtfach

Zusatzleistungen

Leistungspunkte: 9

Sprache: Deutsch

Wahlpflichtangebot

Wahlpflichtblock; min. 9, max. 9 Leistungspunkte

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102613</td>
<td>Auktionstheorie (S. 840)</td>
<td>4,5</td>
<td>Karl-Martin Ehrhart</td>
</tr>
<tr>
<td>T-WIWI-102614</td>
<td>Experimentelle Wirtschaftsforschung (S. 879)</td>
<td>4,5</td>
<td>Christof Weinhardt, Timm Teubner</td>
</tr>
<tr>
<td>T-WIWI-102861</td>
<td>Advanced Game Theory (S. 824)</td>
<td>4,5</td>
<td>Karl-Martin Ehrhart, Clemens Puppe, Johannes Philipp Reiß</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form von Teilprüfungen über die gewählten Teilleistungen des Moduls, mit denen in Summe die Mindestanforderung an Leistungspunkten erfüllt ist. Die Erfolgskontrolle wird bei jeder Teilleistung dieses Moduls beschrieben.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Voraussetzungen

Keine

Qualifikationsziele

Der Student soll mit den Grundlagen des individuellen und des strategischen Entscheidens auf einem fortgeschrittenen, formalen Niveau bekannt gemacht werden.

Er soll lernen, ökonomische Probleme durch abstraktes und methodenbasiertes zu analysieren und fundierte Lösungsvorschläge zu erarbeiten. In den Übungen sollen die in den Vorlesungen dargelegten theoretischen Konzepte und Resultate durch Fallstudien vertieft werden.

Inhalt

Das Modul bietet, aufbauend auf einer fortgeschrittenen formalen Analyse von strategischen Entscheidungssituationen eine methodisch differenzierte Vertiefung - entweder theoretisch oder empirisch - der Anwendungsmöglichkeiten der spieltheoretischen Analyse an.

Anmerkung

Das Modul kann in folgenden Studienprofilen gewählt werden:

- Operations Research
- Klassische Wirtschaftsmathematik

Gute Kenntnisse in Mathematik und Statistik sind hilfreich.

Arbeitsaufwand

Gesamtaufwand bei 9 Leistungspunkten: ca. 270 Stunden

Die genaue Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.
Modul: Evolutionsgleichungen (MATHAN12) [M-MATH-102872]

Verantwortung: Roland Schnaubelt

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung:
- Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Analysis
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Analysis
- Wahlpflichtfach
- Zusatzleistungen

Leistungspunkte: 8

Modulturnus: Unregelmäßig

Dauer: 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105844</td>
<td>Evolutionsgleichungen (S. 878)</td>
<td>8</td>
<td>Roland Schnaubelt, Lutz Weis</td>
</tr>
</tbody>
</table>

Erfolgskontrollen:
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung von ca. 30 Minuten.

Modulnote:
Die Modulnote ist die Note der Prüfung.

Voraussetzungen:
Keine

Qualifikationsziele:

Inhalt:
- stark stetige Operatorhalbgruppen und ihre Erzeuger,
- Erzeugungssätze und Wohlgestelltheit,
- analytische Halbgruppen,
- inhomogene und semilineare Cauchyprobleme,
- Störungstheorie,
- Einführung in Stabilitäts- und Spektraltheorie von Operatorhalbgruppen,
- Anwendungen auf partielle Differentialgleichungen

Anmerkung:
Turnus: Alle zwei Jahre.

Arbeitsaufwand:
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes

Wirtschaftsmathematik (M.Sc.)
Modulhandbuch mit Stand 04.08.2016 für Wintersemester 16/17
• Bearbeitung von Übungsaufgaben
• Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
• Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Experimentelle Wirtschaftsforschung (WW4VWL17) [M-WIWI-101505]

Verantwortung: Johannes Philipp Reiß

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Finance - Risk Management - Managerial Economics
Wahlpflichtfach
Zusatzleistungen

Leistungspunkte: 9
Sprache: Deutsch

Wahlpflichtangebot
Wahlpflichtblock; min. 2, max. 2 Teilleistungen

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102862</td>
<td>Predictive Mechanism and Market Design (S. 986)</td>
<td>4,5</td>
<td>Johannes Philipp Reiß</td>
</tr>
<tr>
<td>T-WIWI-102863</td>
<td>Topics in Experimental Economics (S. 1067)</td>
<td>4,5</td>
<td>Johannes Philipp Reiß</td>
</tr>
<tr>
<td>T-WIWI-105781</td>
<td>Incentives in Organizations (S. 908)</td>
<td>4,5</td>
<td>Petra Nieken</td>
</tr>
<tr>
<td>T-WIWI-102614</td>
<td>Experimentelle Wirtschaftsforschung (S. 879)</td>
<td>4,5</td>
<td>Christof Weinhardt, Timm Teubner</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form von Teilprüfungen (nach §4(2), 1-3 SPO) über die Kernveranstaltung und weitere Lehrveranstaltungen des Moduls im Umfang von insgesamt mindestens 9 LP. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Voraussetzungen
Keine.

Qualifikationsziele
Der/die Studierende
- beherrscht die Methoden der Experimentellen Wirtschaftsforschung und lernt ihre Stärken und Schwächen einzuschätzen;
- lernt wie sich die theoriegeleitete experimentelle Wirtschaftsforschung und Theoriebildung gegenseitig befruchten;
- kann ein ökonomisches Experiment entwerfen;
- statistische Grundlagen der Datenauswertung kennen und anwenden.

Inhalt

Empfehlungen
Es werden grundlegende Kenntnisse in Mathematik, Statistik und Spieltheorie vorausgesetzt.

Anmerkung
Die Veranstaltung Predictive Mechanism and Market Design wird in jedem zweiten Wintersemester angeboten, z.B. WS2013/14, WS2015/16, ...

Die Veranstaltung Topics in Experimental Economics wird voraussichtlich erstmals im Sommersemester 2016 angeboten.

Arbeitsaufwand
Gesamtaufwand bei 9 Leistungspunkten: ca. 270 Stunden
Die genaue Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.
M Modul: Extremale Graphentheorie (MATHAG42) [M-MATH-102957]

Verantwortung: Maria Aksenovich

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Mathematische Methoden/Wahlbereich Mathematische Methoden/Algebra und Geometrie

Bestandteil von: Wahlpflichtfach

Zusatzleistungen

Leistungspunkte 8
Modulturnus Unregelmäßig
Dauer 1 Semester
Sprache Englisch

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105931</td>
<td>Extremale Graphentheorie (S. 881)</td>
<td>8</td>
<td>Maria Aksenovich, Torsten Ueckerdt</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 30 min.)

Modulnote

Die Modulnote ist die Note der Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Inhalt

Empfehlungen

Grundkenntnisse in lineare Algebra, Analysis und Graphentheorie sind empfohlen.

Anmerkung

Unterrichtssprache: Englisch

Arbeitsaufwand

Gesamter Arbeitsaufwand: 240 Stunden

Präsenzzeit: 90 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
ZUSATZLEISTUNGEN

- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Extremwerttheorie (MATHST23) [M-MATH-102939]

Verantwortung: Vicky Fasen-Hartmann

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Mathematische Methoden/Stochastik
Mathematische Methoden/Wahlbereich Mathematische Methoden/Stochastik
Wahlpflichtfach
Zusatzleistungen

Leistungspunkte 4 Modulturnus Unregelmäßig Dauer 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105908</td>
<td>Extremwerttheorie (S. 882)</td>
<td>4</td>
<td>Vicky Fasen-Hartmann, Norbert Henze</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 20 min).

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen können

- statistische Methoden zur Schätzung von Risikomaßen nennen, erklären, begründen und anwenden,
- extreme Ereignisse modellieren und quantifizieren,
- spezifische probabilistische Techniken gebrauchen,
- selbstorganisiert und reflexiv arbeiten.

Inhalt

- Satz von Fisher und Tippett
- verallgemeinerte Extremwert- und Paretoverteilung (GED und GPD)
- Anziehungsbereiche von verallgemeinerten Extremwertverteilungen
- Satz von Pickands-Balkema-de Haan
- Schätzen von Risikomaßen
- Hill-Schätzer
- Blockmaximamethode
- POT-Methode
Empfehlungen
Die Inhalte des Moduls “Wahrscheinlichkeitstheorie” werden benötigt.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 120 Stunden
Präsenzzeit: 45 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung
Selbststudium: 75 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Finance 1 (WW4BWLFBV1) [M-WIWI-101482]

Verantwortung: Marliese Uhrig-Homburg, Martin Ruckes

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Curriculare Verankerung: Wahlpflicht

Bestandteil von: Finance - Risk Management - Managerial Economics
Wahlpflichtfach
Zusatzleistungen

Leistungspunkte
Modulturnus
Dauer
9
Jedes Semester
1 Semester

Wahlpflichtangebot
Wahlpflichtblock; min. 9, max. 9 Leistungspunkte

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102643</td>
<td>Derivate (S. 857)</td>
<td>4,5</td>
<td>Marliese Uhrig-Homburg</td>
</tr>
<tr>
<td>T-WIWI-102621</td>
<td>Valuation (S. 1068)</td>
<td>4,5</td>
<td>Martin Ruckes</td>
</tr>
<tr>
<td>T-WIWI-102647</td>
<td>Asset Pricing (S. 837)</td>
<td>4,5</td>
<td>Marliese Uhrig-Homburg, Martin Ruckes</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen
Keine

Qualifikationsziele
Der/die Studierende

- besitzt zentrale ökonomische und methodische Kenntnisse in moderner Finanzwirtschaft,
- beurteilt unternehmerische Investitionsprojekte aus finanzwirtschaftlicher Sicht,
- ist in der Lage, zweckgerechte Investitionsentscheidungen auf Finanzmärkten durchzuführen.

Inhalt

Arbeitsaufwand
Modul: Finance 2 (WW4BWLFBV2) [M-WIWI-101483]

Verantwortung: Marliese Uhrig-Homburg, Martin Ruckes

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Finance - Risk Management - Managerial Economics

Wahlpflichtfach

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102644</td>
<td>9</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Wahlpflichtangebot

Wahlpflichtblock; min. 9, max. 9 Leistungspunkte

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102644</td>
<td>Festverzinsliche Titel (S. 883)</td>
<td>4,5</td>
<td>Marliese Uhrig-Homburg</td>
</tr>
<tr>
<td>T-WIWI-102622</td>
<td>Corporate Financial Policy (S. 851)</td>
<td>4,5</td>
<td>Martin Ruckes</td>
</tr>
<tr>
<td>T-WIWI-102645</td>
<td>Kreditrisiken (S. 926)</td>
<td>4,5</td>
<td>Marliese Uhrig-Homburg</td>
</tr>
<tr>
<td>T-WIWI-102647</td>
<td>Asset Pricing (S. 837)</td>
<td>4,5</td>
<td>Marliese Uhrig-Homburg, Martin Ruckes</td>
</tr>
<tr>
<td>T-WIWI-102621</td>
<td>Valuation (S. 1068)</td>
<td>4,5</td>
<td>Martin Ruckes</td>
</tr>
<tr>
<td>T-WIWI-102643</td>
<td>Derivate (S. 857)</td>
<td>4,5</td>
<td>Marliese Uhrig-Homburg</td>
</tr>
<tr>
<td>T-WIWI-102646</td>
<td>Internationale Finanzierung (S. 915)</td>
<td>3</td>
<td>Marliese Uhrig-Homburg</td>
</tr>
<tr>
<td>T-WIWI-102626</td>
<td>Geschäftspolitik der Kreditinstitute (S. 899)</td>
<td>3</td>
<td>Wolfgang Müller</td>
</tr>
<tr>
<td>T-WIWI-102625</td>
<td>Börsen (S. 842)</td>
<td>1,5</td>
<td>Jörg Franke</td>
</tr>
<tr>
<td>T-WIWI-102623</td>
<td>Finanzintermediation (S. 886)</td>
<td>4,5</td>
<td>Martin Ruckes</td>
</tr>
<tr>
<td>T-WIWI-102600</td>
<td>eFinance: Informationswirtschaft für den Wertpapierhandel (S. 866)</td>
<td>4,5</td>
<td>Christof Weinhardt</td>
</tr>
<tr>
<td>T-WIWI-102900</td>
<td>Financial Analysis (S. 884)</td>
<td>4,5</td>
<td>Torsten Luedeck</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form von Teilprüfungen (nach §4(2), 1 o. 2 SPO) über die gewählten Lehrveranstaltungen des Moduls, mit denen in Summe die Mindestanforderung an Leistungspunkten erfüllt ist. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Voraussetzungen

Das Modul ist erst dann bestanden, wenn zusätzlich das Modul Finance 1 [WW4BWLFBV1] zuvor erfolgreich mit der letzten Teilprüfung abgeschlossen wurde.

Modellierte Voraussetzungen

Es müssen die folgenden Bestandteile erfüllt werden:

- Das Modul kann nur dann begonnen werden, wenn zugleich das Modul [M-WIWI-101482] Finance 1 begonnen wurde.

Qualifikationsziele

Der/die Studierende ist in der Lage, fortgeschrittene ökonomische und methodische Fragestellungen der Finanzwirtschaft zu erläutern, zu analysieren und Antworten darauf abzuleiten.

Inhalt

Das Modul Finance 2 baut inhaltlich auf dem Modul Finance 1 auf. In den Modulveranstaltungen werden den Studierenden
weiterführende ökonomische und methodische Kenntnisse der modernen Finanzwirtschaft auf breiter Basis vermittelt.

Anmerkung

Arbeitsaufwand
Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 Credits). Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls. Dabei beträgt der Arbeitsaufwand für Lehrveranstaltungen mit 1,5 Credits ca. 45h, für Lehrveranstaltungen mit 3 Credits ca. 90h und für Lehrveranstaltungen mit 4,5 Credits ca. 135h. Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.
Modul: Finance 3 (WW4BWLFBV11) [M-WIWI-101480]

Verantwortung: Marliese Uhrig-Homburg, Martin Ruckes

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Finance - Risk Management - Managerial Economics

Wahlpflichtfach

Zusatzleistungen

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102647</td>
<td>Asset Pricing (S. 837)</td>
<td>4,5</td>
<td>Marliese Uhrig-Homburg, Martin Ruckes</td>
</tr>
<tr>
<td>T-WIWI-102621</td>
<td>Valuation (S. 1068)</td>
<td>4,5</td>
<td>Martin Ruckes</td>
</tr>
<tr>
<td>T-WIWI-102643</td>
<td>Derivate (S. 857)</td>
<td>4,5</td>
<td>Marliese Uhrig-Homburg</td>
</tr>
<tr>
<td>T-WIWI-102644</td>
<td>Festverzinsliche Titel (S. 883)</td>
<td>4,5</td>
<td>Marliese Uhrig-Homburg</td>
</tr>
<tr>
<td>T-WIWI-102645</td>
<td>Kreditrisiken (S. 926)</td>
<td>4,5</td>
<td>Marliese Uhrig-Homburg</td>
</tr>
<tr>
<td>T-WIWI-102622</td>
<td>Corporate Financial Policy (S. 851)</td>
<td>4,5</td>
<td>Martin Ruckes</td>
</tr>
<tr>
<td>T-WIWI-102623</td>
<td>Finanzintermediation (S. 886)</td>
<td>4,5</td>
<td>Martin Ruckes</td>
</tr>
<tr>
<td>T-WIWI-102625</td>
<td>Börsen (S. 842)</td>
<td>1,5</td>
<td>Jörg Franke</td>
</tr>
<tr>
<td>T-WIWI-102626</td>
<td>Geschäftspolitik der Kreditinstitute (S. 899)</td>
<td>3</td>
<td>Wolfgang Müller</td>
</tr>
<tr>
<td>T-WIWI-102646</td>
<td>Internationale Finanzierung (S. 915)</td>
<td>3</td>
<td>Marliese Uhrig-Homburg</td>
</tr>
<tr>
<td>T-WIWI-102600</td>
<td>eFinance: Informationswirtschaft für den Wertpapierhandel (S. 866)</td>
<td>4,5</td>
<td>Christof Weinhardt</td>
</tr>
<tr>
<td>T-WIWI-102900</td>
<td>Financial Analysis (S. 884)</td>
<td>4,5</td>
<td>Torsten Luedecke</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form von Teilprüfungen (nach §4(2), 1 o. 2 SPO) über die gewählten Lehrveranstaltungen des Moduls, mit denen in Summe die Mindestanforderung an Leistungspunkten erfüllt ist. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Voraussetzungen

Das Modul ist erst dann bestanden, wenn zusätzlich die Module Finance 1 und Finance 2 zuvor erfolgreich mit der letzten Teilprüfung abgeschlossen wurden.

Modellierte Voraussetzungen

Es müssen die folgenden Bestandteile erfüllt werden:

Qualifikationsziele

Der/die Studierende ist in der Lage, fortgeschrittene ökonomische und methodische Fragestellungen der Finanzwirtschaft zu erläutern, zu analysieren und Antworten darauf abzuleiten.
Inhalt
In den Modulveranstaltungen werden den Studierenden weiterführende ökonomische und methodische Kenntnisse der modernen Finanzwirtschaft auf breiter Basis vermittelt.

Anmerkung

Arbeitsaufwand
Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 Credits). Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls. Dabei beträgt der Arbeitsaufwand für Lehrveranstaltungen mit 1,5 Credits ca. 45h, für Lehrveranstaltungen mit 3 Credits ca. 90h und für Lehrveranstaltungen mit 4,5 Credits ca. 135h. Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.
Modul: Finanzmathematik in diskreter Zeit (MATHST04) [M-MATH-102919]

Verantwortung: Nicole Bäuerle

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung:
- Mathematische Methoden/Stochastik
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Stochastik
- Wahlpflichtfach
- Zusatzleistungen

Bestandteil von:
- Mathematische Methoden/Stochastik
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Stochastik
- Wahlpflichtfach
- Zusatzleistungen

Leistungspunkte: 8

Modulturnus: Jedes Wintersemester

Dauer: 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105839</td>
<td>Finanzmathematik in diskreter Zeit (S. 887)</td>
<td>8</td>
<td>Nicole Bäuerle, Vicky Fasen-Hartmann</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer schriftlichen Gesamtprüfung (120 min).

Modulnote
Die Modulnote ist die Note der schriftlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen können
- grundlegende Techniken der modernen diskreten Finanzmathematik nennen, erörtern und anwenden,
- spezifische probabilistische Techniken gebrauchen,
- ökonomische Fragestellungen im Bereich der diskreten Bewertung und Optimierung mathematisch analysieren,
- selbstorganisiert und reflexiv arbeiten.

Inhalt
- Endliche Finanzmärkte
- Das Cox-Ross-Rubinstein-Modell
 - Grenzübergang zu Black-Scholes
- Charakterisierung von No-Arbitrage
- Charakterisierung der Vollständigkeit
- Unvollständige Märkte
- Amerikanische Optionen
- Exotische Optionen
- Portfolio-Optimierung
- Präferenzen und stochastische Dominanz
ZUSATZLEISTUNGEN

- Erwartungswert-Varianz Portfolios
- Risikomaße

Empfehlungen
Die Inhalte des Moduls "Wahrscheinlichkeitstheorie" werden benötigt.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Finanzmathematik in stetiger Zeit (MATHST08) [M-MATH-102860]

Verantwortung: Nicole Bäuerle

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung:
- Mathematische Methoden/Stochastik
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Stochastik
- Wahlpflichtfach
- Zusatzleistungen

Leistungspunkte: 8

Modulturnus: Jedes Sommersemester

Dauer: 1 Semester

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105930</td>
<td>Finanzmathematik in stetiger Zeit (S. 888)</td>
<td>8</td>
<td>Nicole Bäuerle, Vicky Fasen-Hartmann</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 30 min).

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Das Modul kann nicht zusammen mit der Lehrveranstaltung *Stochastic Calculus and Finance* geprüft werden.

Qualifikationsziele
Absolventinnen und Absolventen können
- grundlegende Techniken der modernen zeitstetigen Finanzmathematik nennen, erörtern und anwenden,
- spezifische probabilistische Techniken gebrauchen,
- ökonomische Fragestellungen im Bereich der Bewertung und Optimierung mathematisch analysieren,
- selbstorganisiert und reflexiv arbeiten.

Inhalt
- Stochastische Prozesse und Filtrationen
 - Martingale in stetiger Zeit
 - Stoppzeiten
 - Quadratische Variation
- Stochastisches Ito-Integral bzgl. stetiger Semimartingale
- Ito-Kalkül
 - Ito-Doeblin Formel
 - Stochastische Exponentiale
 - Satz von Girsanov
 - Martingaldarstellung
ZUSATZLEISTUNGEN

- Black-Scholes Finanzmarkt
 - Arbitrage und äquivalente Martingalmaße
 - Optionen und No-Arbitragepreise
 - Vollständigkeit
- Portfolio Optimierung
- Bonds, Forwards und Zinsstrukturmodelle

Empfehlungen

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung
Selbststudium: 150 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
M Modul: Finite Elemente Methoden (MATHNM07) [M-MATH-102891]

Verantwortung: Willy Dörfler, Christian Wieners

Einrichtung:

Curriculare Verankerung:

Bestandteil von:

Leistungspunkte

Modulturnus

Dauer

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105857</td>
<td>Finite Elemente Methoden (S. 889)</td>
<td>8</td>
<td>Andreas Rieder, Tobias Jahnke,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Marlis Hochbruck, Willy Dörfler,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Christian Wieners</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 30 Minuten.

Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Absolventinnen und Absolventen können

- die grundlegenden Methoden, Techniken und Algorithmen der Behandlung elliptischer Randwertprobleme mit Finiten Elementen erklären (insbesondere die Stabilität, Konvergenz und Komplexität der Diskretisierungen)
- Konzepte der Modellierung mit partiellen Differentialgleichungen wiedergeben
- Einfache Randwertaufgaben mit Finiten Elementen numerisch lösen

Inhalt

- Theorie der Finiten Elemente für elliptische Randwertaufgaben zweiter Ordnung im IR^n
- Grundlegende Konzepte der Implementierung
- Elliptische Eigenwertprobleme
- Gemischte Methoden

Empfehlungen

Wirtschaftsmathematik (M.Sc.)

Modulhandbuch mit Stand 04.08.2016 für Wintersemester 16/17
Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
M Modul: Fourieranalysis (MATHAN14) [M-MATH-102873]

Verantwortung: Lutz Weis

Einrichtung: KIT-Fakultät für Mathematik
Curriculare Verankerung:
Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Analysis
Mathematische Methoden/Wahlbereich Mathematische Methoden/Analysis
Wahlpflichtfach
Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105845</td>
<td>Fourieranalysis (S. 890)</td>
<td>8</td>
<td>Roland Schnaubelt, Lutz Weis</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung von 120 Minuten.

Modulnote
Die Modulnote ist die Note der Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Die Studenten kennen die Darstellung von (quadrat-)integrierbaren Funktionen durch Fourierreihen, die Konvergenztheorie dieser Reihen sowie den Zusammenhang zwischen Glattheit der Funktion und dem Abfall der Fourierreihen und können dies an einfachen Beispielen demonstrieren. Eigenschaften der Fouriertransformation beherrschen sie im Rahmen der Lebesgueräume und der Distributionen. Anhand expliziter Lösungen für die Wärmeleitung-, die Wellen- und die Schrödinger-Gleichung erkennen sie die Bedeutung der Fouriertransformation für die angewandte Mathematik. Sie beherrschen die grundlegenden Beschränkungseigenschaften für singuläre Integrale, z.B. für die Hilberttransformation. Dabei erkennen sie die Bedeutung und Anwendbarkeit von Interpolationsmethoden und Fouriermultiplikatoren.

Inhalt
- Fourier Reihen
- Die Fourier Transformation auf L1 und L2
- Temperierte Distributionen und ihre Fourier Transformation
- Explizite Lösungen der Wärmeleitungs-, Schrödinger- und Wellengleichung im Rn
- Hilbert Transformation
- Der Interpolationssatz von Marcinkiewicz
- Singuläre Integraloperatoren
- Der Fourier Multiplikatorenansatz von Mihlin

Empfehlungen
Das Modul “Funktionalanalyse” sollte bereits belegt worden sein.

Anmerkung
Turnus: Alle zwei Jahre.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
8 ZUSATZLEISTUNGEN

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Funktionalanalysis (MATHAN05) [M-MATH-101320]

Verantwortung: Roland Schnaubelt

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung:

Bestandteil von:

Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Analysis

Mathematische Methoden/Wahlbereich Mathematische Methoden/Analysis

Wahlpflichtfach

Zusatzleistungen

Leistungspunkte 8

Modulturnus Jedes Wintersemester

Dauer 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-102255</td>
<td>Funktionalanalysis (S. 891)</td>
<td>8</td>
<td>Michael Plum, Christoph Schmoeger, Wolfgang Reichel, Gerd Herzog, Dirk Hundertmark, Roland Schnaubelt, Lutz Weis, Tobias Lamm</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung von 120 Minuten.

Modulnote
Die Modulnote ist die Note der Prüfung.

Voraussetzungen
Keine

Qualifikationsziele

Inhalt
- Metrische Räume (topologische Grundbegriffe, Kompaktheit)
- Stetige lineare Operatoren auf Banachräumen (Prinzip der gleichmäßigen Beschränktheit, Homomorphiesatz)
- Dualräume mit Darstellungssätzen, Sätze von Hahn-Banach und Banach-Alaoglu, schwache Konvergenz, Reflexivität
- Fouriertransformation, Satz von Plancherel, schwache Ableitung, Sobolevräume in L^2, partielle Differentialgleichungen mit konstanten Koeffizienten

Empfehlungen
Folgende Module sollten bereits belegt worden sein:
Lineare Algebra 1+2
Analysis 1-3

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
ZUSATZLEISTUNGEN

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
M Modul: Generalisierte Regressionsmodelle (MATHST09) [M-MATH-102906]

Verantwortung: Bernhard Klar

Einrichtung: KIT-Fakultät für Mathematik
Curriculare Verankerung: Wahlpflicht
Bestandteil von: Mathematische Methoden/Stochastik
Mathematische Methoden/Wahlbereich Mathematische Methoden/Stochastik
Wahlpflichtfach
Zusatzleistungen

Leistungspunkte 4 Modulturnus Jedes Sommersemester Dauer 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105870</td>
<td>Generalisierte Regressionsmodelle (S. 895)</td>
<td>4</td>
<td>Bernhard Klar, Norbert Henze</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 20 min).

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Die Studierenden

- kennen die wichtigsten Regressionsmodelle und deren Eigenschaften,
- können die Anwendbarkeit dieser Modelle beurteilen und die Ergebnisse interpretieren,
- sind in der Lage, die Modelle zur Analyse komplexerer Datensätze einzusetzen.

Inhalt
Die Vorlesung behandelt grundlegende Modelle der Statistik, die es ermöglichen, Zusammenhänge zwischen Größen zu erfassen. Themen sind:

- Lineare Regressionsmodelle

Modelldiagnostik
Multikollinearität
Variablen-Selektion
Verallgemeinerte Kleinste-Quadrate-Methode

- Nichtlineare Regressionsmodelle

Parameterschätzung
Asymptotische Normalität der Maximum-Likelihood-Schätzer

- Regressionsmodelle für Zähldaten
- Verallgemeinerte lineare Modelle
ZUSATZLEISTUNGEN

Parameterschätzung
Modelldiagnose
Überdispersion und Quasi-Likelihood

Empfehlungen
Die Inhalte des Moduls “Statistik” werden benötigt.

Arbeitsaufwand
Präsenzzeit: 45 Stunden

• Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 75 Stunden

• Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
• Bearbeitung von Übungsaufgaben
• Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
• Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Geometrie der Schemata (MATHAG11) [M-MATH-102866]

Verantwortung: Frank Herrlich

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Mathematische Methoden/Wahlbereich Mathematische Methoden/Algebra und Geometrie

Bestandteil von: Wahlpflichtfach

Zusatzleistungen

Leistungspunkte 8

Modulturnus Unregelmäßig

Dauer 1 Semester

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kennung</td>
</tr>
<tr>
<td>T-MATH-105841</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 30 min.)

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Absolventen und Absolventinnen können
- das Konzept der algebraischen Schemata erläutern und in Zusammenhang mit algebraischen Varietäten bringen,
- grundlegende Eigenschaften von Schemata nennen und erörtern,
- mit Garben auf Schemata umgehen und Eigenschaften von Garben untersuchen,
- und sind grundsätzlich in der Lage, Forschungsarbeiten zur algebraischen Geometrie zu lesen und eine Abschlussarbeit in diesem Bereich anzufertigen.

Inhalt
- Garben von Moduln
- affine Schemata
- Varietäten und Schemata
- Morphismen zwischen Schemata
- kohärente und quasikohärente Garben
- Kohomologie von Garben

Empfehlungen
Folgende Module sollten bereits belegt worden sein:
Algebra
Algebraische Geometrie

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
ZUSATZLEISTUNGEN

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Geometrische Gruppentheorie (MATHAG12) [M-MATH-102867]

Verantwortung: Roman Sauer

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung:
- Wahlpflicht

Bestandteil von:
- Mathematische Methoden/Wahlpflichtfach
- Zusatzleistungen

Leistungspunkte
- 8 Leistungspunkte

Modulturnus
- Unregelmäßig

Dauer
- 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105842</td>
<td>Geometrische Gruppentheorie (S. 897)</td>
<td>8</td>
<td>Frank Herrlich, Gabriele Link, Petra Schwer, Wilderich Tuschmann, Enrico Leuzinger, Roman Sauer</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form einer schriftlichen Gesamtprüfung von 120 min.

Modulnote

Die Modulnote ist die Note der Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Absolventinnen und Absolventen

- erkennen Wechselwirkungen zwischen Geometrie und Gruppentheorie,
- verstehen grundlegende Strukturen und Techniken der Geometrischen Gruppentheorie und können diese nennen, diskutieren und anwenden,
- kennen und verstehen Konzepte und Resultate aus der Grobgeometrie,
- sind darauf vorbereitet, aktuelle Forschungsarbeiten aus dem Bereich der Geometrischen Gruppentheorie zu lesen.

Inhalt

- Endlich erzeugte Gruppen und Gruppenpräsentationen
- Cayley-Graphen und Gruppenaktionen
- Quasi-Isometrien von metrischen Räumen, quasi-isometrische Invarianten und der Satz von Schwarz-Milnor
- Beispielklassen für Gruppen, z.B. hyperbolische Gruppen, Fuchssche Gruppen, amenable Gruppen, Zopfgruppen, Thompson-Gruppe

Empfehlungen

Anmerkung

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Geometrische numerische Integration (MATHNM31) [M-MATH-102921]

Verantwortung: Tobias Jahnke

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung:
- Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Angewandte und Numerische Mathematik, Optimierung
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung

Bestandteil von:
- Wahlpflicht
- Bestandteil von: Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung
- Wahlpflichtfach
- Zusatzleistungen

Leistungspunkte: 6
Modulturnus: Unregelmäßig
Dauer: 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105919</td>
<td>Geometrische numerische Integration (S. 898)</td>
<td>6</td>
<td>Tobias Jahnke, Marlis Hochbruck</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Mündliche Prüfung im Umfang von ca. 20 Minuten.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele

Inhalt
- Newton’sche Bewegungsgleichung, Lagrange-Gleichungen, Hamiltonsysteme
- Eigenschaften von Hamiltonsystemen: symplektischer Fluss, Energieerhaltung, weitere Erhaltungsgrößen
- Symplektische numerische Verfahren: symplektisches Euler-Verfahren, Störmer-Verlet-Verfahren, symplektische (partitionierte) Runge-Kutta-Verfahren
- Konstruktion von symplektischen Verfahren, z.B. durch Komposition und Splitting
- Backward error analysis und Energieerhaltung über lange Zeitintervalle

In der danach noch verbleibenden Zeit können weiterführende Themen behandelt werden wie z.B.
- KAM-Theorie und lineares Fehlerwachstum
- Verfahren auf Mannigfaltigkeiten (Magnus-Verfahren, Liegruppenmethoden)
- Mechanische Systeme mit Zwangsbedingungen
Zusatzleistungen

- Trigonometrische Verfahren für oszillatorische Probleme
- Modulierte Fourierentwicklungen

Empfehlungen

Anmerkung
Turnus: Mindestens alle zwei Jahre

Arbeitsaufwand
Präsenzzeit: 60 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 120 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
M Modul: Globale Differentialgeometrie (MATHAG27) [M-MATH-102912]

Verantwortung: Wilderich Tuschmann

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Mathematische Methoden/Wahlbereich Mathematische Methoden/Algebra und Geometrie

Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105885</td>
<td>Globale Differentialgeometrie (S. 900)</td>
<td>8</td>
<td>Wilderich Tuschmann, Sebastian Grensing</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 30 Minuten.

Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Absolventinnen und Absolventen

- haben ein tieferes Verständnis exemplarischer Konzepte und Methoden der Globalen Differentialgeometrie und Riemannschen Geometrie erworben,
- sind auf eigenständige Forschung und weiterführende Seminare im Gebiet der Differentialgeometrie vorbereitet.

Inhalt

- Existenz- und Hindernissätze für Metriken mit besonderen Eigenschaften
- Geometrische Endlichkeits- und Klassifikationsresultate
- Geometrische Limiten
- Gromov-Hausdorff- und Lipschitz-Konvergenz Riemannscher Mannigfaltigkeiten

Empfehlungen

Empfehlenswert sind Vorkenntnisse im Rahmen der Vorlesungen „Einführung in Geometrie und Topologie“ bzw. „Elementare Geometrie“ und „Differentialgeometrie“.

Arbeitsaufwand

Gesamter Arbeitsaufwand: 240 Stunden

- Präsenzzeit: 90 Stunden
 - Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Graphentheorie (MATHAG26) [M-MATH-101336]

Verantwortung: Maria Aksenovich

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Wahlbereich Mathematische Methoden/Algebra und Geometrie
Wahlpflichtfach
Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
<th>Sprache</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
<td>Englisch</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-102273</td>
<td>Graphentheorie (S. 905)</td>
<td>8</td>
<td>Maria Aksenovich, Torsten Ueckerdt</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer schriftlichen Prüfung (3h).
Durch die erfolgreiche Teilnahme am Übungsbetrieb kann ein Bonus erworben werden. Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note um eine Notenstufe (0,3 oder 0,4). Der Bonus gilt nur für ein Jahr nachdem er erworben wurde.

Modulnote
Die Modulnote ist Note der Prüfung.

Voraussetzungen
Keine

Qualifikationsziele

Inhalt

Empfehlungen
Grundkenntnisse in lineare Algebra und Analysis sind empfohlen.

Anmerkung
- Turnus: jedes zweite Jahr im Wintersemester
- Unterrichtssprache: Englisch

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
ZUSATZLEISTUNGEN

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Gruppenwirkungen in der Riemannschen Geometrie (MATHAG40) [M-MATH-102954]

Verantwortung: Wilderich Tuschmann

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Wahlbereich Mathematische Methoden/Algebra und Geometrie

Wahlpflichtfach

Zusatzleistungen

Leistungspunkte 5

Modulturnus Unregelmäßig

Dauer 1 Semester

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105925</td>
<td>Gruppenwirkungen in der Riemannschen Geometrie (S. 906)</td>
<td>5</td>
<td>Wilderich Tuschmann</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung von ca. 20 Minuten.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen
- verstehen grundlegende Fragestellungen aus der Theorie der Gruppenwirkungen auf Riemannschen Mannigfaltigkeiten,
- erkennen die Relevanz der Gruppenwirkungen für Probleme in der Riemannschen Geometrie,
- sind grundsätzlich in der Lage, aktuelle Forschungsarbeiten zu lesen und eine Abschlussarbeit auf dem Gebiet der Gruppenwirkungen auf Riemannschen Mannigfaltigkeiten zu schreiben.

Inhalt
Gruppenwirkungen
- Isotropiegruppen, Bahnen, Bahnenraum.
- Scheibensatz.
- Homogene Räume, Kohomogenität-Eins-Mannigfaltigkeiten.

Geometrie der Bahnenräume
- Elementare Alexandrov-Geometrie.
- Positive Krümmung und Abstandsfunction.

Krümmung und Gruppenwirkungen
- Der Satz von Hsiang-Kleiner und seine Verallgemeinerungen.
- Symmetrierang von Mannigfaltigkeiten mit positiver Krümmung.
Empfehlungen
Die Inhalte des Moduls “Differentialgeometrie” werden empfohlen.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 150 Stunden
Präsenzzeit: 60 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 90 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Homotopietheorie (MATHAG44) [M-MATH-102959]

Verantwortung: Roman Sauer

Einrichtung: KIT-Fakultät für Mathematik
Curriculare Verankerung: Wahlpflicht
Bestandteil von: Mathematische Methoden/Wahlbereich Mathematische Methoden/Algebra und Geometrie Wahlpflichtfach Zusatzleistungen

Leistungspunkte	Modulturnus	Dauer	Sprache
8 | Unregelmäßig | 1 Semester | Deutsch

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105933</td>
<td>Homotopietheorie (S. 907)</td>
<td>8</td>
<td>Roman Sauer</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Mündliche Prüfung im Umfang von ca. 25 min.

Modulnote
Notenbildung: Note der Prüfung

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen
- können Homotopiegruppen und Kohomologiealgebren grundlegender Beispielsräume berechnen
- beherrschen fortgeschrittene Techniken der homologischen Algebra
- können selbstorganisiert und reflexiv arbeiten

Inhalt
- Bordismustheorie
- höhere Homotopiegruppen
- Spektralsequenzen

Empfehlungen

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Informatik (WW4INFO1) [M-WIWI-101472]

Verantwortung: Rudi Studer, Hartmut Schmeck, Andreas Oberweis, York Sure-Vetter, Johann Marius Zöllner

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Operations Management - Datenanalyse - Informatik

Wahlpflichtfach

Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Wahlpflichtangebot

Wahlpflichtblock; min. 9, max. 10 Leistungspunkte

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102658</td>
<td>Algorithms for Internet Applications (S. 832)</td>
<td>5</td>
<td>Hartmut Schmeck</td>
</tr>
<tr>
<td>T-WIWI-102759</td>
<td>Anforderungsanalyse und -management (S. 834)</td>
<td>4</td>
<td>Ralf Kneuper</td>
</tr>
<tr>
<td>T-WIWI-102651</td>
<td>Angewandte Informatik II - Informatiksysteme für eCommerce (S. 835)</td>
<td>5</td>
<td>Johann Marius Zöllner</td>
</tr>
<tr>
<td>T-WIWI-102680</td>
<td>Computational Economics (S. 848)</td>
<td>4.5</td>
<td>Simon Caton, Pradyumn Kumar Shukla</td>
</tr>
<tr>
<td>T-WIWI-102661</td>
<td>Datenbanksysteme und XML (S. 854)</td>
<td>5</td>
<td>Andreas Oberweis</td>
</tr>
<tr>
<td>T-WIWI-102663</td>
<td>Dokumentenmanagement und Groupwaresysteme (S. 860)</td>
<td>4</td>
<td>Stefan Klink</td>
</tr>
<tr>
<td>T-WIWI-102655</td>
<td>Effiziente Algorithmen (S. 864)</td>
<td>5</td>
<td>Hartmut Schmeck</td>
</tr>
<tr>
<td>T-WIWI-102668</td>
<td>Enterprise Architecture Management (S. 876)</td>
<td>5</td>
<td>Thomas Wolf</td>
</tr>
<tr>
<td>T-WIWI-102666</td>
<td>Knowledge Discovery (S. 919)</td>
<td>5</td>
<td>Rudi Studer</td>
</tr>
<tr>
<td>T-WIWI-102667</td>
<td>Management von Informatik-Projekten (S. 928)</td>
<td>5</td>
<td>Roland Schätzle</td>
</tr>
<tr>
<td>T-WIWI-102697</td>
<td>Modellierung von Geschäftsprozessen (S. 943)</td>
<td>5</td>
<td>Andreas Oberweis</td>
</tr>
<tr>
<td>T-WIWI-102679</td>
<td>Naturinspirierte Optimierungsverfahren (S. 947)</td>
<td>5</td>
<td>Pradyumn Kumar Shukla</td>
</tr>
<tr>
<td>T-WIWI-102659</td>
<td>Organic Computing (S. 973)</td>
<td>5</td>
<td>Hartmut Schmeck</td>
</tr>
<tr>
<td>T-WIWI-102874</td>
<td>Semantic Web Technologien (S. 998)</td>
<td>5</td>
<td>Rudi Studer, Andreas Harth</td>
</tr>
<tr>
<td>T-WIWI-105801</td>
<td>Service Oriented Computing (S. 1019)</td>
<td>5</td>
<td>Barry Norton, Sudhir Agarwal, Rudi Studer</td>
</tr>
<tr>
<td>T-WIWI-102845</td>
<td>Smart Energy Distribution (S. 1023)</td>
<td>4</td>
<td>Hartmut Schmeck</td>
</tr>
<tr>
<td>T-WIWI-102895</td>
<td>Software-Qualitätsmanagement (S. 1028)</td>
<td>5</td>
<td>Andreas Oberweis</td>
</tr>
<tr>
<td>T-WIWI-102676</td>
<td>Spezialvorlesung Betriebliche Informationssysteme (S. 1032)</td>
<td>5</td>
<td>Andreas Oberweis</td>
</tr>
<tr>
<td>T-WIWI-102657</td>
<td>Spezialvorlesung Effiziente Algorithmen (S. 1033)</td>
<td>5</td>
<td>Hartmut Schmeck</td>
</tr>
<tr>
<td>T-WIWI-102678</td>
<td>Spezialvorlesung Software- und Systemsengineering (S. 1034)</td>
<td>5</td>
<td>Andreas Oberweis</td>
</tr>
<tr>
<td>T-WIWI-102671</td>
<td>Spezialvorlesung Wissensmanagement (S. 1035)</td>
<td>5</td>
<td>Rudi Studer</td>
</tr>
<tr>
<td>T-WIWI-102669</td>
<td>Strategisches Management der betrieblichen Informationsverarbeitung (S. 1061)</td>
<td>5</td>
<td>Thomas Wolf</td>
</tr>
<tr>
<td>T-WIWI-103112</td>
<td>Web Science (S. 1085)</td>
<td>5</td>
<td>York Sure-Vetter</td>
</tr>
<tr>
<td>T-WIWI-102662</td>
<td>Workflow-Management (S. 1086)</td>
<td>5</td>
<td>Andreas Oberweis</td>
</tr>
<tr>
<td>T-WIWI-103523</td>
<td>Praktikum Informatik (S. 982)</td>
<td>4</td>
<td>Rudi Studer, Hartmut Schmeck, Andreas Oberweis, York Sure-Vetter, Johann Marius Zöllner</td>
</tr>
</tbody>
</table>
Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form von Teilprüfungen (nach §4(2), 1-3 SPO) über die gewählten Lehrveranstaltungen des Moduls, mit denen in Summe die Mindestanforderung an Leistungspunkten erfüllt ist.
In jeder der ausgewählten Teilprüfungen müssen zum Bestehen die Mindestanforderungen erreicht werden. Wenn jede der Teilprüfungen bestanden ist, wird die Gesamtnote des Moduls aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.
Die Prüfungen werden in jedem Semester angeboten und können zu jedem ordentlichen Prüfungstermin wiederholt werden.
Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.
Bitte beachten Sie folgende Informationen zu den Teilleistungen von Prof. Dr. H. Schmeck:
Voraussetzungen
Es darf nur eine der belegten Lehrveranstaltungen ein Praktikum sein.

Qualifikationsziele
Der/die Studierende

- hat die Fähigkeit, Methoden und Instrumente in einem komplexen Fachgebiet zu beherrschen und Innovationsfähigkeit bezüglich der eingesetzten Methoden zu demonstrieren,
- kennt die Grundlagen und Methoden im Kontext ihrer Anwendungsmöglichkeiten in der Praxis,
- ist in der Lage, auf der Basis eines grundlegenden Verständnisses der Konzepte und Methoden der Informatik, die heute im Berufsleben auf ihn/sie zukommenden, rasanten Entwicklungen im Bereich der Informatik schnell zu erfassen und richtig einzusetzen,
- ist in der Lage, Argumente für die Problemlösung zu finden und zu vertreten.

Inhalt

Arbeitsaufwand
Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 Credits). Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls. Dabei beträgt der Arbeitsaufwand für Lehrveranstaltungen mit 5 Credits ca. 150h, für Lehrveranstaltungen mit 4,5 Credits ca. 135h, für Lehrveranstaltungen mit 4 Credits ca. 120h und für Lehrveranstaltungen mit 3 Credits ca. 90h.
Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.
Modul: Innovation und Wachstum (WW4VWLIWW1) [M-WIWI-101478]

Verantwortung: Ingrid Ott

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Curriculare Verankerung:
- Wahlpflicht

Bestandteil von:
- Finance - Risk Management - Managerial Economics
- Wahlpflichtfach
- Zusatzleistungen

Leistungspunkte Modulturnus Dauer
9 Jedes Semester 1 Semester

Wahlpflichtangebot
Wahlpflichtblock; min. 9, max. 10 Leistungspunkte

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102840</td>
<td>Innovationstheorie und -politik (S. 909)</td>
<td>4,5</td>
<td>Ingrid Ott</td>
</tr>
<tr>
<td>T-WIWI-102785</td>
<td>Endogene Wachstumstheorie (S. 872)</td>
<td>4,5</td>
<td>Ingrid Ott</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Voraussetzungen
Keine

Qualifikationsziele
Der/die Studierende

- kennt die wesentlichen Techniken zur Analyse statischer und dynamischer Optimierungsmodelle, die im Rahmen von mikro- und makroökonomischen Theorien angewendet werden
- lernt, die herausragende Rolle von Innovationen für das gesamtwirtschaftliche Wachstum sowie die Wohlfahrt zu verstehen
- ist in der Lage, die Bedeutung alternativer Anreizmechanismen für die Entstehung und Verbreitung von Innovationen zu identifizieren
- kann begründen, in welchen Fällen Markteingriffe durch den Staat, bspw. in Form von Steuern und Subventionen legitimiert werden können und sie vor dem Hintergrund wohlfahrtsökonomischer Maßstäbe bewerten

Inhalt
Das Modul umfasst Veranstaltungen, die sich im Rahmen mikro- und makroökonomischer Theorien mit Fragestellungen zu Innovation und Wachstum auseinandersetzen. Die dynamische Analyse ermöglicht es, die Konsequenzen individueller Entscheidungen im Zeitablauf zu analysieren und so insbesondere das Spannungsverhältnis zwischen statischer und dynamischer Effizienz zu verstehen. In diesem Kontext wird auch analysiert, welche Politik bei Vorliegen von Marktversagen geeignet ist, um korrigierend in das Marktgeschehen eingreifen und so die Wohlfahrt zu erhöhen.

Empfehlungen
Arbeitsaufwand
Gesamtaufwand bei 9 Leistungspunkten: ca. 270 Stunden
Präsenzzeit pro gewählter Veranstaltung: 3x14h
Vor- /Nachbereitung pro gewählter Veranstaltung: 3x14h
Rest: Prüfungsvorbereitung
Die genaue Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.
Modul: Insurance Management I (WW4BWLFBV6) [M-WIWI-101469]

Verantwortung: Ute Werner

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Finance - Risk Management - Managerial Economics

Wahlpflichtfach Zusatzleistungen

Leistungspunkte Modulturnus Dauer
9 Jedes Semester 1 Semester

Wahlpflichtangebot

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102603</td>
<td>Principles of Insurance Management (S. 987)</td>
<td>4,5</td>
<td>Ute Werner</td>
</tr>
<tr>
<td>T-WIWI-102601</td>
<td>Insurance Marketing (S. 911)</td>
<td>4,5</td>
<td>Edmund Schwake</td>
</tr>
<tr>
<td>T-WIWI-102648</td>
<td>Insurance Production (S. 912)</td>
<td>4,5</td>
<td>Ute Werner</td>
</tr>
<tr>
<td>T-WIWI-102637</td>
<td>Current Issues in the Insurance Industry (S. 852)</td>
<td>2</td>
<td>Wolf-Rüdiger Heilmann</td>
</tr>
<tr>
<td>T-WIWI-102636</td>
<td>Insurance Risk Management (S. 913)</td>
<td>2,5</td>
<td>Harald Maser</td>
</tr>
<tr>
<td>T-WIWI-102797</td>
<td>P&C Insurance Simulation Game (S. 976)</td>
<td>3</td>
<td>Ute Werner</td>
</tr>
<tr>
<td>T-WIWI-102649</td>
<td>Risk Communication (S. 997)</td>
<td>4,5</td>
<td>Ute Werner</td>
</tr>
<tr>
<td>T-WIWI-102841</td>
<td>Modelling, Measuring and Managing of Extreme Risks (S. 944)</td>
<td>2,5</td>
<td>Ute Werner</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Voraussetzungen

Keine

Qualifikationsziele

Der/die Studierende

- kennt und versteht den zufallsabhängigen Charakter der Dienstleistungserstellung in Versicherungsunternehmen,
- kann geeignete Handlungsoptionen zu wichtigen betriebswirtschaftlichen Funktionen in Versicherungsunternehmen auswählen und kombinieren.
- kennt die wirtschaftlichen, rechtlichen und soziopolitischen Rahmenbedingungen des Wirtschaftens im Versicherungsunternehmen.

Inhalt

Anmerkung

Arbeitsaufwand

Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 Credits). Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls. Dabei beträgt der Arbeitsaufwand für Lehrveranstaltungen mit 4,5 Credits ca. 135h.

Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.
M Modul: Integralgleichungen (MATHAN07) [M-MATH-102874]

Verantwortung: Frank Hettlich

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von:
- Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Analysis
- Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Modul
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Analysis
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung
- Wahlpflichtfach
- Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105834</td>
<td>Integralgleichungen (S. 914)</td>
<td>8</td>
<td>Tilo Arens, Andreas Kirsch, Frank Hettlich</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 30min.).

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Die Studierenden können Integralgleichungen klassifizieren und hinsichtlich Existenz und Eindeutigkeit mittels Methoden der Störungstheorie und der Fredholmtheorie untersuchen. Beweisideen der Herleitung der Fredholmtheorie sowie der Störungstheorie insbesondere bei Faltungsintegralgleichungen können sie beschreiben und erläutern. Darüberhinaus können die Studierenden klassische Randwertprobleme zu gewöhnlichen linearen Differentialgleichungen und zur Potentialtheorie durch Integralgleichungen formulieren und analysieren.

Inhalt
- Riesz- und Fredholmtheorie
- Fredholmsche und Volterrasche Integralgleichungen
- Anwendungen in der Potentialtheorie
- Faltungsgleichungen

Empfehlungen
Folgende Module sollten bereits belegt worden sein:
- Lineare Algebra 1+2
- Analysis 1-3

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
ZUSATZLEISTUNGEN

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
ZUSATZLEISTUNGEN

|
| Modul: Inverse Probleme (MATHNM06) [M-MATH-102890] |

Verantwortung: Andreas Kirsch

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von:
- Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Analysis
- Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Analysis
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung
- Wahlpflichtfach
- Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105835</td>
<td>Inverse Probleme (S. 917)</td>
<td>8</td>
<td>Andreas Rieder, Tilo Arens, Andreas Kirsch, Frank Hettlich</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung von ca. 30 Minuten Dauer.

Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Inhalt

- Lineare Gleichungen 1. Art
- Schlecht gestellte Probleme
- Regularisierungstheorie
- Tikhonov Regularisierung bei linearen Gleichungen
- Iterative Regularisierungsverfahren
- Beispiele schlecht gestellter Probleme

Empfehlungen

Folgende Module sollten bereits belegt worden sein:
- Lineare Algebra 1+2
- Analysis 1-3
- Funktionalanalysis

Arbeitsaufwand

Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden

Wirtschaftsmathematik (M.Sc.)
Modulhandbuch mit Stand 04.08.2016 für Wintersemester 16/17
ZUSATZLEISTUNGEN

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Klassische Methoden für partielle Differentialgleichungen (MATHAN08) [M-MATH-102870]

Verantwortung: Michael Plum
Einrichtung: KIT-Fakultät für Mathematik
Curriculare Verankerung: Wahlpflicht
Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Analysis
Mathematische Methoden/Wahlbereich Mathematische Methoden/Analysis
Wahlpflichtfach
Zusatzleistungen

Leistungspunkte 8 Modulturnus Jedes Wintersemester Dauer 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105832</td>
<td>Klassische Methoden für partielle Differentialgleichungen (S. 918)</td>
<td>8</td>
<td>Michael Plum, Wolfgang Reichel, Jens Rottmann-Matthes, Dirk Hundertmark, Roland Schnaubelt, Lutz Weis, Tobias Lamm</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer schriftlichen Gesamtprüfung (120 min).

Modulnote
Die Modulnote ist die Note der Prüfung.

Voraussetzungen
Keine

Qualifikationsziele

Inhalt
- Beispiele partieller Differentialgleichungen
- Wellengleichung
- Laplace- und Poisson-Gleichung
- Wärmeleitungsgleichung
- Klassische Lösungsmethoden

Empfehlungen
Analysis 1+2+3
Lineare Algebra 1+2

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung
Selbststudium: 150 Stunden
ZUSATZLEISTUNGEN

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
M Modul: Kombinatorik (MATHAG37) [M-MATH-102950]

Verantwortung: Maria Aksenovich

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Mathematische Methoden/Wahlbereich Mathematische Methoden/Algebra und Geometrie

Bestandteil von: Wahlpflichtfach

Leistungspunkte: 8 **Modulturnus:** Unregelmäßig **Dauer:** 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105916</td>
<td>Kombinatorik (S. 920)</td>
<td>8</td>
<td>Maria Aksenovich, Torsten Ueckerdt</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form einer schriftlichen Prüfung (3h). Durch die erfolgreiche Teilnahme am Übungsbetrieb kann ein Bonus erworben werden. Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note um eine Notenstufe (0,3 oder 0,4). Der Bonus gilt nur für ein Jahr nachdem er erworben wurde.

Modulnote

Die Modulnote ist Note der schriftlichen Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Inhalt

Empfehlungen

Grundkenntnisse in lineare Algebra und Analysis sind empfohlen.

Anmerkung

- Turnus: jedes zweite Jahr im Sommersemester
- Unterrichtssprache: Englisch

Arbeitsaufwand

Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzzeit: 90 Stunden
ZUSATZLEISTUNGEN

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Kombinatorik in der Ebene (MATHAG28) [M-MATH-102925]

Verantwortung: Maria Aksenovich

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Mathematische Methoden/Wahlbereich Mathematische Methoden/Algebra und Geometrie

Bestandteil von: Wahlpflicht

Zusatzleistungen

Leistungspunkte 7 Modulturnus Unregelmäßig Dauer 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105895</td>
<td>Kombinatorik in der Ebene (S. 921)</td>
<td>7</td>
<td>Maria Aksenovich, Torsten Ueckerdt</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 30 min.)

Modulnote

Notenbildung: Note der Prüfung

Voraussetzungen

Keine

Qualifikationsziele

Inhalt

Empfehlungen

Grundkenntnisse in linearen Algebra, Kombinatorik und Graphentheorie sind empfohlen.

Anmerkung

Unterrichtssprache: Englisch

Arbeitsaufwand

Gesamter Arbeitsaufwand: 210 Stunden
Präsenzzeit: 75 Stunden
 - Lehrveranstaltung einschließlich studienbegleitender Modulprüfung
Selbststudium: 135 Stunden
 - Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
ZUSATZLEISTUNGEN

- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Komplexe Analysis (MATHAN16) [M-MATH-102878]

Verantwortung: Christoph Schmoeger

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung:
- Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Analysis
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Analysis
- Wahlpflichtfach
- Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105849</td>
<td>Komplexe Analysis (S. 922)</td>
<td>8</td>
<td>Michael Plum, Christoph Schmoeger, Wolfgang Reichel, Gerd Herzog, Roland Schnaubelt, Lutz Weis</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung Funktionentheorie II erfolgt in Form einer mündlichen Gesamtprüfung (ca. 30 min)

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen können die Gründzüge der unten genannten Inhalte nennen, erörtern und anwenden.

Inhalt
- unendliche Produkte
- Satz von Mittag-Leffler
- Satz von Montel
- Riemannscher Abbildungssatz
- Konforme Abbildungen
- schlichte Funktionen
- Automorphismen spezieller Gebiete
- harmonische Funktionen
- Schwarzsches Spiegelungsprinzip
- reguläre und singuläre Punkte von Potenzreihen

Empfehlungen
Folgende Module sollten bereits belegt worden sein:
Funktionentheorie

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Konvexe Geometrie (MATHAG07) [M-MATH-102864]

Verantwortung: Daniel Hug

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung:
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Algebra und Geometrie
- Wahlpflichtfach
- Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105831</td>
<td>Konvexe Geometrie (S. 924)</td>
<td>8</td>
<td>Daniel Hug</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 30 min).

Modulnote
Notenbildung: Note der Prüfung

Voraussetzungen
Keine

Qualifikationsziele
Die Studierenden

- kennen grundlegende kombinatorische, geometrische und analytische Eigenschaften von konvexen Mengen und konvexen Funktionen und wenden diese auf verwandte Problemstellungen an,
- sind mit grundlegenden geometrischen und analytischen Ungleichungen für Funktionale konvexer Mengen und ihren Anwendungen auf geometrische Extremalprobleme vertraut und können zentrale Beweisideen und Beweistechniken angeben,
- kennen ausgewählte Integralformeln für konvexe Mengen und die hierfür erforderlichen Grundlagen über invariante Maße.
- können selbstorganisiert und reflexiv arbeiten

Inhalt
1. Konvexe Mengen
 1.1. Kombinatorische Eigenschaften
 1.2. Trennungs- und Stützeigenschaften
 1.3. Extremale Darstellungen
2. Konvexe Funktionen
 2.1. Grundlegende Eigenschaften
 2.2. Regularität
 2.3. Stützfunktion
 3. Brunn-Minkowski-Theorie
 3.1. Hausdorff-Metrik
 3.2. Volumen und Oberfläche
 3.3. Gemischte Volumina
 3.4. Geometrische Ungleichungen
 3.5. Oberflächenmaße
 3.6. Projektionsfunktionen
4. Integralgeometrische Formeln
4.1. Invariante Maße
4.2. Projektions- und Schnittformeln

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: L2-Invarianten (MATHAG38) [M-MATH-102952]

Verantwortung: Holger Kammeyer

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung:
- Wahlpflicht

Bestandteil von:
- Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Analysis
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Algebra und Geometrie
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Analysis
- Wahlpflichtfach
- Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105924</td>
<td>L2-Invarianten (S. 927)</td>
<td>5</td>
<td>Holger Kammeyer, Roman Sauер</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung von ca. 25 Minuten.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen
- verstehen Motivation und Umsetzung der Definitionen von L2-Invarianten,
- kennen Methodik und Werkzeuge, sie in einfachen Beispielen zu berechnen,
- wissen um die Relevanz der L2-Invarianten in verschiedenen mathematischen Gebieten und können sie in diesen Zusammenhängen einsetzen.

Inhalt
- Hilbertmoduln und von-Neumann-Dimension
- L2-Betti-Zahlen von CW-Komplexen und Gruppen
- Novikov-Shubin-Invarianten
- Fuglede-Kadison-Determinante und L2-Torsion

Empfehlungen
Inhalte der Module “Einführung in Geometrie und Topologie” bzw. “Elementare Geometrie” (Fundamentalgruppe und Überlagerungen) sowie “Algebraische Topologie” (CW-Komplexe, Kettenkomplexe, Homologie) werden benötigt.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 150 Stunden
Präsenzzeit: 60 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 90 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
ZUSATZLEISTUNGEN

- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Marketing Management (WW4BWLMAR5) [M-WIWI-101490]

Verantwortung: Martin Klarmann

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Operations Management - Datenanalyse - Informatik
Wahlpfllichtfach
Zusatzleistungen

Leistungspunkte

<table>
<thead>
<tr>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Wahlpflichtangebot

Wahlpflichtblock; min. 1 Teilleistungen, min. 9, max. 9 Leistungspunkte

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102812</td>
<td>Produkt- und Innovationsmanagement (S. 988)</td>
<td>3</td>
<td>Martin Klarmann</td>
</tr>
<tr>
<td>T-WIWI-102811</td>
<td>Marktforschung (S. 934)</td>
<td>4,5</td>
<td>Martin Klarmann</td>
</tr>
<tr>
<td>T-WIWI-102619</td>
<td>Verhaltenswissenschaftliches Marketing (S. 1071)</td>
<td>4,5</td>
<td>Bruno Neibecker</td>
</tr>
<tr>
<td>T-WIWI-102618</td>
<td>Strategische und innovative Marketingentscheidungen (S. 1059)</td>
<td>4,5</td>
<td>Bruno Neibecker</td>
</tr>
<tr>
<td>T-WIWI-102832</td>
<td>Business Plan Workshop (S. 844)</td>
<td>3</td>
<td>Martin Klarmann, Orestis Terzidis</td>
</tr>
<tr>
<td>T-WIWI-102835</td>
<td>Marketing Strategy Planspiel (S. 930)</td>
<td>1,5</td>
<td>Martin Klarmann</td>
</tr>
<tr>
<td>T-WIWI-102842</td>
<td>Strategic Brand Management (S. 1055)</td>
<td>1,5</td>
<td>Joachim Blickhäuser, Martin Klarmann</td>
</tr>
<tr>
<td>T-WIWI-102901</td>
<td>Open Innovation - Konzepte, Methoden und Best Practices (S. 964)</td>
<td>1,5</td>
<td>Alexander Hahn</td>
</tr>
<tr>
<td>T-WIWI-102902</td>
<td>Marketingkommunikation (S. 932)</td>
<td>4,5</td>
<td>Ju-Young Kim</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen

Qualifikationsziele

Studierende
- verfügen über fortgeschrittene Kenntnisse zentraler Marketinginhalte
- verfügen über einen vertieften Einblick in wichtige Instrumente des Marketing
- kennen und verstehen eine große Zahl an strategischen Konzepten und können diese einsetzen
- sind fähig, ihr vertieftes Marketingwissen sinnvoll in einem praktischen Kontext anzuwenden
- kennen eine Vielzahl von qualitativen und quantitativen Verfahren zur Vorbereitung von strategischen Entscheidungen im Marketing
- haben die nötigen theoretischen Kenntnisse, die für das Verfassen einer Masterarbeit im Bereich Marketing grundlegend sind
- haben die theoretischen Kenntnisse und Fertigkeiten, die vonnöten sind, um in der Marketingabteilung eines Unternehmens zu arbeiten oder mit dieser zusammenzuarbeiten
ZUSATZLEISTUNGEN

Inhalt
Ziel dieses Moduls ist es, zentrale Marketinginhalte im Rahmen des Masterstudiums zu vertiefen. Während im Bachelorstudium der Fokus auf Grundlagen liegt, gibt das Masterprogramm einen tieferen Einblick in wichtige Instrumente des Marketing. Studierende können im Rahmen dieses Moduls zwischen folgenden Kursen wählen:

- Im Rahmen der Veranstaltung “Produkt- und Innovationsmanagement” erfahren Studenten Inhalte des Bereiches Produktpolitik. Der Kurs geht dabei auf strategische Konzepte des Innovationsmanagements ein, auf einzelne Stufen des Innovationsprozesses, sowie auf das Management bestehender Produkte.
- Die Veranstaltung “Verhaltenswissenschaftliches Marketing” vermittelt Paradigmen der verhaltenswissenschaftlichen, empirischen Marketingforschung sowie sozialpsychologische und marketingtheoretische Lösungsansätze zur Gestaltung der Unternehmenskommunikation.
- Der Kurs “Strategische und Innovative Marketingentscheidungen” konzentriert sich unter anderem auf die strategische Ableitung richtiger Entscheidungen sowohl bei Planungskonzepten im Marketingmanagement, als auch bei der Wahl der Unternehmensstrategie im globalen Wettbewerb sowie bei Entscheidungen in Innovationsprozessen.
- Im “Business Plan Workshop” entwickeln die Studenten in Arbeitsgruppen Businesspläne und lernen bereits erlerntes Wissen sinnvoll einzusetzen, um strategische Entscheidungen treffen zu können.
- Das “Marketing and Strategy Planspiel” ist sehr praxisorientiert ausgestaltet und stellt die Gruppen vor reale Entscheidungssituationen, in denen die Studenten ihr analytisches Entscheidungsvermögen einsetzen müssen, um strategische Entscheidungen in Marketingkontexten treffen zu können.

Empfehlungen
Keine

Anmerkung
Nähere Informationen erhalten Sie direkt bei der Forschergruppe Marketing & Vertrieb (marketing.ism.kit.edu).

Arbeitsaufwand
Gesamtaufwand bei 9 Leistungspunkten: ca. 270 Stunden
Die genaue Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.
Modul: Markovsche Entscheidungsprozesse (MATHST11) [M-MATH-102907]

Verantwortung: Nicole Bäuerle
Einrichtung: KIT-Fakultät für Mathematik
Curriculare Verankerung: Wahlpflicht
Bestandteil von: Mathematische Methoden/Stochastik
Mathematische Methoden/Wahlbereich Mathematische Methoden/Stochastik
Wahlpflichtfach
Zusatzleistungen

Leistungspunkte: 5
Modulturnus: Unregelmäßig
Dauer: 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105921</td>
<td>Markovsche Entscheidungsprozesse (S. 933)</td>
<td>5</td>
<td>Nicole Bäuerle</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 20 min).

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen können
- Die mathematischen Grundlagen der Markovschen Entscheidungsprozesse nennen und Lösungsverfahren anwenden,
- stochastische, dynamische Optimierungsprobleme als Markovschen Entscheidungsprozess formulieren,
- selbstorganisiert und reflexiv arbeiten.

Inhalt
- MDPs mit endlichem Horizont
 - Die Bellman Gleichung
 - Strukturierte Probleme
 - Anwendungsbeispiele
- MDPs mit unendlichem Horizont
 - kontrahierende MDPs
 - positive MDPs
 - Howards Politikverbesserung
 - Lösung durch lineare Programme
- Stopp-Probleme
 - endlicher und unendlicher Horizont
 - One-step-look-ahead-Regel

Empfehlungen
Das Modul "Wahrscheinlichkeitstheorie" sollte bereits absolviert sein. Das Modul "Markovsche Ketten" ist hilfreich.
Arbeitsaufwand
Gesamter Arbeitsaufwand: 150 Stunden
Präsenzzeit: 60 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 90 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Mathematische Methoden in Signal- und Bildverarbeitung (MATHNM16) [M-MATH-102897]

Verantwortung: Andreas Rieder

Einrichtung: KIT-Fakultät für Mathematik
Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Angewandte und Numerische Mathematik, Optimierung
Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung
Wahlpflichtfach
Zusatzleistungen

Leistungspunkte 8 Modulturnus Unregelmäßig Dauer 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105862</td>
<td>Mathematische Methoden in Signal- und Bildverarbeitung (S. 937)</td>
<td>8</td>
<td>Andreas Rieder</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 30 Minuten.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen kennen die wesentlichen mathematischen Werkzeuge der Signal- und Bildverarbeitung sowie deren Eigenschaften. Sie sind in der Lage, diese Werkzeuge adäquat anzuwenden, die erhaltenen Resultate zu hinterfragen und zu beurteilen.

Inhalt
- Digitale und analoge Systeme
- Integrale Fourier-Transformation
- Abtastung und Auflösung
- Diskrete und schnelle Fourier-Transformation
- Nichtuniforme Abtastung
- Anisotrope Diffusionsfilter
- Variationsmethoden

Empfehlungen
Das Modul “Funktionalanalysis” ist hilfreich.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
ZUSATZLEISTUNGEN

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Mathematische Modellierung und Simulation in der Praxis (MATHNM27) [M-MATH-102929]

Verantwortung: Gudrun Thäter

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Angewandte und Numerische Mathematik, Optimierung Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung Wahlpflichtfach Zusatzleistungen

Leistungspunkte: 4

Modulturnus: Unregelmäßig

Dauer: 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105889</td>
<td>Mathematische Modellierung und Simulation in der Praxis (S. 938)</td>
<td>4</td>
<td>Gudrun Thäter</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 20 Minuten.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen können

- Projektorientiert arbeiten,
- Überblickswissen verknüpfen,
- Typische Modellansätze weiterentwickeln

Inhalt
Mathematisches Denken (als Modellieren) und mathematische Techniken (als Handwerkszeug) treffen auf Anwendungsprobleme wie:

- Differenzengleichungen
- Bevölkerungsmodelle
- Verkehrsflussmodelle
- Wachstumsmodelle
- Spieltheorie
- Chaos
- Probleme aus der Mechanik
Empfehlungen
Analysis I-III, Numerische Mathematik 1,2 sowie Numerische Methoden für differentialgleichungen bzw. vergleichbare HM-Vorlesungen.

Anmerkung
Die Veranstaltung findet immer auf Englisch statt.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 120 Stunden
Präsenzzeit: 45 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 75 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
M Modul: Mathematische Optimierung (WW4OR9) [M-WIWI-101473]

Verantwortung: Oliver Stein

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Operations Management - Datenanalyse - Informatik
Wahlpflichtfach Zusatzleistungen

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102719</td>
<td>Gemischt-ganzzahlige Optimierung I (S. 892)</td>
<td>4,5</td>
<td>Oliver Stein</td>
</tr>
<tr>
<td>T-WIWI-102720</td>
<td>Gemischt-ganzzahlige Optimierung II (S. 894)</td>
<td>4,5</td>
<td>Oliver Stein</td>
</tr>
<tr>
<td>T-WIWI-102733</td>
<td>Gemischt-ganzzahlige Optimierung I und II (S. 893)</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102726</td>
<td>Globale Optimierung I (S. 901)</td>
<td>4,5</td>
<td>Oliver Stein</td>
</tr>
<tr>
<td>T-WIWI-102727</td>
<td>Globale Optimierung II (S. 903)</td>
<td>4,5</td>
<td>Oliver Stein</td>
</tr>
<tr>
<td>T-WIWI-103638</td>
<td>Globale Optimierung I und II (S. 902)</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102723</td>
<td>Graph Theory and Advanced Location Models (S. 904)</td>
<td>4,5</td>
<td>Stefan Nickel</td>
</tr>
<tr>
<td>T-WIWI-102856</td>
<td>Konvexe Analysis (S. 923)</td>
<td>4,5</td>
<td>Oliver Stein</td>
</tr>
<tr>
<td>T-WIWI-103635</td>
<td>Vorleistung zu Nichtlineare Optimierung I (Master)(S. 1076)</td>
<td>4,5</td>
<td>Oliver Stein</td>
</tr>
<tr>
<td>T-WIWI-102724</td>
<td>Nichtlineare Optimierung I (S. 949)</td>
<td>4,5</td>
<td>Oliver Stein</td>
</tr>
<tr>
<td>T-WIWI-103636</td>
<td>Vorleistung zu Nichtlineare Optimierung II (Master)(S. 1078)</td>
<td>4,5</td>
<td>Oliver Stein</td>
</tr>
<tr>
<td>T-WIWI-102725</td>
<td>Nichtlineare Optimierung II (S. 951)</td>
<td>4,5</td>
<td>Oliver Stein</td>
</tr>
<tr>
<td>T-WIWI-103637</td>
<td>Nichtlineare Optimierung I und II (S. 950)</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102855</td>
<td>Parametrische Optimierung (S. 978)</td>
<td>4,5</td>
<td>Oliver Stein</td>
</tr>
<tr>
<td>T-WIWI-102721</td>
<td>Spezialvorlesung zur Optimierung I (S. 1036)</td>
<td>4,5</td>
<td>Oliver Stein</td>
</tr>
<tr>
<td>T-WIWI-102722</td>
<td>Spezialvorlesung zur Optimierung II (S. 1037)</td>
<td>4,5</td>
<td>Oliver Stein</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form von Teilprüfungen über die gewählten Lehrveranstaltungen des Moduls, mit denen in Summe die Mindestanforderung an Leistungspunkten erfüllt ist. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Voraussetzungen

Keine

Qualifikationsziele

Der/die Studierende
benennt und beschreibt die Grundbegriffe von fortgeschrittenen Optimierungsverfahren, insbesondere aus der konti-
nuierlichen und gemischt-ganzzahligen Optimierung, der Standorttheorie und der Graphentheorie,
kennt die für eine quantitative Analyse unverzichtbaren Methoden und Modelle,
modelliert und klassifiziert Optimierungsprobleme und wählt geeignete Lösungsverfahren aus, um auch anspruchsvolle
Optimierungsprobleme selbständig und gegebenenfalls mit Computerhilfe zu lösen,
validiert, illustriert und interpretiert erhaltene Lösungen,
erkennt Nachteile der Lösungsmethoden und ist gegebenenfalls in der Lage, Vorschläge für Ihre Anpassung an
Praxisprobleme zu machen.

Inhalt
Der Schwerpunkt des Moduls liegt auf der Vermittlung sowohl theoretischer Grundlagen als auch von Lösungsverfahren
für Optimierungsprobleme mit kontinuierlichen und gemischt-ganzzahligen Entscheidungsvariablen, für Standortprobleme
und für Probleme auf Graphen.

Anmerkung
Die Lehrveranstaltungen werden zum Teil unregelmäßig angeboten. Das für drei Studienjahre im Voraus geplante Lehr-
angebot kann im Internet (www.ior.kit.edu) nachgelesen werden.
Bei den Vorlesungen von Professor Stein ist jeweils eine Prüfungsvorleistung (30% der Übungspunkte) zu erbringen. Die
jeweiligen Lehrveranstaltungsbeschreibungen enthalten weitere Einzelheiten.

Arbeitsaufwand
Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 Credits). Die Aufteilung erfolgt nach den
Leistungspunkten der Lehrveranstaltungen des Moduls.
Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und
Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen
durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.
Modul: Mathematische Statistik (MATHST15) [M-MATH-102909]

Verantwortung: Bernhard Klar
Einrichtung: KIT-Fakultät für Mathematik
Curriculare Verankerung:
Bestandteil von: Mathematische Methoden/Stochastik
Wahlpflichtfach
Zusatzleistungen

Leistungspunkte: 4
Modulturnus: Unregelmäßig
Dauer: 1 Semester

Pflichtbestandteile

Kennung	Teilleistung	LP	Verantwortung
T-MATH-105872 | Mathematische Statistik (S. 939) | 4 | Bernhard Klar, Norbert Henze

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 20 min).

Voraussetzungen
Keine

Qualifikationsziele
Die Studierenden
- kennen die grundlegenden Konzepte der mathematischen Statistik,
- können diese bei einfachen Fragestellungen und Beispielen eigenständig anwenden,
- kennen spezifische probabilistische Techniken und können damit Schätz- und Test-Verfahren mathematisch analy-
sieren.

Inhalt
Die Vorlesung behandelt grundlegende Konzepte der mathematischen Statistik, insbesondere die finite Optimalitätstheorie von Schätzern und Tests. Themen sind:
- Optimale erwartungstreue Schätzer
- Beste lineare erwartungstreue Schätzer
- Cramér-Rao-Schranke in Exponentialfamilien
- Suffizienz und Vollständigkeit
- Satz von Lehmann-Scheffé
- Neyman-Pearson-Tests
- Optimale unverfälschte Tests

Empfehlungen
Die Inhalte des Moduls “Wahrscheinlichkeitstheorie” werden benötigt. Das Modul “Statistik” ist hilfreich.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 120 Stunden
Präsenzzeit: 45 Stunden
ZUSATZLEISTUNGEN

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 75 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Matrixfunktionen (MATHNM39) [M-MATH-102937]

Verantwortung: Volker Grimm

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung:

Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Angewandte und Numerische Mathematik, Optimierung
Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung
Wahlpflichtfach
Zusatzleistungen

Leistungspunkte: 8
Modulturnus: Unregelmäßig
Dauer: 1 Semester

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kennung</td>
</tr>
<tr>
<td>T-MATH-105906</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 30 Minuten.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele

Inhalt
Definition von Matrixfunktionen
Approximation an Matrixfunktionen für große Matrixen
Krylov-Verfahren und rationale Krylov-Verfahren
Anwendung auf die numerische Lösung partieller Differentialgleichungen

Empfehlungen
Numerische Mathematik 1 und 2

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Maxwellgleichungen (MATHAN28) [M-MATH-102885]

Verantwortung: Andreas Kirsch

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Analysis

Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Wahlbereich Mathematische Methoden/Analysis

Mathematische Methoden/Wahlbereich Mathematische Methoden/Analysis

Leistungspunkte 8

Modulturnus Unregelmäßig

Dauer 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105856</td>
<td>Maxwellgleichungen (S. 942)</td>
<td>8</td>
<td>Tilo Arens, Andreas Kirsch, Frank Hettlich</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung von ca. 30 Minuten Dauer.

Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden sind in der Lage, die mathematischen Fragestellungen aus der Theorie der Maxwellschen Gleichungen an Beispielen zu erläutern.

Sie können die Hauptsätze wiedergeben, beweisen, auf Spezialfälle anwenden und mit den Eigenschaften einfacherer Differentialgleichungen (z.B. der Helmholtzgleichung) vergleichen.

Inhalt

Spezielle Beispiele von Lösungen der Maxwellgleichungen, Eigenschaften der Lösungen (z. B. Darstellungssätze), Spezialfälle (E-Mode, H-Mode), Randwertaufgaben

Empfehlungen

Erwünscht sind grundlegende Kenntnisse aus der Funktionalanalysis

Arbeitsaufwand

Gesamter Arbeitsaufwand: 240 Stunden

Präsenzzeit: 90 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
ZUSATZLEISTUNGEN

- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Methodische Grundlagen des OR (WW3OR6) [M-WIWI-101414]

Verantwortung: Oliver Stein

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Curriculare Verankerung: Operations Management - Datenanalyse - Informatik

Bestandteil von: Wahlpflichtfach

Leistungspunkte: 9

Modulturnus: Jedes Semester

Dauer: 1 Semester

Wahlpflichtangebot

Wahlpflichtblock; min. 1, max. 3 Teilleistungen

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102726</td>
<td>Globale Optimierung I (S. 901)</td>
<td>4,5</td>
<td>Oliver Stein</td>
</tr>
<tr>
<td>T-WIWI-103062</td>
<td>Vorleistung zu Nichtlineare Optimierung I (Bachelor) (S. 1075)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102724</td>
<td>Nichtlineare Optimierung I (S. 949)</td>
<td>4,5</td>
<td>Oliver Stein</td>
</tr>
</tbody>
</table>

Ergänzungsangebot

Wahlpflichtblock; max. 1 Teilleistungen

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102727</td>
<td>Globale Optimierung II (S. 903)</td>
<td>4,5</td>
<td>Oliver Stein</td>
</tr>
<tr>
<td>T-WIWI-103060</td>
<td>Vorleistung zu Nichtlineare Optimierung II (Bachelor) (S. 1077)</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102725</td>
<td>Nichtlineare Optimierung II (S. 951)</td>
<td>4,5</td>
<td>Oliver Stein</td>
</tr>
<tr>
<td>T-WIWI-103061</td>
<td>Nichtlineare Optimierung I und II (S. 950)</td>
<td>9</td>
<td>Stefan Nickel</td>
</tr>
<tr>
<td>T-WIWI-102704</td>
<td>Standortplanung und strategisches Supply Chain Management (S. 1040)</td>
<td>4,5</td>
<td>Stefan Nickel</td>
</tr>
<tr>
<td>T-WIWI-102710</td>
<td>Stochastische Entscheidungsmodelle I (S. 1050)</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen

Mindestens eine der Veranstaltungen *Nichtlineare Optimierung I* [2550111] und *Globale Optimierung I* [2550134] muss geprüft werden.

Qualifikationsziele

Der/die Studierende

- benennt und beschreibt die Grundbegriffe von Optimierungsverfahren, insbesondere aus der nichtlinearen und aus der globalen Optimierung,
- kennt die für eine quantitative Analyse unverzichtbaren Methoden und Modelle,
• modelliert und klassifiziert Optimierungsprobleme und wählt geeignete Lösungsverfahren aus, um auch anspruchsvolle Optimierungsprobleme selbständig und gegebenenfalls mit Computerhilfe zu lösen,
• validiert, illustriert und interpretiert erhaltene Lösungen.

Inhalt
Der Schwerpunkt des Moduls liegt auf der Vermittlung sowohl theoretischer Grundlagen als auch von Lösungsverfahren für Optimierungsprobleme mit kontinuierlichen Entscheidungsvariablen. Die Vorlesungen zur nichtlinearen Optimierung behandeln lokale Lösungskonzepte, die Vorlesungen zur globalen Optimierung die Möglichkeiten zur globalen Lösung.

Anmerkung
Das für drei Studienjahre im Voraus geplante Lehrangebot kann im Internet unter http://www.ior.kit.edu nachgelesen werden.

Bei den Vorlesungen von Professor Stein ist jeweils eine Prüfungsvorleistung (30% der Übungspunkte) zu erbringen. Die jeweiligen Lehrveranstaltungsbeschreibungen enthalten weitere Einzelheiten.

Arbeitsaufwand
ZUSATZLEISTUNGEN

M Modul: Microeconomic Theory (WW4VWL15) [M-WIWI-101500]

Verantwortung: Clemens Puppe

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Curriculare Verankerung: Wahlpflicht
Bestandteil von: Finance - Risk Management - Managerial Economics
Wahlpflichtfach
Zusatzleistungen

Leistungspunkte 9
Sprache Deutsch

Wahlpflichtangebot
Wahlpflichtblock; min. 1, max. 1 Teilleistungen, min. 9, max. 9 Leistungspunkte

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102609</td>
<td>Advanced Topics in Economic Theory (S. 826)</td>
<td>4,5</td>
<td>Kay Mitisch, Marten Hillebrand</td>
</tr>
<tr>
<td>T-WIWI-102861</td>
<td>Advanced Game Theory (S. 824)</td>
<td>4,5</td>
<td>Karl-Martin Ehrhart, Clemens Puppe, Johannes Philipp Reiß</td>
</tr>
<tr>
<td>T-WIWI-102859</td>
<td>Social Choice Theory (S. 1025)</td>
<td>4,5</td>
<td>Clemens Puppe</td>
</tr>
<tr>
<td>T-WIWI-102613</td>
<td>Auktionstheorie (S. 840)</td>
<td>4,5</td>
<td>Karl-Martin Ehrhart</td>
</tr>
<tr>
<td>T-WIWI-105781</td>
<td>Incentives in Organizations (S. 908)</td>
<td>4,5</td>
<td>Petra Nieken</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen
Keine

Qualifikationsziele
Die Studierenden

- sind in der Lage, praktische Problemstellungen der Mikroökonomik mathematisch zu modellieren und im Hinblick auf positive und normative Fragestellungen zu analysieren,
- verstehen die individuellen Anreize und gesellschaftlichen Auswirkungen verschiedener institutioneller ökonomischer Rahmenbedingungen.

Inhalt
Die Studierenden verstehen weiterführende Themen der Wirtschaftstheorie, Spieltheorie und Wohlfahrtsstheorie. Die thematischen Schwerpunkte sind unter anderem die strategische Interaktion in Märkten, kooperative und nichtkooperative Verhandlungen (Advanced Game Theory), Allokation unter asynmetrischer Information und allgemeine Gleichgewichte über einen längeren Zeitraum (Advanced Topics in Economic Theory), sowie Wahlen und die Aggregation von Präferenzen und Urteilen (Social Choice Theory).

Arbeitsaufwand
Gesamtaufwand bei 9 Leistungspunkten: ca. 270 Stunden
Die genaue Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.
Modul: Nichtparametrische Statistik (MATHST16) [M-MATH-102910]

Verantwortung: Norbert Henze

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung:
- Mathematische Methoden/Stochastik
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Stochastik
- Wahlpflichtfach
- Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105873</td>
<td>Nichtparametrische Statistik (S. 952)</td>
<td>4</td>
<td>Bernhard Klar, Norbert Henze</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 20 min).

Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

- Absolventinnen und Absolventen können verschiedene nichtparametrische statistische Testmethoden an Hand folgender Beispiele erklären und gegen parametrische Methoden abgrenzen:
 - Einstichproben-Lage-Problem
 - Zweistichproben-Lage-Problem

Sie können die Effizienz verschiedener Tests mittels asymptotischer Methoden vergleichen.

- Sie können verschiedene Abhängigkeitsmaße nennen und gegeneinander abgrenzen.
- Sie können verschiedene nichtparametrische Schätzmethoden an Hand folgender Beispiele nennen und erklären:
 - Dichteschätzung
 - Nichtparametrische Regression

Inhalt

- Ordnungsstatistiken und Quantilschätzung
- Rang-Statistiken
- Abhängigkeitsmaße
- Nichtparametrische Dichte- und Regressionsschätzung
Empfehlungen
Die Inhalte des Moduls ‘Wahrscheinlichkeitstheorie’ werden benötigt. Das Modul 'Asymptotische Stochastik' ist hilfreich.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 120 Stunden
Präsenzzeit: 45 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 75 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Numerische Fortsetzungsmethoden (MATHNM42) [M-MATH-102944]

Verantwortung: Jens Rottmann-Matthes

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Angewandte und Numerische Mathematik, Optimierung
Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung
Wahlpflichtfach
Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105912</td>
<td>Numerische Fortsetzungsmethoden (S. 953)</td>
<td>5</td>
<td>Jens Rottmann-Matthes</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 20-30min.).

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen können

- grundlegende Verfahren zur Parameterfortsetzung und Bestimmung von Verzweigungspunkten beschreiben und anwenden,
- die benutzten numerischen Algorithmen analysieren,
- selbstständig Verzweigungsdiagramme in konkreten Fällen mit den numerischen Algorithmen erzeugen und interpretieren.

Inhalt

- Beispiele parameterabhängiger Differentialgleichungen
- Prädiktor-Korrektorverfahren zur Parameterfortsetzung
- Detektion von Umkehrpunkten
- Detektion einfacher Verzweigungspunkte
- Newtonverfahren in der Nähe von Verzweigungspunkten

Empfehlungen
Gute Kenntnisse der Linearen Algebra, Analysis, Numerik I und gewöhnlichen Differentialgleichungen

Arbeitsaufwand
Gesamter Arbeitsaufwand: 150 Stunden
Präsenzzeit: 60 Stunden
ZUSATZLEISTUNGEN

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 90 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Numerische Methoden für Differentialgleichungen (MATHNM03) [M-MATH-102888]

Verantwortung: Tobias Jahnke, Willy Dörfler

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Angewandte und Numerische Mathematik, Optimierung Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung Wahlpflichtfach Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105836</td>
<td>Numerische Methoden für Differentialgleichungen (S. 954)</td>
<td>8</td>
<td>Andreas Rieder, Tobias Jahnke, Marlis Hochbruck, Willy Dörfler, Christian Wieners</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Absolventinnen und Absolventen können

- die grundlegenden Methoden, Techniken und Algorithmen zur Behandlung von Differentialgleichungen nennen, erörtern und anwenden (insbesondere die Stabilität, Konvergenz und Komplexität der numerischen Verfahren)
- Konzepte der Modellierung mit Differentialgleichungen wiedergeben
- Differentialgleichungen numerisch lösen

Inhalt

- Numerische Methoden für Anfangswertaufgaben (Runge-Kutta-Verfahren, Mehrschrittverfahren, Ordnung, Stabilität, steife Probleme)
- Numerische Methoden für Randwertaufgaben (Finite-Differenzen/Finite-Elemente-Verfahren für elliptische Gleichungen zweiter Ordnung)
- Numerische Methoden für Anfangsrandwertaufgaben (Finite-Differenzen/Finite-Elemente-Verfahren für Parabolische Gleichungen und Hyperbolische Gleichungen)

Empfehlungen

Wirtschaftsmathematik (M.Sc.)

Modulhandbuch mit Stand 04.08.2016 für Wintersemester 16/17
Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Numerische Methoden für hyperbolische Gleichungen (MATHNM28) [M-MATH-102915]

Verantwortung: Willy Dörfler
Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung:
- Wahlpflicht
- Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Angewandte und Numerische Mathematik, Optimierung
- Mathematische Methoden/Wahlpflichtfach
- Zusatzleistungen

Leistungspunkte: 6
Modulturnus: Unregelmäßig
Dauer: 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105900</td>
<td>Numerische Methoden für hyperbolische Gleichungen (S. 955)</td>
<td>6</td>
<td>Willy Dörfler</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 25 Minuten.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
- Keine

Qualifikationsziele
Absolventinnen und Absolventen können
- die grundlegenden Methoden, Techniken und Algorithmen der Behandlung
- hyperbolischer Anfangswertprobleme erklären
- Konzepte der Modellierung mit hyperbolischen Differentialgleichungen wiedergeben
- Einfache skalare oder vektorwertige hyperbolische Gleichungen numerisch lösen

Inhalt
- Modellierung mit Erhaltungsgleichungen
- Schocks, Verdünnungswellen und schwache Lösungen
- Aspekte der Existenz und Regularitätstheorie skalarer Probleme
- Diskretisierung von skalarer Erhaltungsgleichungen
- Eigenschaften und Diskretisierung hyperbolischer Systeme

Empfehlungen
Grundlagenkenntnisse in Finite Element Methoden, in einer Programmiersprache und der Analysis von Randwertproblemen werden benötigt. Kenntnisse in
Funktionalanalysis sind hilfreich.

Arbeitsaufwand
Präsenzzeit: 60 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 120 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Numerische Methoden für Integralgleichungen (MATHNM29) [M-MATH-102930]

Verantwortung: Tilo Arens

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Angewandte und Numerische Mathematik, Optimierung Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung Wahlpflichtfach Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

Kennung	Teilleistung	LP	Verantwortung
T-MATH-105901 | Numerische Methoden für Integralgleichungen (S. 956) | 8 | Tilo Arens, Andreas Kirsch, Frank Hettlich |

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 30 min.). Durch die erfolgreiche Teilnahme am Übungsbetrieb kann ein Bonus erworben werden. Liegt die Note der mündlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note um eine Notenstufe (0,3 oder 0,4).

Modulnote

Die Modulnote ist die Note der mündlichen Prüfung, ggf. modifiziert durch den Bonus aus dem Übungsbetrieb.

Voraussetzungen

Keine

Qualifikationsziele

Inhalt

- Randintegraloperatoren
- Interpolation
- Quadraturformeln
- Approximation durch degenerierte Kernfunktionen
- Nyström-Verfahren
- Projektionsverfahren

Empfehlungen

Numerische Mathematik 1
Integralgleichungen
Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Numerische Methoden für zeitabhängige partielle Differentialgleichungen

(MATHMWNM20) [M-MATH-102928]

Verantwortung: Marlis Hochbruck

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Angewandte und Numerische Mathematik, Optimierung Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung Wahlpflichtfach Zusatzleistungen

Leistungspunkte: 8

Modulturnus: Unregelmäßig

Dauer: 1 Semester

Pflichtbestandteile

Kennung	Teilleistung	LP	Verantwortung
T-MATH-105899 | Numerische Methoden für zeitabhängige partielle Differentialgleichungen (S. 957) | 8 | Tobias Jahnke, Marlis Hochbruck

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 30 Minuten.

Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Inhalt

- Runge-Kutta-Verfahren und Exponentielle Integratoren für lineare, semilineare und quasilineare Evolutionsgleichungen
- Zeitintegration für hochoszillatorische Probleme, z. B. exponentielle Integratoren, Magnus-Methoden, trigonometrische Integratoren

Empfehlungen

Numerische Methoden für Differentialgleichungen, Einführung in das Wissenschaftliche Rechnen

Arbeitsaufwand

Gesamter Arbeitsaufwand: 240 Stunden

Präsenzzeit: 90 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Numerische Methoden in der Elektrodynamik (MATHNM13) [M-MATH-102894]

Verantwortung: Willy Dörfler

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Angewandte und Numerische Mathematik, Optimierung Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung Wahlpflichtfach Zusatzleistungen

Leistungspunkte: 6

Modulturnus: Unregelmäßig

Dauer: 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105860</td>
<td>Numerische Methoden in der Elektrodynamik (S. 958)</td>
<td>6</td>
<td>Andreas Rieder, Tobias Jahnke, Marlis Hochbruck, Willy Dörfler, Christian Wieners</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 25 Minuten.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen

- können elektrostatische oder -dynamische Effekte mit mathematischen Modellen beschreiben,
- erkennen die grundlegenden Probleme der korrekten Approximation,
- können stabile Diskretisierungen der Maxwellgleichungen angeben.

Inhalt

- Die Maxwell Gleichungen, Modellierung
- Rand- und Übergangsbedingungen
- Analytische Hilfsmittel
- Das Quellenproblem
- Das Eigenwertproblem
- Finite Elemente für die Maxwell-Gleichungen
- Interpolationsabschätzungen
8 ZUSATZLEISTUNGEN

Empfehlungen
Grundkenntnisse in der Analysis von Randwertproblemen und der Finite Elemente Methode.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 180 Stunden
Präsenzzeit: 60 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 120 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Numerische Methoden in der Finanzmathematik (MATHNM18) [M-MATH-102901]

Verantwortung: Tobias Jahnke

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Angewandte und Numerische Mathematik, Optimierung

Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung

Wahlpflichtfach

Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105865</td>
<td>Numerische Methoden in der Finanzmathematik (S. 959)</td>
<td>8</td>
<td>Tobias Jahnke</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 30 Minuten.

Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Inhalt

Modellierung:

- Optionen, Arbitrage und andere Grundbegriffe
- Wiener-Prozess, Ito-Integral, Ito-Formel
- Black-Scholes-Gleichung und Black-Scholes-Formel

Numerische Verfahren:

- Binomialbaumverfahren
- Erzeugung von Pseudo-Zufallszahlen, Monte-Carlo-Methode, Quasi-Monte-Carlo-Methode
- Numerische Verfahren für stochastische Differentialgleichungen
- Finite-Differenzen-Verfahren für eindimensionale Black-Scholes-Gleichungen
- Bewertung von amerikanischen Optionen
Empfehlungen
Grundlegende Inhalte des Moduls „Wahrscheinlichkeitstheorie“ und Grundkenntnisse über gewöhnliche Differentialgleichungen sowie Programmierkenntnisse in MATLAB werden benötigt.

Anmerkung
Wird jedes 4. Semester angeboten, jeweils im Wintersemester.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
• Lehrveranstaltung einschließlich studienbegleitender Modulprüfung
Selbststudium: 150 Stunden
• Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
• Bearbeitung von Übungsaufgaben
• Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
• Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Numerische Methoden in der Finanzmathematik II (MATHNM26) [M-MATH-102914]

Verantwortung: Tobias Jahnke

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Angewandte und Numerische Mathematik, Optimierung Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung

Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105880</td>
<td>Numerische Methoden in der Finanzmathematik II (S. 960)</td>
<td>8</td>
<td>Tobias Jahnke</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 30 Minuten.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Im Mittelpunkt der Vorlesung steht die Bewertung von Optionen durch numerische Verfahren, wobei die Kenntnisse aus Teil 1 der Vorlesung erweitert und vertieft werden. Absolventinnen und Absolventen kennen nicht nur grundlegende, sondern auch raffinierte numerische Verfahren zur Lösung von stochastischen bzw. partiellen Differentialgleichungen und hochdimensionalen Problemen. Sie können diese Verfahren nicht nur implementieren und zur Bewertung von verschiedenen Optionen anwenden, sondern auch die Stabilität und Konvergenz der Verfahren analysieren und durch theoretische Resultate erklären.

Inhalt
- Multi-Level Monte-Carlo-Methoden
- Historische, implizite und lokale Volatilität
- Sprung-Diffusions-Prozesse und Integro-Differentialgleichungen,
- Lösung von Black-Scholes-Gleichungen mit der Methode der Finiten Elemente
- Dünnättermethoden (Sparse Grids) für die Bewertung von Basketoptionen

Empfehlungen
Empfehlungen: Grundlegende Inhalte des Moduls “Numerische Methoden in der Finanzmathematik” und Programmierkenntnisse (möglichst in MATLAB) werden benötigt.

Anmerkung
ZUSATZLEISTUNGEN

Arbeitsaufwand
Präsenzzeit: 90 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Numerische Methoden in der Strömungsmechanik (MATHNM34) [M-MATH-102932]

Verantwortung: Gudrun Thäter, Willy Dörfler

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung:

Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Angewandte und Numerische Mathematik, Optimierung Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung Wahlpflichtfach Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105902</td>
<td>Numerische Methoden in der Strömungsmechanik (S. 961)</td>
<td>4</td>
<td>Gudrun Thäter, Willy Dörfler</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 20 Minuten.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Studierende können die Modellierung und die physikalischen Annahmen erläutern, die zu den Navier-Stokes Gleichungen führen. Sie können die Finite Elemente Methode auf die Strömungsrechnung anwenden und insbesondere mit der Inkompressibilität numerisch umgehen. Sie können die Konvergenz und Stabilität der Verfahren erläutern und begründen.

Inhalt

- Modellbildung und Herleitung der Navier-Stokes Gleichungen
- Mathematische und physikalische Repräsentation von Energie und Spannung
- Analytische und numerische Behandlung des Stokes-Problems
- Stabilitäts- und Konvergenztheorie
- Lax-Milgram Theorem, Céa-Lemma und Sattelpunkttheorie
- Numerische Behandlung der stationären nichtlinearen Gleichung
- Numerische Verfahren für das instationäre Problem
- Turbulenzmodelle

Empfehlungen
ZUSATZLEISTUNGEN

Arbeitsaufwand
Gesamter Arbeitsaufwand: 120 Stunden
Präsenzzeit: 45 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 75 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Numerische Optimierungsmethoden (MATHNM25) [M-MATH-102892]

Verantwortung: Christian Wieners

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung:
- Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Angewandte und Numerische Mathematik, Optimierung
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung
- Wahlpflichtfach
- Zusatzleistungen

Leistungspunkte 8

Modulturnus Unregelmäßig

Dauer 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105858</td>
<td>Numerische Optimierungsmethoden (S. 962)</td>
<td>8</td>
<td>Andreas Rieder, Tobias Jahnke, Marlis Hochbruck, Willy Dörfler, Christian Wieners</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 30 Minuten.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen können
- verschiedene numerische Verfahren für restringierte und unrestringierte Optimierungsprobleme beschreiben.
- Aussagen über lokale und globale Konvergenz erklären
- exemplarische Anwendungen skizzieren

Inhalt
- Allgemeine unrestringierte Minimierungsverfahren
- Newton-Verfahren
- Inexakte Newton-Verfahren
- Quasi-Newton-Verfahren
- Nichtlineare cg-Verfahren
- Trust-Region-Verfahren
- Innere-Punkte-Verfahren
- Penalty-Verfahren
ZUSATZLEISTUNGEN

- Aktive-Mengen Strategien
- SQP-Verfahren
- Nicht-glatte Optimierung

Empfehlungen
Optimierungstheorie

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Moduleprüfung
Modul: Numerische Verfahren für die Maxwellgleichungen (MATHNM33) [M-MATH-102931]

Verantwortung: Tobias Jahnke

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Angewandte und Numerische Mathematik, Optimierung

Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung

Wahlpflichtfach

Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105920</td>
<td>Numerische Verfahren für die Maxwellgleichungen (S. 963)</td>
<td>6</td>
<td>Tobias Jahnke</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 20 Minuten.

Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Inhalt

- Maxwellgleichungen: Integral- und Differentialform, Materialgesetze, Randbedingungen, Wohlgestelltheit
- Raumdiskretisierung (z.B. finite Differenzen, konforme oder nichtkonforme finite Elemente)
- Zeitintegration (z.B. Splitting-Verfahren, (lokal)-implizite Verfahren, exponentielle Integratoren)

Empfehlungen

Grundkenntnisse über gewöhnliche und/oder partielle Differentialgleichungen
Das Modul “Numerische Methoden für Differentialgleichungen” sollte besucht worden sein.

Anmerkung

Turnus: Mindestens alle zwei Jahre

Arbeitsaufwand

Gesamter Arbeitsaufwand: 180 Stunden
Präsenzzeit: 60 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung
Selbststudium: 120 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Ökonometrie und Statistik I [M-WIWI-101638]

Verantwortung: Melanie Schienle

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Curriculare Verankerung: Finance - Risk Management - Managerial Economics

Bestandteil von: Wahlpflicht

Zusatzleistungen

Leistungspunkte 9

Modulturnus Jedes Semester

Dauer 1 Semester

Sprache Deutsch

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-103125</td>
<td>Angewandte Ökonometrie (S. 836)</td>
<td>4,5</td>
<td>Melanie Schienle</td>
</tr>
</tbody>
</table>

Ergänzungsangebot

Wahlpflichtblock; min. 4,5, max. 5 Leistungspunkte

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-103066</td>
<td>Data Mining and Applications (S. 853)</td>
<td>4,5</td>
<td>Rheza Nakhaeizadeh</td>
</tr>
<tr>
<td>T-WIWI-103064</td>
<td>Financial Econometrics (S. 885)</td>
<td>4,5</td>
<td>Melanie Schienle</td>
</tr>
<tr>
<td>T-WIWI-103126</td>
<td>Nicht- und Semiparametrik (S. 948)</td>
<td>4,5</td>
<td>Melanie Schienle</td>
</tr>
<tr>
<td>T-WIWI-103127</td>
<td>Paneldaten (S. 977)</td>
<td>4,5</td>
<td>Wolf-Dieter Heller</td>
</tr>
<tr>
<td>T-WIWI-103065</td>
<td>Statistische Modellierung von allgemeinen Regressionsmodellen (S. 1043)</td>
<td>4,5</td>
<td>Wolf-Dieter Heller</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen

Qualifikationsziele

Der/die Studierende besitzt umfassende Kenntnisse fortgeschrittener ökonometrischer Methoden für unterschiedliche Datentypen. Er/Sie ist in der Lage diese kenntnisreich anzuwenden, sie mit Hilfe von statistischer Software umzusetzen und kritisch zu evaluieren.

Inhalt

In den Modulveranstaltungen wird den Studierenden ein umfassendes Portfolio an weiterführenden ökonometrischen Methoden für unterschiedliche Datentypen vermittelt.

Anmerkung

Arbeitsaufwand
Modul: Ökonometrie und Statistik II [M-WIWI-101639]

Verantwortung: Melanie Schienle

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Finance - Risk Management - Managerial Economics

Wahlpflichtfach Zusatzleistungen

Leistungspunkte: 9

Modulturnus: Jedes Semester

Dauer: 1 Semester

Sprache: Deutsch

Wahlpflichtangebot

Wahlpflichtblock; min. 9, max. 10 Leistungspunkte

Kennung Teilleistung LP Verantwortung
T-WIWI-103125 Angewandte Ökonometrie (S. 836) 4,5 Melanie Schienle
T-WIWI-103066 Data Mining and Applications (S. 853) 4,5 Rheza Nakhaeizadeh
T-WIWI-103064 Financial Econometrics (S. 885) 4,5 Melanie Schienle
T-WIWI-103124 Multivariate Verfahren (S. 946) 4,5 Oliver Grothe
T-WIWI-103126 Nicht- und Semiparametrik (S. 948) 4,5 Melanie Schienle
T-WIWI-103127 Paneldaten (S. 977) 4,5 Wolf-Dieter Heller
T-WIWI-103128 Portfolio and Asset Liability Management (S. 980) 4,5 Mher Safarian
T-WIWI-103065 Statistische Modellierung von allgemeinen Regressionsmodellen (S. 1043) 4,5 Wolf-Dieter Heller
T-WIWI-103129 Stochastic Calculus and Finance (S. 1047) 4,5 Mher Safarian

Erfolgskontrollen

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Voraussetzungen

Das Modul ist erst dann bestanden, wenn zusätzlich das Modul “Ökonometrie und Statistik I” zuvor erfolgreich mit der letzten Teilprüfung abgeschlossen wurde.

Modellierte Voraussetzungen

Es müssen die folgenden Bestandteile erfüllt werden:

- Das Modul kann nur dann begonnen werden, wenn zugleich das Modul [M-WIWI-101638] Ökonometrie und Statistik I begonnen wurde.

Qualifikationsziele

Der/die Studierende besitzt umfassende Kenntnisse fortgeschrittener ökonometrischer Methoden für unterschiedliche Datentypen. Er/Sie ist in der Lage diese kenntnisreich anzuwenden, sie mit Hilfe von statistischer Software umzusetzen und kritisch zu evaluieren.

Inhalt

Dieses Modul baut inhaltlich auf dem Modul “Ökonometrie und Statistik I” auf. In den Modulveranstaltungen wird den
Studierenden ein umfassendes Portfolio an weiterführenden ökonometrischen Methoden für unterschiedliche Datentypen vermittelt.

Anmerkung

Arbeitsaufwand
Modul: Ökonomische Theorie und ihre Anwendung in Finance (WW4VWL14) [M-WIWI-101502]

Verantwortung: Kay Mitusch
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Curriculare Verankerung: Wahlpflicht
Bestandteil von: Finance - Risk Management - Managerial Economics
Wahlpflichtfach
Zusatzleistungen

Leistungspunkte 9
Sprache Deutsch

Wahlpflichtangebot
Wahlpflichtblock; min. 9, max. 9 Leistungspunkte

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102609</td>
<td>Advanced Topics in Economic Theory (S. 826)</td>
<td>4,5</td>
<td>Kay Mitusch, Marten Hillebrand</td>
</tr>
<tr>
<td>T-WIWI-102622</td>
<td>Corporate Financial Policy (S. 851)</td>
<td>4,5</td>
<td>Martin Ruckes</td>
</tr>
<tr>
<td>T-WIWI-102623</td>
<td>Finanzintermediation (S. 886)</td>
<td>4,5</td>
<td>Martin Ruckes</td>
</tr>
<tr>
<td>T-WIWI-102647</td>
<td>Asset Pricing (S. 837)</td>
<td>4,5</td>
<td>Marliese Uhrig-Homburg, Martin Ruckes</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen
Keine

Qualifikationsziele
Die Studierenden
- beherrschen anhand der Allgemeinen Gleichgewichtstheorie und der Vertragstheorie die Methoden des formalen ökonomischen Modellierens
- können diese Methoden auf finanzwirtschaftliche Fragestellungen anwenden
- erhalten viele nützliche Einsichten in das Verhältnis von Unternehmen und Investoren und das Funktionieren von Finanzmärkten

Inhalt

Anmerkung
Das Modul wird für die Masterstudiengänge Wirtschaftsingenieurwesen und Technische Volkswirtschaftslehre nur im Wahlpflichtbereich angeboten.

Arbeitsaufwand
Gesamtaufwand bei 9 Leistungspunkten: ca. 270 Stunden
Die genaue Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.
Modul: Operations Research im Supply Chain Management (WW4OR11) [M-WIWI-102832]

Verantwortung: Stefan Nickel
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Curriculare Verankerung: Wahlpflicht
Bestandteil von: Operations Management - Datenanalyse - Informatik
Wahlpflichtfach
Zusatzleistungen

Leistungspunkte: 9
Sprache: Deutsch

Wahlpflichtangebot

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102704</td>
<td>Standortplanung und strategisches Supply Chain Management (S. 1040)</td>
<td>4,5</td>
<td>Stefan Nickel</td>
</tr>
<tr>
<td>T-WIWI-103061</td>
<td>Vorleistung zu Standortplanung und strategisches Supply Chain Management (S. 1079)</td>
<td></td>
<td>Stefan Nickel</td>
</tr>
<tr>
<td>T-WIWI-102714</td>
<td>Taktisches und operatives Supply Chain Management (S. 1064)</td>
<td>4,5</td>
<td>Stefan Nickel</td>
</tr>
<tr>
<td>T-WIWI-105940</td>
<td>Vorleistung zu Taktisches und operatives Supply Chain Management (S. 1080)</td>
<td></td>
<td>Stefan Nickel</td>
</tr>
<tr>
<td>T-WIWI-102715</td>
<td>Operations Research in Supply Chain Management (S. 968)</td>
<td>4,5</td>
<td>Stefan Nickel</td>
</tr>
<tr>
<td>T-WIWI-102784</td>
<td>Software-Praktikum: OR-Modelle II (S. 1027)</td>
<td>4,5</td>
<td>Stefan Nickel</td>
</tr>
<tr>
<td>T-WIWI-102718</td>
<td>Ereignisdiskrete Simulation in Produktion und Logistik (S. 877)</td>
<td>4,5</td>
<td>Stefan Nickel</td>
</tr>
<tr>
<td>T-WIWI-102723</td>
<td>Graph Theory and Advanced Location Models (S. 904)</td>
<td>4,5</td>
<td>Stefan Nickel</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen
Keine

Qualifikationsziele

Der/die Studierende

- ist vertraut mit wesentlichen Konzepten und Begriffen des Supply Chain Managements,
- kennt die verschiedenen Teilgebiete des Supply Chain Managements und die zugrunde liegenden Optimierungsprobleme,
- ist mit den klassischen Standortmodellen (in der Ebene, auf Netzwerken und diskret), sowie mit den grundlegenden Methoden zur Ausliefer- und Transportplanung, Warenlagerplanung und Lagermanagements vertraut
- ist in der Lage praktische Problemstellungen mathematisch zu modellieren und kann deren Komplexität abschätzen sowie geeignete Lösungsverfahren auswählen und anpassen.
Supply Chain Management befasst sich mit der Planung und Optimierung des gesamten, unternehmensübergreifenden Beschaffungs-, Herstellungs- und Distributionsprozesses mehrerer Produkte zwischen allen beteiligten Geschäftspartnern (Lieferanten, Logistikdienstleistern, Händlern). Ziel ist, unter Berücksichtigung verschiedenster Rahmenbedingungen die Befriedigung der (Kunden-) Bedarfe, so dass die Gesamtkosten minimiert werden.

Empfehlungen

Anmerkung
Einige Veranstaltungen werden unregelmäßig angeboten.
Das für drei Studienjahre im Voraus geplante Lehrangebot kann im Internet nachgelesen werden.

Arbeitsaufwand
Gesamtaufwand bei 9 Leistungspunkten: ca. 270 Stunden

- Präsenzzeit: 84 Stunden
- Vor- /Nachbereitung: 112 Stunden
- Prüfung und Prüfungsvorbereitung: 74 Stunden
ZUSATZLEISTUNGEN

Modul: Operatorfunktionen (MATHNM38) [M-MATH-102936]

Verantwortung: Volker Grimm

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Angewandte und Numerische Mathematik, Optimierung Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung Wahlpflichtfach Zusatzleistungen

Leistungspunkte: 6

Modulturnus: Unregelmäßig

Dauer: 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105905</td>
<td>Operatorfunktionen (S. 969)</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 20 Minuten.

Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Inhalt

Definition von Operatorfunktionen
Stark stetige und analytische Halbgruppen
Feste rationale Approximationen an Operatorfunktionen
Rationale Krylov-Verfahren zur Approximation von Operatorfunktionen
Anwendungen in der Numerik von Evolutionsgleichungen

Empfehlungen

Numerische Mathematik 1 und 2, Funktionalanalysis

Arbeitsaufwand

Gesamter Arbeitsaufwand: 180 Stunden
Präsenzzeit: 60 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 120 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Optimierung in Banachräumen (MATHNM32) [M-MATH-102924]

Verantwortung: Andreas Kirsch

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von:
- Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Analysis
- Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Angewandte und Numerische Mathematik, Optimierung
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Analysis
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung
- Wahlpflichtfach
- Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105893</td>
<td>Optimierung in Banachräumen (S. 970)</td>
<td>8</td>
<td>Andreas Kirsch</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 30 Minuten.

Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden sind in der Lage, Eigenschaften endlichdimensionaler Optimierungsprobleme auf unendlichdimensionale Fälle zu übertragen und diese auf Probleme der Approximationstheorie, der Variationsrechnung und der optimalen Steuerungstheorie anzuwenden. Sie können die Hauptsätze wiedergeben, beweisen und anhand von Beispielen erläutern.

Inhalt

Empfehlungen

Erwünscht sind grundlegende Kenntnisse aus der Funktionalanalyse

Arbeitsaufwand

Gesamter Arbeitsaufwand: 240 Stunden

- Präsenzzeit: 90 Stunden
 - Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
ZUSATZLEISTUNGEN

- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Optimierung und optimale Kontrolle bei Differentialgleichungen (MATH-NM09) [M-MATH-102899]

Verantwortung: Christian Wieners
Einrichtung: KIT-Fakultät für Mathematik
Curriculare Verankerung: Wahlpflicht
Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Angewandte und Numerische Mathematik, Optimierung Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung Wahlpflichtfach Zusatzleistungen

Leistungspunkte 4 Modulturnus Unregelmäßig Dauer 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105864</td>
<td>Optimierung und optimale Kontrolle bei Differentialgleichungen (S. 972)</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
The Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 20 Minuten.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen können
- den Überblick zur Modellierung mit optimaler Kontrolle gewinnen
- erlangen Kenntnisse zum funktionalanalytischen Rahmen
- Lösungsverfahren auf elliptische und parabolische Kontrollprobleme anwenden

Inhalt
- Einleitung und Motivation
- Linear-quadratische elliptische Probleme
- Parabolische Probleme
- Steuerung semilinearer elliptischer Gleichungen
- semilineare parabolische Kontrollprobleme

Arbeitsaufwand
Gesamter Arbeitsaufwand: 120 Stunden
Präsenzzeit: 45 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung
ZUSATZLEISTUNGEN

Selbststudium: 75 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Perkolation (MATHST13) [M-MATH-102905]

Verantwortung: Günter Last

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von:
- Mathematische Methoden/Stochastik
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Stochastik
- Wahlpflichtfach
- Zusatzleistungen

Leistungspunkte

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105869</td>
<td>Perkolation (S. 979)</td>
<td>6</td>
<td>Günter Last</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 30 min).

Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden

- kennen grundlegende Modelle der diskreten und stetigen Perkolation,
- erwerben die Fähigkeit, spezifische probabilistische und graphentheoretische Methoden zur Analyse dieser Modelle einzusetzen,
- können selbstorganisiert und reflexiv arbeiten.

Inhalt

- Kanten- und Knoten-Perkolation auf Graphen
- Satz von Harris-Kesten
- Asymptotik der Clustergröße im sub- und superkritischen Fall
- Eindeutigkeit des unendlichen Clusters im quasitransitiven Fall
- Perkolation auf dem Gilbert-Graphen
- Stetige Perkolation

Empfehlungen

Das Modul Wahrscheinlichkeitslehre sollte bereits belegt worden sein.

Arbeitsaufwand

Gesamter Arbeitsaufwand: 180 Stunden

Präsenzzeit: 60 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 120 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
ZUSATZLEISTUNGEN

- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Potentialtheorie (MATHAN20) [M-MATH-102879]

Verantwortung: Andreas Kirsch

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Analysis
Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung
Mathematische Methoden/Wahlbereich Mathematische Methoden/Analysis
Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung
Wahlpflichtfach
Zusatzleistungen

Leistungspunkte	Modulturnus	Dauer
8 | Unregelmäßig | 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105850</td>
<td>Potentialtheorie (S. 981)</td>
<td>8</td>
<td>Tilo Arens, Wolfgang Reichel, Andreas Kirsch, Frank Hettlich</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung (ca. 30 Min).

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Die Studierenden sind in der Lage, die Begriffe der Potentialtheorie in der Theorie und an Beispielen zu erläutern. Sie können die Hauptsätze wiedergeben, beweisen, anhand von Beispielen verdeutlichen, auf Spezialfälle reduzieren und auf verwandte Fragestellungen anwenden.

Inhalt
Eigenschaften harmonischer Funktionen, Existenz und Eindeutigkeit der Randwertaufgaben für die Laplace- und Poisson-gleichung, Greensche Funktion für die Kugel, Kugelflächenfunktionen, Flächenpotentiale, räumliche Potentiale

Empfehlungen
Erwünscht sind grundlegende Kenntnisse aus der Funktionalanalysis

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung

Wirtschaftsmathematik (M.Sc.)
Modulhandbuch mit Stand 04.08.2016 für Wintersemester 16/17
Verantwortung: Gudrun Thäter

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Angewandte und Numerische Mathematik, Optimierung Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung Wahlpflichtfach Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105907</td>
<td>Projektorientiertes Softwarepraktikum (S. 990)</td>
<td>4</td>
<td>Gudrun Thäter</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Zu jedem Projekt fertigen die Studierenden eine schriftliche Ausarbeitung im Umfang von in der Regel 10-15 Seiten an, die benotet wird. Die Gesamtnote wird als Durchschnitt der Teilnoten bestimmt.

Modulnote
Die Modulnote ist das Mittel aus den Teilnoten der Projekte.

Voraussetzungen
Keine

Qualifikationsziele

Inhalt

Vorlesungsanteil: Einführung in Modellbildung und Simulationen, Wiederholung zugehöriger numerischer Verfahren, Einführung in zugehörige Software

Eigene Gruppenarbeit: Bearbeitung von 1-2 Projekten in denen Modellbildung, Diskretisierung, Simulation und Auswertung (z.B. Visualisierung) für konkrete Themen aus dem Katalog durchgeführt werden. Der Katalog umfasst z.B.:
- Solving the Poisson equation: Diffusion im Rechteckgebiet;
- Incompressible Navier-Stokes equations: Strömung im Kanal;
- Applying an Inexact Newton Method in HiFlow3: Nutzen nichtlinearer Tools;
- Distributed Control Problem for Poisson Equation: Backofensteuerung;
- Stabilization Schemes for Advection Dominated Steady Convection-Diffusion

Empfehlungen
Kenntnisse einer Programmiersprache
Grundkenntnisse in der Analysis von Randwertproblemen, der numerischen Methoden für Differentialgleichungen und der Finite Elemente Methode.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 120 Stunden
ZUSATZLEISTUNGEN

Präsenzzeit: 60 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 60 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
ZUSATZLEISTUNGEN

Modul: Rand- und Eigenwertprobleme (MATHAN09) [M-MATH-102871]

Verantwortung: Wolfgang Reichel

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Analysis
Mathematische Methoden/Wahlbereich Mathematische Methoden/Analysis
Wahlpflichtfach
Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105833</td>
<td>Rand- und Eigenwertprobleme (S. 995)</td>
<td>8</td>
<td>Michael Plum, Wolfgang Reichel, Jens Rottmann-Matthes, Dirk Hundertmark, Roland Schnaubelt, Lutz Weis, Tobias Lamm</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 30 min).

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen können
- die Bedeutung von Rand- und Eigenwertproblemen innerhalb der Mathematik und/oder Physik beurteilen und an Hand von Beispielen illustrieren,
- qualitative Eigenschaften von Lösungen beschreiben,
- mit Hilfe funktionalanalytischer Methoden die Existenz von Lösungen von Randwertproblemen beweisen,

Inhalt
- Beispiele von Rand- und Eigenwertproblemen
- Maximumprinzipien für Gleichungen 2. Ordnung
- Funktionenräume, z.B. Sobolev-Räume
- Schwache Formulierung linearer elliptischer Gleichungen 2. Ordnung
- Existenz- und Regularitätstheorie elliptischer Gleichungen
- Eigenwerttheorie für schwach formulierte elliptische Eigenwertprobleme
Empfehlungen
Folgende Module sollten bereits belegt worden sein:

- Lineare Algebra 1+2
- Analysis 1-3

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
ZUSATZLEISTUNGEN

Modul: Räumliche Stochastik (MATHST14) [M-MATH-102903]

Verantwortung:	Günter Last
Einrichtung:	KIT-Fakultät für Mathematik
Curriculare Verankerung:	Wahlpflicht
Bestandteil von:	Mathematische Methoden/Stochastik
	Mathematische Methoden/Wahlbereich Mathematische Methoden/Stochastik
	Wahlpflichtfach
	Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulturnus</td>
<td>Jedes Wintersemester</td>
</tr>
<tr>
<td>Dauer</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105867</td>
<td>Räumliche Stochastik (S. 996)</td>
<td>8</td>
<td>Günter Last, Daniel Hug</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 30 min).

Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden kennen grundlegende räumliche stochastische Prozesse. Dabei verstehen sie nicht nur allgemeine Verteilungseigenschaften, sondern können auch konkrete Modelle (Poissonscher Prozess, Gaußsche Zufallsfelder) beschreiben und anwenden. Sie können ferner selbstorganisiert und reflexiv arbeiten.

Inhalt

- Punktprozesse
- Zufällige Maße
- Poissonprozess
- Gibbssche Punktprozesse
- Palmssche Verteilung
- Räumlicher Ergodensatz
- Spektraltheorie zufälliger Felder
- Gaußsche Felder

Empfehlungen

Die Inhalte des Moduls Wahrscheinlichkeitstheorie werden zum Teil benötigt.

Arbeitsaufwand

Gesamter Arbeitsaufwand: 240 Stunden

Präsenzzeit: 90 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben

Wirtschaftsmathematik (M.Sc.)

Modulhandbuch mit Stand 04.08.2016 für Wintersemester 16/17
ZUSATZLEISTUNGEN

- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Service Operations (WW4BWLKSR4) [M-WIWI-102805]

Verantwortung: Stefan Nickel

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Operations Management - Datenanalyse - Informatik

Zusatzleistungen

Leistungspunkte: 9
Sprache: Deutsch

Wahlpflichtangebot

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102715</td>
<td>Operations Research in Supply Chain Management (S. 968)</td>
<td>4,5</td>
<td>Stefan Nickel</td>
</tr>
<tr>
<td>T-WIWI-102884</td>
<td>Operations Research in Health Care Management (S. 966)</td>
<td>4,5</td>
<td>Stefan Nickel</td>
</tr>
<tr>
<td>T-WIWI-102716</td>
<td>Praxis-Seminar: Health Care Management (mit Fallstudien) (S. 984)</td>
<td>7</td>
<td>Stefan Nickel</td>
</tr>
</tbody>
</table>

Ergänzungsangebot

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102718</td>
<td>Ereignisdiskrete Simulation in Produktion und Logistik (S. 877)</td>
<td>4,5</td>
<td>Stefan Nickel</td>
</tr>
<tr>
<td>T-WIWI-102860</td>
<td>Supply Chain Management in der Prozessindustrie (S. 1062)</td>
<td>4,5</td>
<td>Stefan Nickel</td>
</tr>
<tr>
<td>T-WIWI-102787</td>
<td>Krankenhausmanagement (S. 925)</td>
<td>4,5</td>
<td>Stefan Nickel</td>
</tr>
<tr>
<td>T-WIWI-102872</td>
<td>Challenges in Supply Chain Management (S. 845)</td>
<td>4,5</td>
<td>Robert Blackburn</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form von Teilprüfungen (nach §4(2), 1-3 SPO) im Umfang von insgesamt mindestens 9 LP. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Voraussetzungen

Die Veranstaltung Challenges in Supply Chain Management kann nur im Wahlpflichtbereich belegt werden.

Qualifikationsziele

Der/die Studierende

- ist in der Lage service-spezifische Problemstellungen zu analysieren, mathematisch zu modellieren und zu erläutern,
- benennt und beschreibt die Grundbegriffe von fortgeschrittenen Optimierungsverfahren, insbesondere aus der diskreten Optimierung,
- modelliert und klassifiziert Optimierungsprobleme und wählt geeignete Lösungsverfahren aus, um auch anspruchsvolle Optimierungsprobleme aus den Bereichen Supply Chain Management und Health Care selbständig und gegebenenfalls mit
ZUSATZLEISTUNGEN

Computerhilfe zu lösen,
- validiert, illustriert und interpretiert erhaltene Lösungen.

Inhalt

Empfehlungen
Die Veranstaltung Practical Seminar Health Care sollte mit der Veranstaltung OR in Health Care Management kombiniert werden.

Anmerkung

Arbeitsaufwand
Modul: Sobolevräume (MATHAN37) [M-MATH-102926]

Verantwortung: Andreas Kirsch
Einrichtung: KIT-Fakultät für Mathematik
Curriculare Verankerung: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung
Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung

Leistungspunkte: 5
Modulturnus: Unregelmäßig
Dauer: 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105896</td>
<td>Sobolevräume (S. 1024)</td>
<td>5</td>
<td>Andreas Kirsch</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung von ca. 20 Minuten Dauer.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Die Studierenden können die Bedeutung der Sobolevräume in der Theorie partieller Differentialgleichungen erläutern. Sie sind in der Lage, die wichtigsten Eigenschaften wiederzugeben und zu beweisen.

Inhalt
Definition der Sobolevräume für skalare und vektorwertige Funktionen für Lipschitzgebiete, Fortsetzungs- und Spursätze, kompakte Einbettungen, Helmholtzzerlegung, einfache Randwertprobleme

Empfehlungen
Basisvorlesungen der Mathematik oder HM I-III

Arbeitsaufwand
Gesamter Arbeitsaufwand: 150 Stunden
Präsenzzeit: 60 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 90 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Spektraltheorie [M-MATH-101768]

Verantwortung: Lutz Weis

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung:
Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Analysis
Mathematische Methoden/Wahlbereich Mathematische Methoden/Analysis
Wahlpflichtfach
Zusatzleistungen

Leistungspunkte: 8

Modulturnus: Jedes Sommersemester

Dauer: 1 Semester

Sprache: Deutsch

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kennung</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>T-MATH-103414</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung von ca. 30 Minuten.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele

Inhalt
- Abgeschlossene Operatoren auf Banachräumen
- Spektrum und Resolvente
- Kompakte Operatoren und Fredholm’sche Alternative
- Funktionalkalkül von Dunford, Spektralprojektionen
- Unbeschränkte selbstadjungierte Operatoren auf Hilberträumen
- Spektralsatz
- Durch Formen definierte Operatoren
- Sektorielle Operatoren
- Anwendungen auf partielle Differentialgleichungen

Empfehlungen
Folgende Module sollten bereits belegt worden sein:
- Lineare Algebra 1+2
- Analysis 1-3
ZUSATZLEISTUNGEN

- Funktionalanalysis

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Spezielle Themen der numerischen linearen Algebra (MATHNM30) [M-MATH-102920]

Verantwortung: Marlis Hochbruck
Einrichtung: KIT-Fakultät für Mathematik
Curriculare Verankerung: Wahlpflicht
Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Angewandte und Numerische Mathematik, Optimierung Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung Wahlpflichtfach Zusatzleistungen

Leistungspunkte 8
Modulturnus Unregelmäßig
Dauer 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105891</td>
<td>Spezielle Themen der numerischen linearen Algebra (S. 1038)</td>
<td>8</td>
<td>Marlis Hochbruck</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Mündliche Prüfung im Umfang von ca. 30 Minuten.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele

Inhalt
- Direkte Verfahren für dünn besetzte Gleichungssysteme
- Krylow-Verfahren zur Lösung großer linearer Gleichungssysteme und Eigenwertprobleme
- Matrixfunktionen

Empfehlungen
Numerische Mathematik 1 und 2

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung
Selbststudium: 150 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes

Wirtschaftsmathematik (M.Sc.)
Modulhandbuch mit Stand 04.08.2016 für Wintersemester 16/17
ZUSATZLEISTUNGEN

- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Spin-Mannigfaltigkeiten, alpha-Invariante und positive Skalarkrümmung (MA-THAG43) [M-MATH-102958]

Verantwortung: Wilderich Tuschmann
Einrichtung: KIT-Fakultät für Mathematik
Curriculare Verankerung: Wahlpflicht
Bestandteil von: Mathematische Methoden/Wahlbereich Mathematische Methoden/Algebra und Geometrie
Wahlpflichtfach
Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
<th>Sprache</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105932</td>
<td>Spin-Mannigfaltigkeiten, alpha-Invariante und positive Skalarkrümmung (S. 1039)</td>
<td>5</td>
<td>Stephan Klaus, Wilderich Tuschmann</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung von ca. 20 Minuten.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen
- verstehen grundlegende Fragestellungen aus der Theorie der Spin-Geometrie und Riemannschen Mannigfaltigkeiten mit positiver Skalarkrümmung;
- erkennen die Relevanz der charakteristischen Klassen und Bordismustheorien für Probleme in der Differentialgeometrie und Riemannschen Geometrie;
- sind grundsätzlich in der Lage, aktuelle Forschungsarbeiten zu lesen und eine Abschlussarbeit auf dem Gebiet der Spin-Geometrie und Riemannschen Mannigfaltigkeiten mit positiver Skalarkrümmung zu schreiben.

Inhalt

Empfehlungen
Folgende Module sollten bereits belegt worden sein:
Differentialgeometrie und Globale Differentialgeometrie, Algebraische Topologie

Arbeitsaufwand
Gesamter Arbeitsaufwand: 150 Stunden
Präsenzzeit: 60 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung
ZUSATZLEISTUNGEN

Selbststudium: 90 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Steinsche Methode (MATHST24) [M-MATH-102946]

Verantwortung: Matthias Schulte

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung:
- Mathematische Methoden/Stochastik
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Stochastik
- Wahlpflichtfach
- Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105914</td>
<td>Steinsche Methode (S. 1044)</td>
<td>5</td>
<td>Matthias Schulte</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 20 min).

Voraussetzungen

Keine

Qualifikationsziele

Absolventinnen und Absolventen können

- die Grundlagen der Steinschen Methode und ihrer Anwendungen auf ausgewählte Probleme nennen und erörtern,
- können zentrale Grenzwertsätze und Poissonsche Grenzwertsätze mit Hilfe der Steinschen Methode beweisen,
- selbstorganisiert und reflexiv arbeiten.

Inhalt

- Steinsche Gleichungen für die uni- und multivariate Normalverteilung sowie für die Poisson-Verteilung
- Kopplungen (Zero Bias und Size Bias)
- Austauschbare Paare
- lokale Abhängigkeiten und Abhängigkeitsgraphen
- Anwendungen der o.g. Techniken auf ausgewählte Probleme wie z.B. Zufallsgraphen

Empfehlungen

Die Inhalte des Moduls "Wahrscheinlichkeitstheorie" werden benötigt.

Arbeitsaufwand

Gesamter Arbeitsaufwand: 150 Stunden

Präsenzzeit: 60 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 90 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Steuerung stochastischer Prozesse (MATHST12) [M-MATH-102908]

Verantwortung: Nicole Bäuerle

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung:
- Mathematische Methoden/Stochastik
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Stochastik
- Wahlpflichtfach
- Zusatzleistungen

Leistungspunkte
- 4

Modulturnus
- Unregelmäßig

Dauer
- 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105871</td>
<td>Steuerung stochastischer Prozesse (S. 1045)</td>
<td>4</td>
<td>Nicole Bäuerle</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 20 min).

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Absolventinnen und Absolventen können

- Die mathematischen Grundlagen der Stochastischen Steuerung nennen und Lösungsverfahren anwenden,
- Zeitstetige, stochastische, dynamische Optimierungsprobleme als stochastisches Steuerproblem formulieren,
- selbstorganisiert und reflexiv arbeiten.

Inhalt

- Verifikationstechnik, Hamilton-Jacobi-Bellman Gleichung
- Viskositätslösung
- Singuläre Steuerung
- Feynman-Kac Darstellungen
- Anwendungsbeispiele aus der Finanz- und Versicherungsmathematik

Empfehlungen

Arbeitsaufwand
Gesamt: 120 Stunden
Präsenz: 45 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Wirtschaftsmathematik (M.Sc.)
Modulhandbuch mit Stand 04.08.2016 für Wintersemester 16/17

793
Selbststudium: 75 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
ZUSATZLEISTUNGEN

Modul: Steuerungstheorie (MATHAN18) [M-MATH-102941]

Verantwortung: Roland Schnaubelt

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Analysis
Mathematische Methoden/Wahlbereich Mathematische Methoden/Analysis
Wahlpflichtfach
Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105909</td>
<td>Steuerungstheorie (S. 1046)</td>
<td>6</td>
<td>Roland Schnaubelt, Lutz Weis</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung von ca. 20 Minuten.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Die Studierenden können die zentralen Konzepte der Behandlung kontrollierter linearer Differentialgleichungssysteme (Steuerbarkeit, Beobachtbarkeit, Stabilisierbarkeit und Entdeckbarkeit) und die zugehörigen Charakterisierungen erläutern und in Beispielen anwenden. Sie sind in der Lage die Grundzüge der Theorie der Transferfunktionen und der Realisierungstheorie zu beschreiben. Die Lösung des quadratischen optimalen Kontrollproblems können sie diskutieren und auf die Feedback Synthese anwenden. Sie können die Grundbegriffe der Steuerungstheorie samt der zugehörigen Kriterien auch für nichtlineare System beschreiben und auf Beispiele anwenden.

Inhalt
Kontrollierte lineare Differentialgleichungssysteme: Steuerbarkeit und Beobachtbarkeit, Stabilisierbarkeit und Entdeckbarkeit, Transferfunktionen, Realisierungstheorie, Quadratische optimale Kontrolle, Feedback-Synthese Nichtlineare Kontrolltheorie: Grundbegriffe, Kriterien via Linearisierung, Lie Klammern und Lyapunov Funktionen

Arbeitsaufwand
Gesamter Arbeitsaufwand: 180 Stunden
Präsenzzeit: 60 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 120 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung

Wirtschaftsmathematik (M.Sc.)
Modulhandbuch mit Stand 04.08.2016 für Wintersemester 16/17
Modul: Stochastische Differentialgleichungen (MATHAN24) [M-MATH-102881]

Verantwortung: Lutz Weis

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung:
- Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Analysis
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Analysis
- Wahlpflichtfach
- Zusatzleistungen

Leistungspunkte 8

Modulturnus Unregelmäßig

Dauer 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105852</td>
<td>Stochastische Differentialgleichungen (S. 1049)</td>
<td>8</td>
<td>Roland Schnaubelt, Lutz Weis</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung von ca. 30 Minuten.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Die Studenten beherrschen die stochastischen Methoden, die den stochastischen Differentialgleichungen zu Grunde liegen, z.B. die Brownsche Bewegung, Martingale und Martingalgleichungen. Sie kennen die Konstruktion stochastischer Integrale und sie können die Itô-Formel formulieren und auf konkrete Beispiele anwenden. Sie können stochastische Differentialgleichungen auf Existenz, Eindeutigkeit und Stabilität untersuchen und erkennen dabei das Zusammenspiel analytischer und stochastischer Methoden. Sie sind in der Lage, die allgemeine Theorie auf konkrete Gleichungen aus den Naturwissenschaften und den Wirtschaftswissenschaften anzuwenden.

Inhalt
- Brownsche Bewegung
- Martingale und Martingalungleichungen
- Stochastische Integrale und Ito-Formel
- Existenz- und Eindeutigkeitssätze für Systeme von stochastischen Differentialgleichungen
- Störungs- und Stabilitätstheorie
- Anwendung auf Gleichungen der Finanzmathematik, Physik und technische Systeme
- Zusammenhang mit Diffusionsgleichungen und Potentialtheorie

Empfehlungen
Das Modul “Funktionalanalysis” sollte bereits belegt worden sein.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden
ZUSATZLEISTUNGEN

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Stochastische Evolutionsgleichungen (MATHAN40) [M-MATH-102942]

Verantwortung: Lutz Weis

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Mathematische Methoden/Stochastik
Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Analysis
Mathematische Methoden/Wahlbereich Mathematische Methoden/Analysis
Mathematische Methoden/Wahlbereich Mathematische Methoden/Stochastik
Wahlpflichtfach
Zusatzleistungen

Leistungspunkte 8 Modulturnus Unregelmäßig Dauer 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105910</td>
<td>Stochastische Evolutionsgleichungen (S. 1053)</td>
<td>8</td>
<td>Lutz Weis</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung von ca. 30 Minuten Dauer.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Die Studenten können stochastische Störungen von PDE’s als stochastische partielle Differentialgleichungen modellieren. Sie kennen grundlegende Existenzaussagen für stochastische PDE und wesentliche qualitative Eigenschaften ihrer Lösungen. Sie verstehen das Zusammenspiel analytischer und stochastischer Methoden (Fernique), insbesondere beherrschen sie Methoden der stochastischen Analysis und die Besonderheiten, die bei der stochastischen Integration Banachraumwertiger Prozesse auftreten.

Inhalt
- Gauß’sche Maße auf Banachräumen, Satz von Fernique
- Wiener Prozesse auf Banachräumen und die Loewe- Kahunen Darstellung
- Banachraumwertige Martingale und die UMD- Eigenschaft eines Banachraumes
- Ito- Integrale für Prozesse in UMD-Räumen und Burkholder-Gundy Ungleichungen, Decoupling
- Modellierung stochastischer Störungen von PDE’s
- Existenz- Eindeutigkeits-Aussagen und Regularitäts-Aussagen für parabolische stochastische Differentialgleichungen
- Stochastische Wärmeleitungsgleichung.
- Beispiele für stochastische Schrödinger- und Wärmeleitungsgleichungen.

Empfehlungen
Folgende Module sollten bereits belegt worden sein:
Wahrscheinlichkeitstheorie, Spektraltheorie.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Stochastische Geometrie (MATHST06) [M-MATH-102865]

Verantwortung: Daniel Hug

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung:
- Wahlpflicht

Leistungspunkte: 8
Modulturnus: Jedes Sommersemester
Dauer: 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105840</td>
<td>Stochastische Geometrie (S. 1054)</td>
<td>8</td>
<td>Günter Last, Daniel Hug</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 30 min).

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Die Studierenden
- kennen die grundlegenden geometrischen Modelle und Kenngrößen der Stochastischen Geometrie,
- sind mit Eigenschaften von Poissonprozessen geometrischer Objekte vertraut,
- kennen exemplarisch Anwendungen von Modellen der Stochastischen Geometrie,
- können reflexiv und selbstorganisiert arbeiten.

Inhalt
- Zufällige Mengen
- Geometrische Punktprozesse
- Stationarität und Isotropie
- Keim-Korn-Modelle
- Boolesche Modelle
- Grundlagen der Integralgeometrie
- Geometrische Dichten und Kenngrößen
- Zufällige Mosaik

Empfehlungen
Die Inhalte des Moduls Räumliche Stochastik werden zum Teil benötigt.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung
Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Stochastische Methoden und Simulation (WW3OR7) [M-WIWI-101400]

Verantwortung: Karl-Heinz Waldmann

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Operations Management - Datenanalyse - Informatik
Wahlpflichtfach
Zusatzleistungen

Leistungspunkte Modulturnus Dauer
9 Jedes Semester 1 Semester

Wahlpflichtangebot
Wahlpflichtblock; min. 1, max. 2 Teilleistungen

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102710</td>
<td>Stochastische Entscheidungsmodelle I (S. 1050)</td>
<td>5</td>
<td>Karl-Heinz Waldmann</td>
</tr>
<tr>
<td>T-WIWI-102627</td>
<td>Simulation I (S. 1020)</td>
<td>4,5</td>
<td>Karl-Heinz Waldmann</td>
</tr>
</tbody>
</table>

Ergänzungsangebot
Wahlpflichtblock; max. 2 Teilleistungen

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102711</td>
<td>Stochastische Entscheidungsmodelle II (S. 1051)</td>
<td>4,5</td>
<td>Karl-Heinz Waldmann</td>
</tr>
<tr>
<td>T-WIWI-102703</td>
<td>Simulation II (S. 1022)</td>
<td>4,5</td>
<td>Karl-Heinz Waldmann</td>
</tr>
<tr>
<td>T-WIWI-103062</td>
<td>Vorleistung zu Nichtlineare Optimierung I (Bachelor) (S. 1075)</td>
<td>4,5</td>
<td>Oliver Stein</td>
</tr>
<tr>
<td>T-WIWI-102724</td>
<td>Nichtlineare Optimierung I (S. 949)</td>
<td>4,5</td>
<td>Stefan Nickel</td>
</tr>
<tr>
<td>T-WIWI-105940</td>
<td>Vorleistung zu Taktisches und operatives Supply Chain Management (S. 1080)</td>
<td>4,5</td>
<td>Stefan Nickel</td>
</tr>
<tr>
<td>T-WIWI-102714</td>
<td>Taktisches und operatives Supply Chain Management (S. 1064)</td>
<td>4,5</td>
<td>Stefan Nickel</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Gesamtnote des Moduls wird aus den mit Leistungspunkten gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Voraussetzungen

Qualifikationsziele
Der/die Studierende
- besitzt fundierte Kenntnisse der Modellierung, Analyse und Optimierung stochastischer Systeme in Ökonomie und Technik.

Inhalt
Stochastische Entscheidungsmodelle I: Markov Ketten, Poisson Prozesse.
Stochastische Entscheidungsmodelle II: Warteschlangen, Stochastische Entscheidungsprozesse
Simulation I: Erzeugung von Zufallszahlen, Monte Carlo Integration, Diskrete Simulation, Zufallszahlen diskreter und stetiger Zufallsvariablen, statistische Analyse simulierter Daten.
Simulation II: Varianzreduzierende Verfahren, Simulation stochastischer Prozesse, Fallstudien.

Anmerkung
Das für zwei Studienjahre im Voraus geplante Lehrangebot kann im Internet unter http://www.ior.kit.edu/ nachgelesen werden.
Modul: Stochastische Modellierung und Optimierung (WW4OR10) [M-WIWI-101454]

Verantwortung: Karl-Heinz Waldmann

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Operations Management - Datenanalyse - Informatik

Wahlpflichtfach Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Wahlpflichtangebot

Wahlpflichtblock; min. 9, max. 10 Leistungspunkte

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102628</td>
<td>Optimierung in einer zufälligen Umwelt (S. 971)</td>
<td>4,5</td>
<td>Karl-Heinz Waldmann</td>
</tr>
<tr>
<td>T-WIWI-102730</td>
<td>OR-nahe Modellierung und Analyse realer Probleme (Projekt) (S. 975)</td>
<td>4,5</td>
<td>Karl-Heinz Waldmann</td>
</tr>
<tr>
<td>T-WIWI-102728</td>
<td>Qualitätssicherung I (S. 993)</td>
<td>4,5</td>
<td>Karl-Heinz Waldmann</td>
</tr>
<tr>
<td>T-WIWI-102729</td>
<td>Qualitätssicherung II (S. 994)</td>
<td>4,5</td>
<td>Karl-Heinz Waldmann</td>
</tr>
<tr>
<td>T-WIWI-102627</td>
<td>Simulation I (S. 1020)</td>
<td>4,5</td>
<td>Karl-Heinz Waldmann</td>
</tr>
<tr>
<td>T-WIWI-102703</td>
<td>Simulation II (S. 1022)</td>
<td>4,5</td>
<td>Karl-Heinz Waldmann</td>
</tr>
<tr>
<td>T-WIWI-102710</td>
<td>Stochastische Entscheidungsmodelle I (S. 1050)</td>
<td>5</td>
<td>Karl-Heinz Waldmann</td>
</tr>
<tr>
<td>T-WIWI-102711</td>
<td>Stochastische Entscheidungsmodelle II (S. 1051)</td>
<td>4,5</td>
<td>Karl-Heinz Waldmann</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form von Teilprüfungen über die gewählten Lehrveranstaltungen des Moduls, mit denen in Summe die Mindestanforderung an Leistungspunkten erfüllt ist. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Voraussetzungen

Keine

Qualifikationsziele

Der/die Studierende

- besitzt vertiefte Kenntnisse der Modellierung, Analyse und Optimierung stochastischer Systeme in Ökonomie und Technik.

Inhalt

Stochastische Entscheidungsmodelle I: Markov Ketten, Poisson Prozesse.

Stochastische Entscheidungsmodelle II: Warteschlangen, Stochastische Entscheidungsprozesse

Simulation I: Erzeugung von Zufallszahlen, Monte Carlo Integration, Diskrete Simulation, Zufallszahlen diskreter und stetiger

Zufallsvariablen, statistische Analyse simulierter Daten.

Simulation II: Varianzreduzierende Verfahren, Simulation stochastischer Prozesse, Fallstudien.
ZUSATZLEISTUNGEN

Qualitätssicherung I: Statistische Fertigungsüberwachung, Acceptance Sampling, Statistische Versuchsplanung
Qualitätssicherung II: Zuverlässigkeit komplexer Systeme mit und ohne Reparatur, Instandhaltung
OR-nahe Modellierung und Analyse realer Probleme: Projektbezogene Modellierung und Analyse

Anmerkung
Das für zwei Studienjahre im Voraus geplante Lehrangebot kann im Internet unter http://www.ior.kit.edu/ nachgelesen werden.

Arbeitsaufwand
Gesamtaufwand bei 9 Leistungspunkten: ca. 270 Stunden
Die genaue Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.
Modul: Variationsrechnung (MATHAN25) [M-MATH-102882]

Verantwortung: Wolfgang Reichel

Einrichtung: KIT-Fakultät für Mathematik

Wahlbereich: Mathematische Methoden/Wahlbereich Mathematische Methoden/Analysis

Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105853</td>
<td>Variationsrechnung (S. 1069)</td>
<td>8</td>
<td>Michael Plum, Wolfgang Reichel, Andreas Kirsch, Tobias Lamm</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 30 min).

Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Absolventinnen und Absolventen können

- die Bedeutung von Variationsproblemen in Bezug auf ihre Anwendungen in den Natur- bzw. Ingenieurswissenschaften oder der Geometrie beurteilen und an Hand von Beispielen illustrieren,
- eigenständig variationelle Probleme formulieren,
- die spezifischen Schwierigkeiten innerhalb der Variationsrechnung erkennen,
- konkrete, prototypische Probleme analysieren und lösen,
- Techniken einsetzen, um die Existenz von Lösungen gewisser Klassen variationeller Probleme zu beweisen, und in Spezialfällen diese Lösungen berechnen.

Inhalt

- eindimensionale Variationsprobleme
- Euler-Lagrange-Gleichung
- notwendige und hinreichende Kriterien
- mehrdimensionale Variationsprobleme
- direkte Methoden der Variationsrechnung
- Existenz kritischer Punkte von Funktionalen
Empfehlungen
Funktionalanalysis
Klassische Methoden für partielle Differentialgleichungen
Rand- und Eigenwertprobleme

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
ZUSATZLEISTUNGEN

Modul: Vergleichsgeometrie (MATHAG30) [M-MATH-102940]

Verantwortung: Wilderich Tuschmann

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Mathematische Methoden/Wahlbereich Mathematische Methoden/Algebra und Geometrie

Leistungspunkte Modulturnus Dauer

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105917</td>
<td>Vergleichsgeometrie (S. 1070)</td>
<td>5</td>
<td>Wilderich Tuschmann</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung von ca. 20 Minuten.

Modulnote

Die Modulnote ist Note der mündlichen Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Absolventinnen und Absolventen haben ein tieferes Verständnis exemplarischer Konzepte und Methoden der Vergleichsgeometrie, einem Teilgebiet der modernen Differentialgeometrie und Riemannschen Geometrie erworben und sind auf eigenständige Forschung und weiterführende Seminare im Gebiet der Differentialgeometrie vorbereitet.

Inhalt

The course provides a thorough introduction to comparison theory in Riemannian geometry:
What can be said about a complete Riemannian manifold when (mainly lower) bounds for the sectional or Ricci curvature are given? Starting from the comparison theory for the Riccati ODE which describes the evolution of the principal curvatures of equidistant hypersurfaces, we discuss the global estimates for volume and length given by Bishop-Gromov and Toponogov. An application is Gromov’s estimate of the number of generators of the fundamental group and the Betti numbers when lower curvature bounds are given. Using convexity arguments, we prove the “soul theorem” of Cheeger and Gromoll and the sphere theorem of Berger and Klingenberg for nonnegative curvature. If lower Ricci curvature bounds are given we exploit subharmonicity instead of convexity and show the rigidity theorems of Myers-Cheng and the splitting theorem of Cheeger and Gromoll. The Bishop-Gromov inequality shows polynomial growth of finitely generated subgroups of the fundamental group of a space with nonnegative Ricci curvature (Milnor). We also discuss briefly Bochner’s method.

Empfehlungen

Vorlesung ‘Differentialgeometrie’.

Arbeitsaufwand

Gesamter Arbeitsaufwand: 150 Stunden

Präsenzzeit: 60 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 90 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche

Wirtschaftsmathematik (M.Sc.)
Modulhandbuch mit Stand 04.08.2016 für Wintersemester 16/17
• Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Vorhersagen: Theorie und Praxis (MATHST28) [M-MATH-102956]

Verantwortung: Tilmann Gneiting

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von:
- Mathematische Methoden/Stochastik
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Stochastik
- Wahlpflichtfach
- Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Unregelmäßig</td>
<td>2 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105928</td>
<td>Vorhersagen: Theorie und Praxis (S. 1074)</td>
<td>8</td>
<td>Tilmann Gneiting</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 30 Minuten.

Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Absolventinnen und Absolventen können

- grundlegende Begriffe der maß- und wahrscheinlichkeitstheoretisch begründeten Theorie der Vorhersage nennen und an Beispielen verdeutlichen
- grundlegende Begriffe der entscheidungstheoretisch begründeten Evaluierung von Vorhersagen nennen und an Beispielen verdeutlichen
- Regressionsverfahren für Vorhersagen adaptieren, interpretieren und implementieren
- prinzipielle Vorgehensweisen bei der Erstellung und Evaluierung meteorologischer und ökonomischer Prognosen erläutern
- in Simulationsstudien und Fallbeispielen Vorhersage- und Evaluierungsverfahren selbständig entwickeln und programmieren

Inhalt

- Fallstudien aus Meteorologie und Ökonomie
- Punktvorhersagen und Wahrscheinlichkeitsvorhersagen
- Vorhersageräume, Kalibration und Schärfe
- Proper scoring rules und consistent scoring functions
- Aggregation von Vorhersagen
- prädiktive Aspekte von Regressionsverfahren
Empfehlungen
Die Inhalte des Moduls “Wahrscheinlichkeitstheorie” werden benötigt. Das Modul “Statistik” ist hilfreich.

Anmerkung
- Turnus: jedes zweite Jahr, beginnend Wintersemester 16/17
- Unterrichtssprache: Englisch

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Wachstum und Agglomeration (WW4VWL12) [M-WIWI-101496]

Verantwortung: Ingrid Ott

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Curriculare Verankerung: Wahlpflicht

Bestandteil von: Finance - Risk Management - Managerial Economics Wahlpflichtfach Zusatzleistungen

Leistungspunkte: 9

Modulturnus: Jedes Semester

Dauer: 1 Semester

Wahlpflichtangebot

Wahlpflichtblock; min. 9, max. 9 Leistungspunkte

Kennung Teilleistung LP Verantwortung

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102785</td>
<td>Endogene Wachstumstheorie (S. 872)</td>
<td>4,5</td>
<td>Ingrid Ott</td>
</tr>
<tr>
<td>T-WIWI-103107</td>
<td>Spatial Economics (S. 1030)</td>
<td>4,5</td>
<td>Ingrid Ott</td>
</tr>
<tr>
<td>T-WIWI-102897</td>
<td>Internationale Wirtschaftspolitik (S. 916)</td>
<td>4,5</td>
<td>Jan Kowalski</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form von schriftlichen Teilprüfungen (siehe Lehrveranstaltungsbeschreibungen). Die Gesamtnote des Moduls wird aus den mit LP gewichteten Note der Teilprüfungen gebildet.

Voraussetzungen

Keine

Qualifikationsziele

Der/ die Studierende

- erzielt vertiefende Kenntnisse mikrobasierter allgemeiner Gleichgewichtsmodelle
- versteht, wie auf Grundlage individueller Optimierungsentscheidungen aggregierte Phänomene wie gesamtwirtschaftliches Wachstum oder Agglomerationen (Städte/Metropolen) resultieren
- kann den Beitrag dieser Phänomene zur Entstehung ökonomischer Trends einordnen und bewerten
- kann theoriebasierte Politikempfehlungen ableiten

Inhalt

Die gemeinsame Klammer der Vorlesungen in diesem Modul ist, dass in allen Veranstaltungen, basierend auf verschiedenen theoretischen Modellen, wirtschaftspolitische Empfehlungen abgeleitet werden.

Empfehlungen

Der Besuch der Veranstaltung Einführung in die Wirtschaftspolitik [2560280] wird empfohlen.

Der Besuch der Veranstaltungen VWL1: Mikroökonomie und VWL2: Makroökonomie wird vorausgesetzt.

Arbeitsaufwand

Gesamtaufwand bei 9 Leistungspunkten: ca. 270 Stunden

Die genaue Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.
Modul: Wahrscheinlichkeitstheorie und kombinatorische Optimierung (MATHST27) [M-MATH-102947]

Verantwortung: Daniel Hug

Einstellung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Wahlpflicht

Bestandteil von:
- Mathematische Methoden/Stochastik
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Stochastik
- Wahlpflichtfach
- Zusatzleistungen

Leistungspunkte: 8

Modulturnus: Unregelmäßig

Dauer: 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105923</td>
<td>Wahrscheinlichkeitstheorie und kombinatorische Optimierung (S. 1081)</td>
<td>8</td>
<td>Günter Last, Daniel Hug</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 30 min).

Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen

Keine

Qualifikationsziele

Absolventinnen und Absolventen

- kennen die behandelten Fragestellungen der kombinatorischen Optimierung und können diese erläutern,
- kennen typische Methoden zur probabilistischen Analyse von Algorithmen und kombinatorischen Optimierungsproblemen und können diese zur Lösung von konkreten Optimierungsproblemen einsetzen,
- können selbstorganisiert und reflexiv arbeiten.

Inhalt

- das Problem langer gemeinsamer Teilfolgen,
- Packungsprobleme,
- das euklidische Problem des Handlungsreisenden,
- minimale euklidische Paarungen,
- minimale euklidische Spannbäume.
Für die Analyse von Problemen dieser Art wurden Techniken und Konzepte entwickelt, die in der Vorlesung vorgestellt und angewendet werden. Hierzu gehören

- Konzentrationsungleichungen und Konzentration von Maßen,
- Subadditivität und Superadditivität,
- Martingalmethoden,
- Isoperimetrie,
- Entropie.

Empfehlungen
Die Inhalte des Moduls "Wahrscheinlichkeitstheorie" werden benötigt.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
M Modul: Wandernde Wellen (MATHAN38) [M-MATH-102927]

Verantwortung: Jens Rottmann-Matthes

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung:
- Wahlpflicht
- Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung/Analysis
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Analysis
- Wahlpflichtfach
- Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105897</td>
<td>Wandernde Wellen (S. 1082)</td>
<td>6</td>
<td>Jens Rottmann-Matthes</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung von ca. 30 Minuten Dauer am Ende des Semesters.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Die Studierenden kennen die grundlegenden, aktuellen analytische und numerische Methoden zur Untersuchung wandernder Wellen. Sie sind in der Lage, diese auf ähnliche Problemstellungen anzuwenden.

Inhalt
- Beispiele für partielle Differentialgleichungen mit wandernden Wellen Lösungen
- Stabilitätsanalyse wandernder Wellen
- Analyse der spektralen Stabilität, unter anderem Evansfunktionstechniken
- Lineare Stabilität
- Nichtlineare Stabilität
- Techniken zur Approximation und numerischen Untersuchung

Empfehlungen
Zu einem besseren Verständnis ist Vorwissen aus den folgenden Vorlesungen hilfreich, aber nicht erforderlich: Funktionalanalysis, Spektraltheorie, Dynamische Systeme, Numerische Methoden für Differentialgleichungen

Arbeitsaufwand
Gesamter Arbeitsaufwand: 180 Stunden
Präsenzzeit: 60 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 120 Stunden
ZUSATZLEISTUNGEN

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Wavelets (MATHN14) [M-MATH-102895]

Verantwortung: Andreas Rieder

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung:
- Mathematische Methoden/Analysis oder Angewandte und Numerische Mathematik, Optimierung
- Angewandte und Numerische Mathematik, Optimierung
- Mathematische Methoden/Wahlbereich Mathematische Methoden/Angewandte und Numerische Mathematik, Optimierung
- Wahlpflichtfach
- Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Modulturnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105838</td>
<td>Wavelets (S. 1084)</td>
<td>8</td>
<td>Andreas Rieder</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 30 Minuten.

Voraussetzungen

Keine

Qualifikationsziele

Absolventinnen und Absolventen können

- die funktionalanalytischen Grundlagen der kontinuierlichen und diskreten Wavelet-Transformation nennen, erörtern und analysieren.
- die Wavelet-Transformation als Analysewerkzeug in der Signal- und Bildverarbeitung anwenden sowie die erzielten Ergebnisse bewerten.
- Designaspekte von Wavelet-Systemen erläutern.

Inhalt

- Gefensterte Fourier-Transformation
- Integrale Wavelet-Transformation
- Wavelet-Frames
- Wavelet-Basen
- Schnelle Wavelet-Transformation
- Konstruktion orthogonaler und bi-orthogonaler Wavelets
- Anwendungen in Signal- und Bildverarbeitung

Empfehlungen

Wirtschaftsmathematik (M.Sc.)
Modulhandbuch mit Stand 04.08.2016 für Wintersemester 16/17
ZUSATZLEISTUNGEN

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Zeitreihenanalyse (MATHST18) [M-MATH-102911]

Verantwortung: Bernhard Klar

Einrichtung: KIT-Fakultät für Mathematik

Curriculare Verankerung: Mathematische Methoden/Stochastik
Mathematische Methoden/Wahlbereich Mathematische Methoden/Stochastik
Wahlpflichtfach
Zusatzleistungen

Leistungspunkte 4
Modulturnus Jedes Sommersemester
Dauer 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105874</td>
<td>Zeitreihenanalyse (S. 1088)</td>
<td>4</td>
<td>Bernhard Klar, Norbert Henze</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 20 min).

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Die Studierenden

- kennen und verstehen die Standardmodelle der Zeitreihenanalyse,
- kennen exemplarisch statistische Methoden zur Modellwahl und Modellvalidierung,
- wenden Modelle und Methoden der Vorlesung eigenständig auf reale und simulierte Daten an,
- kennen spezifische mathematische Techniken und können damit Zeitreihenmodelle analysieren.

Inhalt
Die Vorlesung behandelt die grundlegenden Begriffe der klassischen Zeitreihenanalyse:

- Stationäre Zeitreihen
- Trends und Saisonalitäten
- Autokorrelation
- Autoregressive Modelle
- ARMA-Modelle
- Parameterschätzung
- Vorhersage
- Spektraldichte und Periodogramm

Wirtschaftsmathematik (M.Sc.)
Modulhandbuch mit Stand 04.08.2016 für Wintersemester 16/17
Empfehlungen
Die Inhalte des Moduls “Wahrscheinlichkeitstheorie” werden benötigt. Das Modul “Statistik” ist hilfreich.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 120 Stunden
Präsenzzeit: 45 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 75 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des
- Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Zufällige Graphen (MATHST29) [M-MATH-102951]

Verantwortung: Matthias Schulte

Einrichtung: KIT-Fakultät für Mathematik

Wahlpflicht

Curriculare Verankerung:
Mathematische Methoden/Stochastik
Mathematische Methoden/Wahlbereich Mathematische Methoden/Stochastik
Wahlpflichtfach
Zusatzleistungen

Leistungspunkte 6
Modulturnus Unregelmäßig
Dauer 1 Semester

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kennung</th>
<th>Teilleistung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-105929</td>
<td>Zufällige Graphen (S. 1089)</td>
<td>6</td>
<td>Matthias Schulte</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 25 Minuten.

Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Qualifikationsziele
Die Studierenden

- kennen die grundlegenden Modelle für zufällige Graphen und deren Eigenschaften,
- sind mit probabilistischen Techniken zur Untersuchung zufälliger Graphen vertraut,
- können selbstorganisiert und reflexiv arbeiten.

Inhalt

- Erdös-Renyi-Graphen
- Konfigurationsmodelle
- Preferential-Attachment-Graphen
- Geometrische zufällige Graphen

Empfehlungen
Die Inhalte des Moduls "Wahrscheinlichkeitstheorie" werden benötigt.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 180 Stunden
Präsenzzeit: 60 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung
Selbststudium: 120 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
ZUSATZLEISTUNGEN

- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Teil III

Teilleistungen

Teilleistung: Adaptive Finite Elemente Methoden [T-MATH-105898]

Verantwortung: Willy Dörfler
Bestandteil von: [M-MATH-102900] Adaptive Finite Elemente Methoden

Leistungspunkte 6
Version 1

Erfolgskontrolle(n)
Mündliche Prüfung im Umfang von ca. 25 Minuten.

Voraussetzungen
keine

Empfehlungen
Teilleistung: Advanced Game Theory [T-WIWI-102861]

Verantwortung: Karl-Martin Ehrhart, Clemens Puppe, Johannes Philipp Reiß
Bestandteil von: [M-WIWI-102970] Entscheidungs- und Spieltheorie
[M-WIWI-101500] Microeconomic Theory

Leistungspunkte: 4,5
Sprache: englisch
Version: 1

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 15/16</td>
<td>2521533</td>
<td>Advanced Game Theory</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Johannes Philipp Reiß</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) (nach §4(2), 1 SPO). Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen
Keine

Empfehlungen
Es werden Grundkenntnisse in Mathematik und Statistik vorausgesetzt.

Die folgenden Informationen stammen aus der Veranstaltung Advanced Game Theory (WS 15/16):

Lernziel
Der/die Studierende
- erweitert und vertieft sein/ihr Grundwissen im Bereich der Spieltheorie,
- entwickelt ein tiefes/rigoroses Verständnis neuerer Konzepte im Bereich der Spieltheorie,
- entwickelt die Fähigkeit komplexere strategische Entscheidungsmodelle eigenständig zu modellieren und fundierte Lösungen zu erarbeiten.

Inhalt
Die Vorlesung soll es den Studierenden ermöglichen, ihr Wissen in Spieltheorie zu erweitern und zu vertiefen.

Arbeitsaufwand
Gesamtaufwand bei 4,5 Leistungspunkten: ca. 135 Stunden
Präsenzzeit: 30 Stunden
Selbststudium: 105 Stunden

Literatur
Verpflichtende Literatur:

Ergänzende Literatur:
Teilleistung: Advanced Inverse Problems: Nonlinearity and Banach Spaces [T-MATH-105927]

Verantwortung: Andreas Rieder
Bestandteil von: [M-MATH-102955] Advanced Inverse Problems: Nonlinearity and Banach Spaces

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

Voraussetzungen
Keine
Teilleistung: Advanced Topics in Economic Theory [T-WIWI-102609]

Verantwortung: Kay Mitusch, Marten Hillebrand
Bestandteil von: [M-WIWI-101500] Microeconomic Theory
[M-WIWI-101502] Ökonomische Theorie und ihre Anwendung in Finance

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) (nach §4(2), 1 SPO).
Die Erfolgskontrolle erfolgt an zwei Terminen am Ende der Vorlesungszeit des Sommersemesters bzw. zu Beginn des Folgesemesters.

Voraussetzungen
Keine

Empfehlungen
This course is designed for advanced Master students with a strong interest in economic theory and mathematical models. Bachelor students who would like to participate are free to do so, but should be aware that the level is much more advanced than in other courses of their curriculum.
Teilleistung: Algebra [T-MATH-102253]

Verantwortung: Frank Herrlich, Stefan Kühnlein, Claus-Günther Schmidt

Bestandteil von: [M-MATH-101315] Algebra

Leistungspunkte: 8
Version: 1

Voraussetzungen: keine
Teilleistung: Algebraische Geometrie [T-MATH-103340]

Verantwortung: Frank Herrlich, Stefan Kühnlein
Bestandteil von: [M-MATH-101724] Algebraische Geometrie

Leistungspunkte 8
Version 1

Voraussetzungen
keine
Teilleistung: Algebraische Topologie [T-MATH-105915]

Verantwortung: Holger Kammeyer, Roman Sauer
Bestandteil von: [M-MATH-102948] Algebraische Topologie

Leistungspunkte: 8
Version: 1

Voraussetzungen
Keine
<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>1</td>
</tr>
</tbody>
</table>

Teilleistung: Algebraische Topologie II [T-MATH-105926]

Verantwortung: Roman Sauer
Bestandteil von: [M-MATH-102953] Algebraische Topologie II

Voraussetzungen
Keine
Teilleistung: Algebraische Zahlentheorie [T-MATH-103346]

Verantwortung: Stefan Kühnlein, Claus-Günther Schmidt
Bestandteil von: [M-MATH-101725] Algebraische Zahlentheorie

Leistungspunkte 8
Version 1

Voraussetzungen keine
Teilleistung: Algorithms for Internet Applications [T-WIWI-102658]

Verantwortung: Hartmut Schmeck
Bestandteil von: [M-WIWI-101472] Informatik

Leistungspunkte 5
Sprache englisch
Version 1

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 15/16</td>
<td>2511102</td>
<td>Algorithms for Internet Applications</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Hartmut Schmeck</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60min.) (nach §4(2), 1 SPO). Als weitere Erfolgskontrolle kann durch erfolgreiche Teilnahme an den Übungen (nach §4(2), 3 SPO) ein Bonus erworben werden. Die erfolgreiche Teilnahme wird durch eine Bonusklausur (45 min) nachgewiesen. Die Note für AIA ergibt sich aus der Note der schriftlichen Prüfung. Ist die Note der schriftliche Prüfung mindestens 4,0 und maximal 1,3 , so verbessert der Bonus die Note um eine Notenstufe (d.h. um 0,3 oder 0,4).

Voraussetzungen
Keine

Anmerkung
Die Vorlesung wird voraussichtlich letztmalig im WS 2016/17 angeboten.

Die folgenden Informationen stammen aus der Veranstaltung Algorithms for Internet Applications (WS 15/16):

Lernziel
Die Studierenden erwerben die Fähigkeit, Methoden und Konzepte wesentlicher Algorithmen in Internet-Anwendungen zu beherrschen und Innovationsfähigkeit bezüglich der eingesetzten Methoden zu demonstrieren. Dabei zielt diese Veranstaltung auf die Vermittlung fortgeschrittener Konzepte der Gestaltung und des Einsatzes von Algorithmen entsprechend der Anforderungen in vernetzten Systemen ab. Auf der Basis eines grundlegenden Verständnisses der hier vermittelten Konzepte und Methoden sollten die Studierenden in der Lage sein, für im Berufsleben auf sie zukommende Problemstellungen die angemessenen Methoden und Konzepte auszuwählen, bei Bedarf situationsangemessen weiter zu entwickeln und richtig einzusetzen. Die Studierenden sollen in die Lage versetzt werden, Argumente für die gewählte Problemlösung zu finden und zu vertreten. Speziell sollen die Studierenden

- den strukturellen Aufbau des Internets sowie elementare Protokolle (TCP/IP) sowie Routing-Algorithmen kennen,
- Verfahren der Informationsgewinnung im WWW und die Vorgehensweisen von Suchmaschinen kennen und deren Qualität einschätzen können,
- kryptografische Verfahren und Protokolle sinnvoll einsetzen können, um Vertraulichkeit, Datenintegrität und Authentizität gewährleisten und überprüfen zu können,
- methodische Grundlagen elektronischer Zahlungssysteme beherrschen lernen.

Inhalt

Arbeitsaufwand
Gesamtaufwand bei 5 Leistungspunkten: ca. 150 Stunden
Präsenzzeit: 30 Stunden
Selbststudium: 120 Stunden

Literatur

Weiterführende Literatur:

- Erweiterte Literaturangaben werden in der Vorlesung bekannt gegeben.
Teilleistung: Anforderungsanalyse und -management [T-WIWI-102759]

Verantwortung: Ralf Kneuper
Bestandteil von: [M-WIWI-101472] Informatik

Leistungspunkte: 4
Sprache: deutsch
Version: 1

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 15/16</td>
<td>2511218</td>
<td>Anforderungsanalyse und -management</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Ralf Kneuper</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen oder ggf. mündlichen Prüfung nach §4(2) der Prüfungsordnung.

Voraussetzungen
Keine

Die folgenden Informationen stammen aus der Veranstaltung Anforderungsanalyse und -management (WS 15/16):

Lernziel

Inhalt

Gliederung:
1. Einführung und Überblick, Motivation
2. Ermittlung von Anforderungen
3. Dokumentation von Anforderungen (in natürlicher Sprache oder mit einer Modellierungssprache, z.B. UML)
4. Prüfen und Abstimmen von Anforderungen
5. Verwaltung von Anforderungen
6. Werkzeugunterstützung

Arbeitsaufwand
Workload: 120h insgesamt,
Vorlesung 30h
Vor- bzw. Nachbereitung der Vorlesung 60h
Prüfungsvorbereitung 29h
Prüfung 1h

Literatur
Literatur wird in der Vorlesung bekannt gegeben.
Teilleistung: Angewandte Informatik II - Informatiksysteme für eCommerce [T-WIWI-102651]

Verantwortung: Johann Marius Zöllner
Bestandteil von: [M-WIWI-101472] Informatik

Leistungspunkte 5
Sprache deutsch
Version 1

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2016</td>
<td>2511032</td>
<td>Angewandte Informatik II - Informatiksysteme für eCommerce</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Ingo Scholtes</td>
</tr>
<tr>
<td>SS 2016</td>
<td>2511033</td>
<td>Übungen zu Angewandte Informatik II: Informatiksysteme für eCommerce</td>
<td>Übung (Ü)</td>
<td>1</td>
<td>Andreas Scho-knecht, Ingo Scholtes</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 Min.) nach §4(2),1 SPO. Die erfolgreiche Lösung der Aufgaben im Übungsbetrieb ist empfohlen für die Klausur, welche jeweils zum Ende des Wintersemesters und zum Ende des Sommersemesters angeboten wird.

Voraussetzungen
Keine

Empfehlungen

Die folgenden Informationen stammen aus der Veranstaltung Angewandte Informatik II - Informatiksysteme für eCommerce (SS 2016):

Lernziel
Der/die Studierende erlernt Konzepte und Technologien für die Gestaltung großer, verteilter Anwendungsarchitekturen. Praxisnahe Themen werden in einem praktischen Übungsbetrieb vertieft.

Inhalt

Arbeitsaufwand
Gesamtaufwand bei 5 Leistungspunkten: ca. 150 Stunden
Präsenzzeit: 30 Stunden
Selbststudium: 120 Stunden

Literatur
Wird in der Vorlesung bekannt gegeben
Teilleistung: Angewandte Ökonometrie [T-WIWI-103125]

Verantwortung: Melanie Schienle
Bestandteil von: [M-WIWI-101638] Ökonometrie und Statistik I
[M-WIWI-101639] Ökonometrie und Statistik II

Leistungspunkte: 4,5
Sprache: deutsch
Version: 1

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2016</td>
<td>2520020</td>
<td>Angewandte Ökonometrie</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Melanie Schienle</td>
</tr>
<tr>
<td>SS 2016</td>
<td>2520021</td>
<td>Übungen zu Angewandte Ökonometrie</td>
<td>Übung (Ü)</td>
<td>2</td>
<td>Melanie Schienle, Carsten Bormann</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (Klausur) im Umfang von 90 Minuten nach § 4, Abs. 2, 1 SPO..

Voraussetzungen
Keine

Die folgenden Informationen stammen aus der Veranstaltung Angewandte Ökonometrie (SS 2016):

Arbeitsaufwand
Gesamtaufwand bei 5 Leistungspunkten: ca. 150 Stunden
Präsenzzeit: 30 Stunden
Selbststudium: 120 Stunden

Literatur

Teilleistung: Asset Pricing [T-WIWI-102647]

Verantwortung: Marliese Uhrig-Homburg, Martin Ruckes
Bestandteil von:
[M-WIWI-101482] Finance 1
[M-WIWI-101483] Finance 2
[M-WIWI-101480] Finance 3
[M-WIWI-101502] Ökonomische Theorie und ihre Anwendung in Finance

Leistungspunkte: 4,5
Sprache: deutsch
Version: 1

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2016</td>
<td>2530555</td>
<td>Asset Pricing</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Marliese Uhrig-Homburg, Martin Ruckes</td>
</tr>
<tr>
<td>SS 2016</td>
<td>2530556</td>
<td>Übung zu Asset Pricing</td>
<td>Übung (Ü)</td>
<td>1</td>
<td>Claus Schmitt, Marliese Uhrig-Homburg, Martin Ruckes</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen 75min. Prüfung in der vorlesungsfreien Zeit des Semesters (nach §4(2), 1 SPO).

Voraussetzungen
Keine

Empfehlungen
Die Inhalte der Bachelor-Veranstaltung Investments werden als bekannt vorausgesetzt und sind notwendig, um dem Kurs folgen zu können.

Die folgenden Informationen stammen aus der Veranstaltung Asset Pricing (SS 2016):

Lernziel
Die Studierenden besitzen weiterführende Kenntnisse über Konzepte im Asset Pricing (insbesondere der stochastische Diskontfaktoransatz).
Sie sind in der Lage diese neu gewonnenen Kenntnisse zum Lösen empirischer Fragestellungen im Zusammenhang mit Wertpapieren anzuwenden.

Inhalt

Arbeitsaufwand
Gesamtaufwand bei 4,5 Leistungspunkten: ca. 135.0 Stunden
Präsenzzeit: 30 Stunden
Vor- und Nachbereitung der LV: 45.0 Stunden
Prüfung und Prüfungsvorbereitung: 60.0 Stunden
Literatur

Basisliteratur

Zur Wiederholung/Vertiefung

Teilleistung: Asymptotische Stochastik [T-MATH-105866]

Verantwortung: Bernhard Klar, Vicky Fasen-Hartmann, Norbert Henze
Bestandteil von: [M-MATH-102902] Asymptotische Stochastik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Mündliche Prüfung im Umfang von ca. 30 Minuten.

Voraussetzungen
keine

Empfehlungen
Die Inhalte des Moduls „Wahrscheinlichkeitstheorie“ werden benötigt.
Teilleistung: Auktionstheorie [T-WIWI-102613]

Verantwortung: Karl-Martin Ehrhart
Bestandteil von: [M-WIWI-102970] Entscheidungs- und Spieltheorie
[M-WIWI-101500] Microeconomic Theory

Leistungspunkte 4,5
Version 1

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 15/16</td>
<td>2520408</td>
<td>Auktionstheorie</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Karl-Martin Ehrhart</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen 60 min. Prüfung in der vorlesungsfreien Zeit des Semesters (nach §4(2), 1 SPO).
Bei geringer Teilnehmerzahl kann auch eine mündliche Prüfung (nach §4 (2), 2 SPO) angeboten werden.
Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen
Keine
Teilleistung: Bildgebende Verfahren in der Medizintechnik [T-MATH-105861]

Verantwortung: Andreas Rieder
Bestandteil von: [M-MATH-102896] Bildgebende Verfahren in der Medizintechnik

Leistungspunkte: 8
Version: 1

Erfolgskontrolle(n)
Mündliche Prüfung im Umfang von ca. 30 Minuten.

Voraussetzungen
keine

Empfehlungen
Das Modul „Funktionalanalysis“ ist hilfreich.
Teilleistung: Börsen [T-WIWI-102625]

Verantwortung: Jörg Franke
Bestandteil von: [M-WIWI-101483] Finance 2
[M-WIWI-101480] Finance 3

Leistungspunkte: 1,5
Sprache: deutsch
Version: 1

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2016</td>
<td>2530296</td>
<td>Börsen</td>
<td>Vorlesung (V)</td>
<td>1</td>
<td>Jörg Franke</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60min.) (nach §4(2), 1 SPO).
Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen
Keine

Empfehlungen
Keine

Die folgenden Informationen stammen aus der Veranstaltung Börsen (SS 2016):

Lernziel
Den Studierenden sind in der Lage aktuelle Entwicklungen rund um die Börsenorganisation und den Wertpapierhandel zu erörtern und zu beurteilen.

Inhalt
- Börsenorganisationen - Zeitgeist im Wandel: “Corporates” anstelle von kooperativen Strukturen?
- Marktmodelle: Order driven contra market maker: Liquiditätssspender als Retter für umsatzschwache Werte?
- Handelssysteme - Ende einer Ära: Kein Bedarf mehr an rennenden Händlern?
- Clearing - Vielfalt statt Einheit: Sicherheit für alle?
- Abwicklung - wachsende Bedeutung: Sichert effizientes Settlement langfristig den “value added” der Börsen?

Arbeitsaufwand
Gesamtaufwand bei 1,5 Leistungspunkten: ca. 45.0 Stunden
Präsenzzeit: 15 Stunden
Vor – und Nachbereitung der LV: 22.5 Stunden
Prüfung und Prüfungsvorbereitung: 7.5 Stunden

Literatur
Weiterführende Literatur:
Lehrmaterial wird in der Vorlesung ausgegeben.
Teilleistung: Brownsche Bewegung [T-MATH-105868]

Verantwortung: Günter Last, Nicole Bäuerle, Vicky Fasen-Hartmann
Bestandteil von: [M-MATH-102904] Brownsche Bewegung

Leistungspunkte: 4
Version: 1

Erfolgskontrolle(n)
Mündliche Prüfung im Umfang von ca. 20 Minuten.

Voraussetzungen
keine

Empfehlungen
Die Inhalte des Moduls „Wahrscheinlichkeitstheorie“ werden benötigt.
Teilleistung: Business Plan Workshop [T-WIWI-102832]

Verantwortung: Martin Klarmann, Orestis Terzidis
Bestandteil von: [M-WIWI-101490] Marketing Management

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung anderer Art (zwei Gruppenpräsentationen sowie ein von der Gruppe erstellter Business Plan) nach §4(2), 3 SPO.

Voraussetzungen
Keine

Empfehlungen
Keine

Anmerkung
Teilleistung: Challenges in Supply Chain Management [T-WIWI-102872]

Verantwortung: Robert Blackburn
Bestandteil von: [M-WIWI-102805] Service Operations

Leistungspunkte: 4,5
Sprache: englisch
Version: 1

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2016</td>
<td>2550494</td>
<td>Challenges in Supply Chain Management</td>
<td>Vorlesung (V)</td>
<td></td>
<td>Robert Blackburn</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen
Keine

Empfehlungen

Anmerkung
Beachten Sie, dass dieser Kurs nur im Wahlpflichtbereich eingebracht werden kann.

Die Anzahl der Kursteilnehmer ist aufgrund der gemeinsamen Bearbeitung in BASF-Projekteams begrenzt. Aufgrund dieser Begrenzung erfolgt eine Registrierung vor Kursbeginn. Weitere Informationen befinden sich auf der Internetseite zur Lehrveranstaltung.

Die Veranstaltung findet unregelmäßig statt. Die geplanten Vorlesungen und Kurse der nächsten drei Jahre werden online angekündigt.

Die folgenden Informationen stammen aus der Veranstaltung Challenges in Supply Chain Management (SS 2016):

Lernziel
Der/ die Studierende

- analysiert und beurteilt im Rahmen einer projektbasierten Fallstudienbearbeitung aktuelle Ansätze zur Gestaltung und Planung von Supply Chain Strategien, die zukünftigen Herausforderungen auf diesem Gebiet gerecht werden.
- versteht und setzt theoretische Konzepte und Ansätze für die Gestaltung und Strategieausrichtung von Supply Chains sinnvoll ein.
- ist befähigt, neue zukunftsweisende Theorien wie z.B. Behavioral Supply Chain Management oder Supply Chain Analytics, einzuordnen und zu bewerten.

Inhalt
Im Rahmen der Veranstaltung werden bei der BASF Fallstudien zu zukünftigen Herausforderungen im Supply Chain Management bearbeitet. Die Veranstaltung zielt somit auf die Präsentation, kritische Bewertung und exemplarische Diskussion aktueller Fragestellungen im Supply Chain Management ab. Der Fokus liegt hierbei neben aktuellen Trends vor allem auf zukünftigen Herausforderungen, auch hinsichtlich der Anwendbarkeit in praktischen Anwendungen (v.a. in der Chemie-Industrie).

Der Hauptteil der Veranstaltung besteht aus der Bearbeitung projektbezogener Fallstudien der BASF in Ludwigshafen. Die Studierenden sollen dabei eine praktische Fragestellung wissenschaftlich umsetzen: Die Vertiefung eines wissenschaftlichen Spezialthemas macht die Studierenden somit einerseits mit wissenschaftlicher Literatur bekannt, andererseits aber auch mit für die Praxis entscheidenden Argumentationstechniken. Des Weiteren wird auch Wert auf eine kritische Diskussion der Ansätze Wert gelegt.

Inhaltlich behandelt die Veranstaltung zukunftsweisende Thematen wie Industrie 4.0, Internet der Dinge in der Produktion, Supply Chain Analytics, Risikomanagement oder Beschaffung und Produktion im Supply Chain Management.

Arbeitsaufwand
Gesamtaufwand: 135 Stunden
Präsenzzeit: 15 Stunden
Vor- /Nachbereitung: 40 Stunden
Prüfung und Prüfungsvorbereitung: 80 Stunden

Literatur
Wird in Abhängigkeit vom Thema in den Projektteams bekanntgegeben.
Teilleistung: Compressive Sensing [T-MATH-105894]

Verantwortung: Andreas Rieder
Bestandteil von: [M-MATH-102935] Compressive Sensing

Leistungspunkte 5
Version 1

Voraussetzungen
Keine
Teilleistung: Computational Economics [T-WIWI-102680]

Verantwortung: Simon Caton, Pradyumn Kumar Shukla
Bestandteil von: [M-WIWI-101472] Informatik

Leistungspunkte: 4,5
Sprache: englisch
Version: 1

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 15/16</td>
<td>2590458</td>
<td>Computational Economics</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Pradyumn Kumar Shukla</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min) (nach §4(2), 1 SPOs). Durch die erfolgreiche Teilnahme am Übungsbetrieb als Erfolgskontrolle anderer Art (§4(2), 3 SPO 2007) bzw. Studienleistung (§4(3) SPO 2015) kann ein Bonus erworben werden. Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note um eine Notenstufe (0,3 oder 0,4). Der Bonus gilt nur für die Haupt- und Nachklausur des Semesters, in dem er erworben wurde.

Voraussetzungen
Keine

Anmerkung
Die Lehrveranstaltung wird ab dem WS 2010/11 wieder in Zusammenarbeit mit dem Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB) angeboten.

Die folgenden Informationen stammen aus der Veranstaltung Computational Economics (WS 15/16):

Lernziel
Der/die Studierende
- versteht die Methoden des Computational Economics und wendet sie auf praktische Probleme an,
- evaluiert Agentenmodelle unter Berücksichtigung von begrenzt rationalem Verhalten und Lernalgorithmen,
- analysiert Agentenmodelle basierend auf mathematischen Grundlagen,
- kennt die Vor- und Nachteile der unterschiedlichen Modelle und kann sie anwenden,
- untersucht und argumentiert die Ergebnisse einer Simulation mit geeigneten statistischen Methoden,
- kann die gewählten Lösungen mit Argumenten untermauern und sie erklären.

Inhalt

Arbeitsaufwand
Der Gesamtarbeitsaufwand für diese Lerneinheit beträgt ca. 135 Stunden (4,5 Credits).

Literatur

Weiterführende Literatur:

Teilleistung: Computerunterstützte analytische Methoden für Rand- und Eigenwertprobleme [T-MATH-105854]

Verantwortung: Michael Plum
Bestandteil von: [M-MATH-102883] Computerunterstützte analytische Methoden für Rand- und Eigenwertprobleme

Leistungspunkte
Version

Voraussetzungen
Keine
Teilleistung: Corporate Financial Policy [T-WIWI-102622]

Verantwortung: Martin Ruckes
Bestandteil von:
- [M-WIWI-101483] Finance 2
- [M-WIWI-101480] Finance 3
- [M-WIWI-101502] Ökonomische Theorie und ihre Anwendung in Finance

Leistungspunkte: 4,5
Sprache: englisch
Version: 1

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2016</td>
<td>2530214</td>
<td>Corporate Finance II</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Martin Ruckes</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen 60min. Prüfung in der vorlesungsfreien Zeit des Semesters (nach §4(2), 1 SPO).
Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen
Keine

Die folgenden Informationen stammen aus der Veranstaltung Corporate Finance II (SS 2016):

Inhalt
Die Studierenden erhalten fundierte Kenntnisse über die zweckgerechte Finanzierung von Unternehmen.

Literatur
Weiterführende Literatur
Teilleistung: Current Issues in the Insurance Industry [T-WIWI-102637]

Verantwortung: Wolf-Rüdiger Heilmann
Bestandteil von: [M-WIWI-101469] Insurance Management I

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Sprache</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>deutsch</td>
<td>1</td>
</tr>
</tbody>
</table>

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2016</td>
<td>2530350</td>
<td>Current Issues in the Insurance Industry</td>
<td>Seminar (S)</td>
<td>2</td>
<td>Wolf-Rüdiger Heilmann</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Prüfung wird letztmals im Sommersemester 2016 angeboten.

Voraussetzungen
Keine

Empfehlungen

Anmerkung
Blockveranstaltung; aus organisatorischen Gründen ist eine Anmeldung erforderlich bei thomas.mueller3@kit.edu (Sekretariat des Lehrstuhls).

Die folgenden Informationen stammen aus der Veranstaltung Current Issues in the Insurance Industry (SS 2016):

Lernziel
Die Studierenden
- lernen wichtige Besonderheiten des Versicherungswesens kennen und diskutieren diese mit einem erfahrenen Praktiker;
- bringen ihre Vorkenntnisse zu verschiedenen Versicherungsmärkten, -sparten, -produkten ein und wenden diese bspw. im Bereich der Kapitalanlage, der Betrieblichen Altersversorgung, der Organisation oder des Controlling an;
- führen Literaturrecherchen durch, identifizieren relevante Literatur und werten diese aus;
- lernen ggfs. im Team zu arbeiten;
- stellen die Ergebnisse ihrer Arbeit in einem wissenschaftlichen Vortrag vor;
- fassen ihre Erkenntnisse aus Literatur- und eigener Forschungsarbeit in Form von Seminararbeiten zusammen.

Arbeitsaufwand
Gesamtaufwand bei 2 Leistungspunkten: ca. 60 Stunden
Präsenzzeit: 30 Stunden
Selbststudium: 30 Stunden
Teilleistung: Data Mining and Applications [T-WIWI-103066]

Verantwortung: Rheza Nakhaeizadeh
Bestandteil von: [M-WIWI-101638] Ökonometrie und Statistik I
[M-WIWI-101639] Ökonometrie und Statistik II

Leistungspunkte 4,5
Version 1

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2016</td>
<td>2520375</td>
<td>Data Mining and Applications</td>
<td>Vorlesung (V)</td>
<td>2/4</td>
<td>Rheza Nakhaeizadeh</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

- Mündliche Prüfung (Gewichtung 70%)
- Durchführung einer kleinen empirischen Arbeit (Gewichtung 30%)

Voraussetzungen
Keine

Anmerkung
Die LP der Lehrveranstaltung werden zum Sommersemester 2016 in den Bachelorstudiengängen auf 4 LP reduziert.
Die folgenden Informationen stammen aus der Veranstaltung Datenbanksysteme und XML (WS 15/16):

Lernziel

Studierende

- kennen die Grundlagen von XML und erstellen XML-Dokumente,
- arbeiten selbständig mit XML-Datenbanksystemen und setzen diese Systeme gezielt zur Lösung von praktischen Fragestellungen ein,
- formulieren Anfragen an XML-Dokumente,
- bewerten den Einsatz von XML in der betrieblichen Praxis in unterschiedlichen Anwendungskontexten.

Inhalt

Arbeitsaufwand

Der Gesamtarbeitsaufwand für diese Lerneinheit beträgt ca. 150 Stunden.
- Vorlesung 30h
- Übung 15h
- Vor-bzw. Nachbereitung der Vorlesung 30h
- Vor- bzw. Nachbereitung der Übung 30h
- Prüfungsvorbereitung 44h
- Prüfung 1h
- Summe: 150h

Literatur

- W. Kazakos, A. Schmidt, P. Tomchyk: Datenbanken und XML. Springer-Verlag 2002
- G. Vossen: Datenbankmodelle, Datenbanksprachen und Datenbankmanagementsysteme. Oldenbourg 2008

Weitere Literatur wird in der Vorlesung bekannt gegeben.
Teilleistung: Der Poisson-Prozess [T-MATH-105922]

Verantwortung: Günter Last, Vicky Fasen-Hartmann, Daniel Hug
Bestandteil von: [M-MATH-102922] Der Poisson-Prozess

Erfolgskontrolle(n)
Mündliche Prüfung im Umfang von ca. 20 Minuten.

Voraussetzungen
keine
Teilleistung: Derivate [T-WIWI-102643]

Verantwortung: Marliese Uhrig-Homburg

Bestandteil von:
- [M-WIWI-101482] Finance 1
- [M-WIWI-101483] Finance 2
- [M-WIWI-101480] Finance 3

Leistungspunkte 4,5

Sprache deutsch

Version 1

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2016</td>
<td>2530551</td>
<td>Übungen zu Derivate</td>
<td>Übung (U)</td>
<td>1</td>
<td>Marliese Uhrig-Homburg, Stefan Fiesel</td>
</tr>
<tr>
<td>SS 2016</td>
<td>2530550</td>
<td>Derivate</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Marliese Uhrig-Homburg</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen

Keine

Empfehlungen

Keine

Die folgenden Informationen stammen aus der Veranstaltung Derivate (SS 2016):

Lernziel

Die Studierenden vertiefen - aufbauend auf den grundlegenden Inhalten der Bachelorveranstaltung Investments - in Derivate ihre Kenntnisse über Finanz- und Derivatemärkte. Sie sind in der Lage derivative Finanzinstrumente zu bewerten und diese Fähigkeiten zum Risikomanagement und zur Umsetzung komplexer Handelsstrategien anzuwenden.

Inhalt

Arbeitsaufwand

Gesamtaufwand bei 4,5 Leistungspunkten: ca. 135.0 Stunden
Präsenzzeit: 30 Stunden
Vor – und Nachbereitung der LV: 45.0 Stunden
Prüfung und Prüfungsvorbereitung: 60.0 Stunden

Literatur

Weiterführende Literatur:

Teilleistung: Die Riemannsche Zeta-Funktion [T-MATH-105934]

Verantwortung: Fabian Januszewski
Bestandteil von: [M-MATH-102960] Die Riemannsche Zeta-Funktion

Leistungspunkte 4
Version 1

Voraussetzungen
Keine
Teilleistung: Differentialgeometrie [T-MATH-102275]

Verantwortung: Wilderich Tuschmann, Enrico Leuzinger, Sebastian Grensing
Bestandteil von: [M-MATH-101317] Differentialgeometrie

Leistungspunkte: 8
Version: 1

Voraussetzungen: keine
Teilleistung: Dokumentenmanagement und Groupwaresysteme [T-WIWI-102663]

Verantwortung: Stefan Klink
Bestandteil von: [M-WIWI-101472] Informatik

Leistungspunkte: 4
Sprache: deutsch
Version: 1

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2016</td>
<td>2511212</td>
<td>Dokumentenmanagement und Groupware-</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Stefan Klink</td>
</tr>
<tr>
<td></td>
<td></td>
<td>systeme</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (Klausur) im Umfang von 1h (nach §4(2), 1 SPO). Sie findet in der ersten Woche nach der Vorleseungszeit statt.

Voraussetzungen
Keine

Die folgenden Informationen stammen aus der Veranstaltung Dokumentenmanagement und Groupwaresysteme (SS 2016):

Lernziel

Inhalt

Arbeitsaufwand
Workload: 120h insgesamt,
Vorlesung 30h
Vor- bzw. Nachbereitung der Vorlesung 60h
Prüfungsvorbereitung 29h
Prüfung 1h

Literatur

Weitere Literatur wird in der Vorlesung bekannt gegeben.
Teilleistung: Dynamische Systeme [T-MATH-106114]

Verantwortung: Jens Rottmann-Matthes
Bestandteil von: [M-MATH-103080] Dynamische Systeme

Leistungspunkte: 8
Version: 1

Voraussetzungen
keine
Teilleistung: Efficient Energy Systems and Electric Mobility [T-WIWI-102793]

Verantwortung: Russell McKenna, Patrick Jochem
Bestandteil von: [M-WIWI-101452] Energiewirtschaft und Technologie

Leistungspunkte: 3,5
Sprache: englisch
Version: 1

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2016</td>
<td>2581006</td>
<td>Efficient Energy Systems and Electric Mobility</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Russell McKenna, Patrick Jochem</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer schriftlichen Gesamtprüfung (60 min). Die Gesamtnote des Moduls entspricht der Note der schriftlichen Prüfung.

Voraussetzungen
Keine

Empfehlungen
Keine

Die folgenden Informationen stammen aus der Veranstaltung Efficient Energy Systems and Electric Mobility (SS 2016):

Lernziel
- Understand the concept of energy efficiency as applied to specific systems
- Obtain an overview of the current trends in energy efficiency
- Be able to determine and evaluate alternative methods of energy efficiency improvement
- Overview of technical and economical stylized facts on electric mobility
- Judging economical, ecological and social impacts through electric mobility

Inhalt
This lecture series combines two of the most central topics in the field of energy economics at present, namely energy efficiency and electric mobility. The objective of the lecture is to provide an introduction and overview to these two subject areas, including theoretical as well as practical aspects, such as the technologies, political framework conditions and broader implications of these for national and international energy systems.

The energy efficiency part of the lecture provides an introduction to the concept of energy efficiency, the means of affecting it and the relevant framework conditions. Further insights into economy-wide measurements of energy efficiency, and associated difficulties, are given with recourse to several practical examples. The problems associated with market failures in this area are also highlighted, including the Rebound Effect. Finally and by way of an outlook, perspectives for energy efficiency in diverse economic sectors are examined.

The electric mobility part of the lecture examines all relevant issues associated with an increased penetration of electric vehicles including their technology, their impact on the electricity system (power plants and grid), their environmental impact as well as their optimal integration in the future private electricity demand (i.e. smart grids and V2G). Besides technical aspects the user acceptance and behavioral aspects are also discussed.

Arbeitsaufwand
Gesamtaufwand bei 3,5 Leistungspunkten: ca. 105.0 Stunden
Präsenzzeit: 30 Stunden
Vor- und Nachbereitung der LV: 45.0 Stunden
Prüfung und Prüfungsvorbereitung: 30.0 Stunden
Literatur

Wird in der Vorlesung bekanntgegeben.
Teilleistung: Effiziente Algorithmen [T-WIWI-102655]

Verantwortung: Hartmut Schmeck
Bestandteil von: [M-WIWI-101472] Informatik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Sprache</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>deutsch</td>
<td>1</td>
</tr>
</tbody>
</table>

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2016</td>
<td>2511101</td>
<td>Übungen zu Effiziente Algorithmen</td>
<td>Übung (Ü)</td>
<td>1</td>
<td>Hartmut Schmeck, Marlon Braun</td>
</tr>
<tr>
<td>SS 2016</td>
<td>2511100</td>
<td>Effiziente Algorithmen</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Hartmut Schmeck</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Lieg die in der Klausur erzielte Note zwischen 1,3 und 4,0, so wird sie durch erfolgreiche Teilnahme an den Übungen um eine Notenstufe (d.h. um 0,3 oder 0,4) verbessert.

Mögliche Abweichungen von dieser Art der Erfolgskontrolle werden zu Beginn des Semesters bekannt gegeben.

Voraussetzungen

Keine

Die folgenden Informationen stammen aus der Veranstaltung Effiziente Algorithmen (SS 2016):

Lernziel

Die Studierenden erwerben die Fähigkeit, Methoden und Konzepte des Gebiets “Effiziente Algorithmen” zu beherrschen und Innovationsfähigkeit bezüglich der eingesetzten Methoden zu demonstrieren.

Inhalt

Arbeitsaufwand

Gesamtaufwand bei 5 Leistungspunkten: ca. 150 Stunden
Präsenzzeit: 30 Stunden
Selbststudium: 120 Stunden

Literatur

Borodin, Munro: The Computational Complexity of Algebraic and Numeric Problems (Elsevier 1975)
Cormen, Leiserson, Rivest: Introduction to Algorithms (MIT Press)
Sedgewick: Algorithms (Addison-Wesley), viele Versionen verfügbar

Weiterführende Literatur:
Wird in der Vorlesung bekannt gegeben.
Teilleistung: eFinance: Informationswirtschaft für den Wertpapierhandel [T-WIWI-102600]

Verantwortung: Christof Weinhardt
Bestandteil von: [M-WIWI-101483] Finance 2
[M-WIWI-101480] Finance 3

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Sprache</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>englisch</td>
<td>1</td>
</tr>
</tbody>
</table>

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 15/16</td>
<td>2540455</td>
<td>Übungen zu eFinance: Informationswirtschaft für den Wertpapierhandel</td>
<td>Übung (Ü)</td>
<td>1</td>
<td>Christof Weinhardt, Felix Fritz</td>
</tr>
<tr>
<td>WS 15/16</td>
<td>2540454</td>
<td>eFinance: Informationswirtschaft für den Wertpapierhandel</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Christof Weinhardt, Felix Fritz</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen
Keine

Empfehlungen
Keine

Die folgenden Informationen stammen aus der Veranstaltung eFinance: Informationswirtschaft für den Wertpapierhandel (WS 15/16):

Lernziel
Die Studierenden

- können die theoretischen und praktischen Aspekte im Wertpapierhandel verstehen,
- können relevanten elektronischen Werkzeugen für die Auswertung von Finanzdaten bedienen,
- können die Anreize der Händler zur Teilnahme an verschiedenen Marktplattformen identifizieren,
- können Finanzmarktplätze hinsichtlich ihrer Effizienz und ihrer Schwächen und ihrer technischen Ausgestaltung analysieren,
- können theoretische Methoden aus dem Ökonometrie anwenden,
- können finanzwissenschaftliche Artikel verstehen, kritisieren und wissenschaftlich präsentieren,
- lernen die Erarbeitung von Lösungen in Teams.

Inhalt

Arbeitsaufwand
Gesamtaufwand bei 4,5 Leistungspunkten: ca. 135 Stunden
Präsenzzeit: 30 Stunden
Selbststudium: 105 Stunden

Literatur

Weiterführende Literatur:

Teilleistung: Einführung in das Wissenschaftliche Rechnen [T-MATH-105837]

Verantwortung: Andreas Rieder, Tobias Jahnke, Marlis Hochbruck, Willy Dörfler, Christian Wieners

Bestandteil von: [M-MATH-102889] Einführung in das Wissenschaftliche Rechnen

Voraussetzungen
Keine

Leistungspunkte 8
Version 1
Teilleistung: Einführung in die geometrische Maßtheorie [T-MATH-105918]

Verantwortung: Steffen Winter
Bestandteil von: [M-MATH-102949] Einführung in die geometrische Maßtheorie

Leistungspunkte 6
Version 1

Voraussetzungen
Keine
Teilleistung: Einführung in Matlab und numerische Algorithmen [T-MATH-105913]

Verantwortung: Christian Wieners, Daniel Weiß
Bestandteil von: [M-MATH-102945] Einführung in Matlab und numerische Algorithmen

Leistungspunkte

Version

Voraussetzungen
Keine
Teilleistung: Einführung in Partikuläre Strömungen [T-MATH-105911]

Verantwortung: Willy Dörfler
Bestandteil von: [M-MATH-102943] Einführung in Partikuläre Strömungen

Leistungspunkte: 3
Version: 1

Voraussetzungen
Keine
Teilleistung: Endogene Wachstumstheorie [T-WIWI-102785]

Verantwortung: Ingrid Ott
Bestandteil von: [M-WIWI-101478] Innovation und Wachstum

Leistungspunkte: 4,5
Sprache: deutsch
Version: 1

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 15/16</td>
<td>2561503</td>
<td>Endogene Wachstumstheorie</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Ingrid Ott</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60min.) (nach §4(2), 1 SPO). Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

In der Vorlesung haben Studierende die Möglichkeit, durch eine kurze schriftliche Hausarbeit samt deren Präsentation in der Übung eine auf die Klausurnote anrechenbare Leistung zu erbringen. Für diese Ausarbeitung werden Punkte vergeben. Wenn in der Kreditpunkte-Klausur die für ein Bestehen erforderliche Mindestpunktzahl erreicht wird, werden die in der veranstaltungsbegleitend erbrachten Leistung erzielten Punkte zur in der Klausur erreichten Punktzahl addiert. Eine Notenverschlechterung ist damit definitionsgemäß nicht möglich, eine Notenverbesserung nicht zwangsläufig, aber sehr wahrscheinlich (nicht jeder zusätzliche Punkt verbessert die Note; besser als 1 geht nicht). Die Ausarbeitungen können die Note „nicht ausreichend“ in der Klausur dabei nicht ausgleichen.

Voraussetzungen
Keine

Empfehlungen

Die folgenden Informationen stammen aus der Veranstaltung Endogene Wachstumstheorie (WS 15/16):

Lernziel
Der/die Studierende versteht, analysiert und bewertet ausgewählte Modelle der endogenen Wachstumstheorie.

Inhalt
- Grundlegende Modelle endogenen Wachstums
- Humankapital und wirtschaftliches Wachstum
- Modellierung von technologischem Fortschritt
- Vielfaltsmodelle
- Schumpeterianisches Wachstum
- Gerichteter technologischer Fortschritt
- Diffusion von Technologien

Arbeitsaufwand
Gesamtaufwand bei 4,5 Leistungspunkten: ca. 135.0 Stunden
Präsenzzeit: 30 Stunden
Vor – und Nachbereitung der LV: 45.0 Stunden
Prüfung und Prüfungsvorbereitung: 60.0 Stunden

Literatur
Auszug:
Teilleistung: Energie und Umwelt [T-WIWI-102650]

Verantwortung: Ute Karl
Bestandteil von: [M-WIWI-101452] Energiewirtschaft und Technologie

Leistungspunkte: 4,5
Sprache: deutsch
Version: 1

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2016</td>
<td>2581004</td>
<td>Übungen zu Energie und Umwelt</td>
<td>Übung (Ü)</td>
<td>1</td>
<td>Katrin Seddig</td>
</tr>
<tr>
<td>SS 2016</td>
<td>2581003</td>
<td>Energie und Umwelt</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Ute Karl</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (nach §4 (2), 1 SPO).

Voraussetzungen
Keine

Die folgenden Informationen stammen aus der Veranstaltung Energie und Umwelt (SS 2016):

Lernziel
Der Studierende kann die wesentlichen Umweltbelastungen benennen, die mit der energetischen Nutzung fossiler Brennstoffe verbunden sind. Der Studierende kennt technische Maßnahmen zur Minderung dieser Belastungen. Der Studierende kennt Besserungsansätze für die benannten Probleme und kann diese anwenden.

Inhalt
Die Vorlesung konzentriert sich auf die Umweltauswirkungen der energetischen Nutzung fossiler Brennstoffe und deren Bewertung. Die Themen umfassen:

- Grundlagen der Energieumwandlung
- Schadstoffentstehung bei der Verbrennung
- Maßnahmen zur Emissionsminderung bei fossil befeuerten Kraftwerken
- Maßnahmen zur Steigerung der Energieeffizienz bei fossil befeuerten Kraftwerken
- Externe Effekte der Energiebereitstellung (Lebenszyklusanalysen ausgewählter Energiesysteme)
- Integrierte Bewertungsmodelle zur Unterstützung der Europäischen Luftreinhaltestrategie ("Integrated Assessment Modelling")
- Kosten-Wirksamkeits-Analysen und Kosten-Nutzen-Analysen
- Monetäre Bewertung von externen Effekten (externe Kosten)

Arbeitsaufwand
Gesamtaufwand bei 4,5 Leistungspunkten: ca. 135.0 Stunden
Präsenzzeit: 30 Stunden
Vor – und Nachbereitung der LV: 45.0 Stunden
Prüfung und Prüfungsvorbereitung: 60.0 Stunden
Teilleistung: Energy Systems Analysis [T-WIWI-102830]

Verantwortung: Valentin Bertsch
Bestandteil von: [M-WIWI-101452] Energiewirtschaft und Technologie

Leistungspunkte: 3
Sprache: englisch
Version: 1

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 15/16</td>
<td>2581002</td>
<td>Energy Systems Analysis</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Valentin Bertsch</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (nach §4 (2), 1 SPO).

Voraussetzungen
Keine

Empfehlungen
Keine

Anmerkung

Die folgenden Informationen stammen aus der Veranstaltung Energy Systems Analysis (WS 15/16):

Lernziel
Der/die Studierende
- ist in der Lage, die Methoden der Energiesystemanalyse, deren möglichen Anwendungsbereiche in der Energiewirtschaft und deren Grenzen sowie Schwächen zu verstehen und kritisch zu reflektieren,
- kann ausgewählte Methoden der Energiesystemanalyse selbst anwenden.

Inhalt
1. Überblick über und Klassifizierung von Energiesystemmodellen
2. Anwendung von Methoden der Szenarioplanung im Bereich der Energiesystemanalyse
3. Einsatzplanung von Kraftwerken
4. Interdependenzen in der Energiewirtschaft
5. Szenario-basierte Entscheidungsunterstützung im Energiesektor
6. Visualisierungs- und GIS-Techniken zur Entscheidungsunterstützung im Energiesektor

Arbeitsaufwand
Gesamtaufwand bei 3 Leistungspunkten: ca. 90 Stunden
Präsenzzeit: 30 Stunden
Selbststudium: 60 Stunden

Literatur
Weiterführende Literatur:
Die folgenden Informationen stammen aus der Veranstaltung Enterprise Architecture Management (WS 15/16):

Lernziel

Inhalt
Behandelt werden die Themen Komponenten der Unternehmensarchitektur, Unternehmensstrategie inkl. Methoden zur Strategieentwicklung, Geschäftsprozess(re)engineering, Methoden zur Umsetzung von Veränderungen im Unternehmen (Management of Change)

Literatur
- Doppler, K., Lauterburg, Ch.: Change Management. Campus Verlag 1997
Teilleistung: Ereignisdiskrete Simulation in Produktion und Logistik [T-WIWI-102718]

Verantwortung: Stefan Nickel
[M-WIWI-102805] Service Operations

Leistungspunkte: 4,5
Version: 1

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2016</td>
<td>2550488</td>
<td>Ereignisdiskrete Simulation in Produktion und Logistik</td>
<td>Vorlesung (V)</td>
<td></td>
<td>Sven Spieckermann</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen
Keine

Empfehlungen

Anmerkung
Aufgrund der begrenzten Teilnehmerzahl ist eine Voranmeldung erforderlich. Weitere Informationen entnehmen Sie der Internetseite der Veranstaltung.
Die Lehrveranstaltung wird voraussichtlich in jedem Sommersemester angeboten.
Das für drei Studienjahre im Voraus geplante Lehrangebot kann im Internet nachgelesen werden.
Teilleistung: Evolutionsgleichungen [T-MATH-105844]

Verantwortung: Roland Schnaubelt, Lutz Weis
Bestandteil von: [M-MATH-102872] Evolutionsgleichungen

Leistungspunkte: 8
Version: 1

Voraussetzungen
Keine
Teilleistung: Experimentelle Wirtschaftsforschung [T-WIWI-102614]

Verantwortung: Christof Weinhardt, Timm Teubner
Bestandteil von: [M-WIWI-102970] Entscheidungs- und Spieltheorie
[M-WIWI-101505] Experimentelle Wirtschaftsforschung

Leistungspunkte: 4,5
Sprache: deutsch
Version: 1

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 15/16</td>
<td>2540493</td>
<td>Übung zu Experimentelle Wirtschaftsforschung</td>
<td>Übung (U)</td>
<td>1</td>
<td>Jella Pfeiffer, Verena Dorner, Timm Teubner</td>
</tr>
<tr>
<td>WS 15/16</td>
<td>2540489</td>
<td>Experimentelle Wirtschaftsforschung</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Jella Pfeiffer, Verena Dorner, Timm Teubner</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min) (nach §4(2), 1 SPO). Durch die erfolgreiche Teilnahme am Übungsbetrieb als Erfolgskontrolle anderer Art (§4 (2), 3 SPO 2007) bzw. Studienleistung (§4(3) SPO 2015) kann ein Bonus erworben werden. Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note um eine Notenstufe (0,3 oder 0,4). Der Bonus gilt nur für die Haupt- und Nachklausur des Semesters, in dem er erworben wurde.

Voraussetzungen

Keine

Die folgenden Informationen stammen aus der Veranstaltung Experimentelle Wirtschaftsforschung (WS 15/16):

Lernziel

Der/die Studierende lernt,

- wie man Erkenntnisse über ökonomische Zusammenhänge (Wissenschaftstheorie) gewinnt.
- wie sich Spieltheorie und Experimentelle Wirtschaftsforschung gegenseitig befruchten.
- die Methoden, Stärken und Schwächen der Experimentellen Wirtschaftsforschung kennen.
- Experimentelle Wirtschaftsforschung an konkreten Beispielen (z.B. Märkte, Auktionen, Koordinationsspiele, Risikoentscheidungen) kennen.
- statistische Grundlagen der Datenauswertung kennen und anwenden.

Inhalt

Arbeitsaufwand

Der Gesamtarbeitsaufwand für diese Lerneinheit beträgt ca. 135 Stunden (4,5 Credits).
- Präsenzzeit: 30 Stunden
- Selbststudium: 105 Stunden

Literatur

- Strategische Spiele; S. Berninghaus, K.-M. Ehrhart, W. Güth; Springer Verlag, 2. Aufl. 2006.
- Experimental Methods: A Primer for Economists; D. Friedman, S. Sunder; Cambridge University Press, 1994.
Teilleistung: Extremale Graphentheorie [T-MATH-105931]

Verantwortung: Maria Aksenovich, Torsten Ueckerdt
Bestandteil von: [M-MATH-102957] Extremale Graphentheorie

Leistungspunkte: 8
Version: 1

Voraussetzungen
Keine
Teilleistung: Extremwerttheorie [T-MATH-105908]

Verantwortung: Vicky Fasen-Hartmann, Norbert Henze
Bestandteil von: [M-MATH-102939] Extremwerttheorie

Leistungspunkte: 4
Version: 1

Voraussetzungen
Keine
Teilleistung: Festverzinsliche Titel [T-WIWI-102644]

Verantwortung: Marliese Uhrig-Homburg
Bestandteil von: [M-WIWI-101483] Finance 2
[M-WIWI-101480] Finance 3

Leistungspunkte: 4,5
Sprache: deutsch
Version: 1

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 15/16</td>
<td>2530260</td>
<td>Festverzinsliche Titel</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Philipp Schuster</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (Klausur) nach §4, Abs. 2, 1 der SPO.

Voraussetzungen
Keine

Empfehlungen
Kenntnisse aus der Veranstaltung Derivate sind sehr hilfreich.

Die folgenden Informationen stammen aus der Veranstaltung Festverzinsliche Titel (WS 15/16):

Lernziel
Die Studierenden vertiefen ihre Kenntnisse über nationale und internationale Anleihemärkte. Sie sind in der Lage die dabei erlangten Kenntnisse über gehandelte Instrumente und gängige Bewertungsmodelle zur Bepreisung von derivativen Finanzinstrumente einzusetzen.

Inhalt

Arbeitsaufwand
Gesamtaufwand bei 4,5 Leistungspunkten: ca. 135.0 Stunden
Präsenzzeit: 30 Stunden
Vor- und Nachbereitung der LV: 45.0 Stunden
Prüfung und Prüfungsvorbereitung: 60.0 Stunden

Literatur

Weiterführende Literatur:
Teilleistung: Financial Analysis [T-WIWI-102900]

Verantwortung: Torsten Luedecke
Bestandteil von: [M-WIWI-101483] Finance 2
[M-WIWI-101480] Finance 3

Leistungspunkte: 4,5
Sprache: deutsch
Version: 1

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2016</td>
<td>2530205</td>
<td>Financial Analysis</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Torsten Luedecke</td>
</tr>
<tr>
<td>SS 2016</td>
<td>2530206</td>
<td>Übungen zu Financial Analysis</td>
<td>Übung (Ü)</td>
<td>2</td>
<td>Torsten Luedecke</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer 60-minütigen schriftlichen Prüfung in der vorlesungsfreien Zeit des Semesters (nach §4(2), 1 SPO).
Die Note ist das Ergebnis der schriftlichen Prüfung.

Voraussetzungen
Keine

Empfehlungen
Es werden Kenntnisse in Finanzwirtschaft und Rechnungswesen sowie Grundlagen der Unternehmensbewertung vorausgesetzt.

Die folgenden Informationen stammen aus der Veranstaltung Financial Analysis (SS 2016):

Inhalt
Die Studierenden erlernen den Zweck verschiedener Kostenrechnungssysteme, die Verwendung von Kosteninformationen für typische Entscheidungs- und Kontrollrechnungen im Unternehmen sowie den Nutzen gängiger Instrumente des Kostenmanagements.

Literatur
Weiterführende Literatur

Teilleistung: Financial Econometrics [T-WIWI-103064]

Verantwortung: Melanie Schienle
Bestandteil von: [M-WIWI-101638] Ökonometrie und Statistik I
[M-WIWI-101639] Ökonometrie und Statistik II

Leistungspunkte: 4,5
Version: 1

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2016</td>
<td>2520022</td>
<td>Financial Econometrics I</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Melanie Schienle</td>
</tr>
<tr>
<td>SS 2016</td>
<td>2520023</td>
<td>Übungen zu Financial Econometrics I</td>
<td>Übung (Ü)</td>
<td>2</td>
<td>Melanie Schienle, Chong Liang</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (90 min.) (nach §4(2), 1 SPO).

Voraussetzungen
Keine

Modellierte Voraussetzungen
Es müssen die folgenden Bestandteile erfüllt werden:

- Der Beginn dieser Teilleistung schließt den Beginn der Teilleistung [T-MATH-105874] Zeitreihenanalyse aus.

Empfehlungen

Anmerkung
Teilleistung: Finanzintermediation [T-WIWI-102623]

Verantwortung: Martin Ruckes
Bestandteil von: [M-WIWI-101483] Finance 2
[M-WIWI-101480] Finance 3
[M-WIWI-101502] Ökonomische Theorie und ihre Anwendung in Finance

Leistungspunkte: 4,5
Sprache: deutsch
Version: 1

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 15/16</td>
<td>2530232</td>
<td>Finanzintermediation</td>
<td>Vorlesung (V)</td>
<td></td>
<td>Martin Ruckes</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60min.) (nach §4(2), 1 SPO). Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen

Keine

Empfehlungen

Keine

Die folgenden Informationen stammen aus der Veranstaltung Finanzintermediation (WS 15/16):

Lernziel

Die Studierenden

- sind in der Lage die Gründe für die Existenz von Finanzintermediären zu erläutern,
- können sowohl statische als auch dynamische Aspekte der vertraglichen Beziehungen zwischen Banken und Kreditnehmern diskutieren und analysieren,
- vermögen die makroökonomische Rolle des Bankensystems zu erörtern,
- sind in der Lage, die grundlegenden Prinzipien prudentieller Bankenregulierung zu verdeutlichen und die Implikationen konreter Regulierungsvorschriften zu erkennen und zu beurteilen.

Inhalt

- Gründe für die Existenz von Finanzintermediären,
- Analyse der vertraglichen Beziehungen zwischen Banken und Kreditnehmern,
- Stabilität des Bankensystems,
- Makroökonomische Rolle der Finanzintermediation
- Prinzipien prudentieller Bankenregulierung.

Arbeitsaufwand

Gesamtaufwand bei 4,5 Leistungspunkten: ca. 135.0 Stunden
Präsenzzeit: 45 Stunden
Vor – und Nachbereitung der LV: 67.5 Stunden
Prüfung und Prüfungsvorbereitung: 22.5 Stunden

Literatur

Weiterführende Literatur:

Teilleistung: Finanzmathematik in diskreter Zeit [T-MATH-105839]

Verantwortung: Nicole Bäuerle, Vicky Fasen-Hartmann
Bestandteil von: [M-MATH-102919] Finanzmathematik in diskreter Zeit

Leistungspunkte 8
Version 1

Erfolgskontrolle(n)
Schriftliche Prüfung im Umfang von ca. 120 Minuten.

Voraussetzungen
keine
Teilleistung: Finanzmathematik in stetiger Zeit [T-MATH-105930]

Verantwortung: Nicole Bäuerle, Vicky Fasen-Hartmann
Bestandteil von: [M-MATH-102860] Finanzmathematik in stetiger Zeit

Leistungspunkte 8
Version 1

Voraussetzungen
Keine
Teilleistung: Finite Elemente Methoden [T-MATH-105857]

Verantwortung: Andreas Rieder, Tobias Jahnke, Marlis Hochbruck, Willy Dörfler, Christian Wieners

Bestandteil von: [M-MATH-102891] Finite Elemente Methoden

Leistungspunkte 8

Version 1

Voraussetzungen
Keine
Teilleistung: Fourieranalysis [T-MATH-105845]

Verantwortung: Roland Schnaubelt, Lutz Weis
Bestandteil von: [M-MATH-102873] Fourieranalysis

Leistungspunkte: 8
Version: 1

Voraussetzungen
Keine
Teilleistung: Funktionalanalysis [T-MATH-102255]

Verantwortung: Michael Plum, Christoph Schmoeger, Wolfgang Reichel, Gerd Herzog, Dirk Hundertmark, Roland Schnaubelt, Lutz Weis, Tobias Lamm

Bestandteil von: [M-MATH-101320] Funktionalanalysis

Leistungspunkte: 8
Version: 1

Voraussetzungen:
keine
Teilleistung: Gemischt-ganzzahlige Optimierung I [T-WIWI-102719]

Verantwortung: Oliver Stein
Bestandteil von: [M-WIWI-101473] Mathematische Optimierung

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60min.) (nach §4(2), 1 SPO).
Die Prüfung wird im Vorlesungssemester und dem darauf folgenden Semester angeboten.
Zulassungsvoraussetzung zur schriftlichen Prüfung ist der Erwerb von mindestens 30% der Übungspunkte. Die Prüfungsanmeldung über das Online-Portal für die schriftliche Prüfung gilt somit vorbehaltlich der Erfüllung der Zulassungsvoraussetzung.
Die Erfolgskontrolle kann auch zusammen mit der Erfolgskontrolle zu Gemischt-ganzzahlige Optimierung II [25140] erfolgen. In diesem Fall beträgt die Dauer der schriftlichen Prüfung 120 min.

Voraussetzungen
Keine

Empfehlungen
Es wird dringend empfohlen, vor Besuch dieser Veranstaltung mindestens eine Vorlesung aus dem Bachelor-Programm des Lehrstuhls zu belegen.

Anmerkung
Die Lehrveranstaltung wird nicht regelmäßig angeboten. Das für drei Studienjahre im Voraus geplante Lehrangebot kann im Internet (kop.ior.kit.edu) nachgelesen werden.
Teilleistung: Gemischt-ganzzahlige Optimierung I und II [T-WIWI-102733]

Verantwortung: [M-WIWI-101473] Mathematische Optimierung

Leistungspunkte 9
Version 1

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (120min.) (nach §4(2). 1 SPO).

Voraussetzungen
Keine.
Teilleistung: Gemischt-ganzzahlige Optimierung II [T-WIWI-102720]

Verantwortung: Oliver Stein
Bestandteil von: [M-WIWI-101473] Mathematische Optimierung

Leistungspunkte: 4,5
Version: 1

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2016</td>
<td>2550141</td>
<td>Übungen zu Gemischt-ganzzahlige Optimierung II</td>
<td>Übung (Ü)</td>
<td>1</td>
<td>Oliver Stein, Nathan Sudermann-Merx</td>
</tr>
<tr>
<td>SS 2016</td>
<td>2550140</td>
<td>Gemischt-ganzzahlige Optimierung II</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Oliver Stein</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60min.) (nach §4(2), 1 SPO).

Die Prüfung wird im Vorlesungssemester und dem darauf folgenden Semester angeboten.

Zulassungsvoraussetzung zur schriftlichen Prüfung ist der Erwerb von mindestens 30% der Übungspunkte. Die Prüfungsanmeldung über das Online-Portal für die schriftliche Prüfung gilt somit vorbehaltlich der Erfüllung der Zulassungsvoraussetzung.

Die Erfolgskontrolle kann auch zusammen mit der Erfolgskontrolle zu Gemischt-ganzzahlige Optimierung I [2550138] erfolgen. In diesem Fall beträgt die Dauer der schriftlichen Prüfung 120 min.

Voraussetzungen
Keine

Empfehlungen
Es wird dringend empfohlen, vor Besuch dieser Veranstaltung mindestens eine Vorlesung aus dem Bachelor-Programm des Lehrstuhls zu belegen.

Anmerkung
Die Lehrveranstaltung wird nicht regelmäßig angeboten. Das für drei Studienjahre im Voraus geplante Lehrangebot kann im Internet (kop.ior.kit.edu) nachgelesen werden.
Teilleistung: Generalisierte Regressionsmodelle [T-MATH-105870]

Verantwortung: Bernhard Klar, Norbert Henze
Bestandteil von: [M-MATH-102906] Generalisierte Regressionsmodelle

Leistungspunkte
| 4 |

Version
| 1 |

Erfolgskontrolle(n)
Mündliche Prüfung im Umfang von ca. 20 Minuten.

Voraussetzungen
keine
Teilleistung: Geometrie der Schemata [T-MATH-105841]

Verantwortung: Frank Herrlich, Stefan Kühnlein
Bestandteil von: [M-MATH-102866] Geometrie der Schemata

Leistungspunkte: 8
Version: 1

Voraussetzungen
Keine
Teilleistung: Geometrische Gruppentheorie [T-MATH-105842]

Verantwortung: Frank Herrlich, Gabriele Link, Petra Schwer, Wilderich Tuschmann, Enrico Leuzinger, Roman Sauer

Bestandteil von: [M-MATH-102867] Geometrische Gruppentheorie

Leistungspunkte: 8
Version: 1

Voraussetzungen
Keine
Teilleistung: Geometrische numerische Integration [T-MATH-105919]

Verantwortung: Tobias Jahnke, Marlis Hochbruck
Bestandteil von: [M-MATH-102921] Geometrische numerische Integration

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Mündliche Prüfung im Umfang von ca. 20 Minuten.

Voraussetzungen
keine
Teilleistung: Geschäftspolitik der Kreditinstitute [T-WIWI-102626]

Verantwortung: Wolfgang Müller

Bestandteil von: [M-WIWI-101483] Finance 2
[M-WIWI-101480] Finance 3

Leistungspunkte Sprache Version
3 deutsch 1

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 15/16</td>
<td>2530299</td>
<td>Geschäftspolitik der Kreditinstitute</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Wolfgang Müller</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60min.) (nach §4(2), 1 SPO)
Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen
Keine

Empfehlungen
Keine

Die folgenden Informationen stammen aus der Veranstaltung Geschäftspolitik der Kreditinstitute (WS 15/16):

Lernziel

Inhalt
Der Geschäftsleitung eines Kreditinstituts obliegt es, unter Berücksichtigung aller maßgeblichen endogenen und exogenen Einflussfaktoren, eine Geschäftspolitik festzulegen und zu begleiten, die langfristig den Erfolg der Bankunternehmung sicherstellt. Dabei wird sie zunehmend durch wissenschaftlich fundierte Modelle und Theorien bei der Beschreibung vom Erfolg und Risiko eines Bankbetriebes unterstützt. Die Vorlesung "Geschäftspolitik der Kreditinstitute" setzt an dieser Stelle an und stellt den Brückenschlag zwischen der bankwirtschaftlichen Theorie und der praktischen Umsetzung her. Dabei nehmen die Vorlesungsteilnehmer die Sichtweise der Unternehmensleitung ein und setzen sich im ersten Kapitel mit der Entwicklung des Bankensektors auseinander. Mit Hilfe geeigneter Annahmen wird dann im zweiten Abschnitt ein Strategiekonzept entwickelt, das in den folgenden Vorlesungsteilten durch die Gestaltung der Bankleistungen (Kap. 3) und des Marketingplans (Kap. 4) weiter untermauert wird. Im operativen Geschäft muss die Unternehmensstrategie durch eine adäquate Ertrags- und Risikosteuerung (Kap. 5 und 6) begleitet werden, die Teile der Gesamtbanksteuerung (Kap. 7) darstellen. Um die Ordnungsmäßigkeit der Geschäftsführung einer Bank sicherzustellen, sind eine Reihe von bankenaufsichtsrechtlichen Anforderungen (Kap. 8) zu beachten, die maßgeblichen Einfluss auf die Gestaltung der Geschäftspolitik haben.

Arbeitsaufwand
Gesamtaufwand bei 3 Leistungspunkten: ca. 90 Stunden
Präsenzzeit: 30 Stunden
Vor- und Nachbereitung der LV: 45,0 Stunden
Prüfung und Prüfungsvorbereitung: 15,0 Stunden

Literatur
Weiterführende Literatur:
- Ein Skript wird im Verlauf der Veranstaltung kapitelweise ausgeteilt.
- Hartmann-Wendels, Thomas; Pfingsten, Andreas; Weber, Martin; 2014, Bankbetriebslehre, 6. Auflage, Springer
Teilleistung: Globale Differentialgeometrie [T-MATH-105885]

Verantwortung: Wilderich Tuschmann, Sebastian Grensing
Bestandteil von: [M-MATH-102912] Globale Differentialgeometrie

Leistungspunkte: 8
Version: 1

Erfolgskontrolle(n)
Mündliche Prüfung im Umfang von ca. 30 Minuten.

Voraussetzungen
keine
Teilleistung: Globale Optimierung I [T-WIWI-102726]

Verantwortung: Oliver Stein

Bestandteil von:
- [M-WIWI-101473] Mathematische Optimierung
- [M-WIWI-101414] Methodische Grundlagen des OR

Leistungspunkte: 4,5
Version: 1

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2016</td>
<td>2550144</td>
<td>Rechnerübung zu Globale Optimierung I+II</td>
<td>Übung (Ü)</td>
<td></td>
<td>Oliver Stein, Marcel Sinske</td>
</tr>
<tr>
<td>SS 2016</td>
<td>2550135</td>
<td>Übungen zu Globale Optimierung I+II</td>
<td>Übung (Ü)</td>
<td>1</td>
<td>Tomás Bajbar, Oliver Stein</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60min.) (nach §4(2), 1 SPO).
Zulassungsvoraussetzung zur schriftlichen Prüfung ist der Erwerb von mindestens 30% der Übungspunkte. Die Prüfungsanmeldung über das Online-Portal für die schriftliche Prüfung gilt somit vorbehaltlich der Erfüllung der Zulassungsvoraussetzung.
Die Erfolgskontrolle kann auch zusammen mit der Erfolgskontrolle zu Globale Optimierung II [2550136] erfolgen. In diesem Fall beträgt die Dauer der schriftlichen Prüfung 120 min.

Voraussetzungen
Keine

Modellierte Voraussetzungen
Es müssen die folgenden Bestandteile erfüllt werden:

Empfehlungen
Keine

Anmerkung
Teil I und II der Vorlesung werden nacheinander im selben Semester gelesen.
Teilleistung: Globale Optimierung I und II [T-WIWI-103638]

Verantwortung:
Bestandteil von:
[M-WIWI-101473] Mathematische Optimierung
[M-WIWI-101414] Methodische Grundlagen des OR

Leistungspunkte
9

Version
1

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (120min.) (nach §4(2), 1 SPO).
Die Prüfung wird im Vorlesungssemester und dem darauf folgenden Semester angeboten.
Zulassungsvoraussetzung zur schriftlichen Prüfung ist der Erwerb von mindestens 30% der Übungspunkte. Die Prüfungsanmeldung über das Online-Portal für die schriftliche Prüfung gilt somit vorbehaltlich der Erfüllung der Zulassungsvoraussetzung.

Voraussetzungen
Keine

Modellierte Voraussetzungen
Es müssen die folgenden Bestandteile erfüllt werden:

Empfehlungen
Keine

Anmerkung
Teil I und II der Vorlesung werden nacheinander im selben Semester gelesen.
Teilleistung: Globale Optimierung II [T-WIWI-102727]

Verantwortung: Oliver Stein
Bestandteil von: [M-WIWI-101473] Mathematische Optimierung
[M-WIWI-101414] Methodische Grundlagen des OR

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>1</td>
</tr>
</tbody>
</table>

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2016</td>
<td>2550144</td>
<td>Rechnerübung zu Globale Optimierung I+II</td>
<td>Übung (Ü)</td>
<td></td>
<td>Oliver Stein, Marcel Sinske</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tomás Bajbar, Oliver Stein</td>
</tr>
<tr>
<td>SS 2016</td>
<td>2550135</td>
<td>Übungen zu Globale Optimierung I+II</td>
<td>Übung (Ü)</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60min.) (nach §4(2), 1 SPO).
Die Prüfung wird im Vorlesungssemester und dem darauf folgenden Semester angeboten.
Zulassungsvoraussetzung zur schriftlichen Prüfung ist der Erwerb von mindestens 30% der Übungspunkte. Die Prüfungsanmeldung über das Online-Portal für die schriftliche Prüfung gilt somit vorbehaltlich der Erfüllung der Zulassungsvoraussetzung.
Die Erfolgskontrolle kann auch zusammen mit der Erfolgskontrolle zu Globale Optimierung I [2550134] erfolgen. In diesem Fall beträgt die Dauer der schriftlichen Prüfung 120 min.

Voraussetzungen
Keine

Modellierte Voraussetzungen
Es müssen die folgenden Bestandteile erfüllt werden:

Anmerkung
Teil I und II der Vorlesung werden nacheinander im selben Semester gelesen.
Teilleistung: Graph Theory and Advanced Location Models [T-WIWI-102723]

Verantwortung: Stefan Nickel
Bestandteil von: [M-WIWI-101473] Mathematische Optimierung

Leistungspunkte: 4,5
Version: 1

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer 120-minütigen schriftlichen Prüfung (nach §4(2), 1 SPO).
Die Prüfung wird im Semester der Vorlesung und dem darauf folgenden Semester angeboten.

Voraussetzungen
Keine

Empfehlungen

Anmerkung
Die Lehrveranstaltung wird unregelmäßig angeboten. Das für drei Studienjahre im Voraus geplante Lehrangebot kann im Internet nachgelesen werden.
<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>1</td>
</tr>
</tbody>
</table>

Teilleistung: Graphentheorie [T-MATH-102273]

Verantwortung: Maria Aksenovich, Torsten Ueckerdt
Bestandteil von: [M-MATH-101336] Graphentheorie

Voraussetzungen
Keine
Teilleistung: Gruppenwirkungen in der Riemannschen Geometrie [T-MATH-105925]

Verantwortung: Wilderich Tuschmann
Bestandteil von: [M-MATH-102954] Gruppenwirkungen in der Riemannschen Geometrie

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

Voraussetzungen
Keine
Teilleistung: Homotopietheorie [T-MATH-105933]

Verantwortung: Roman Sauer
Bestandteil von: [M-MATH-102959] Homotopietheorie

Leistungspunkte Version
8 1

Voraussetzungen
Keine
Teilleistung: Incentives in Organizations [T-WIWI-105781]

Verantwortung: Petra Nieken

Bestandteil von: [M-WIWI-101505] Experimentelle Wirtschaftsforschung
[M-WIWI-101500] Microeconomic Theory

Leistungspunkte: 4.5
Version: 1

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2016</td>
<td>2573004</td>
<td>Übung zu Incentives in Organisations</td>
<td>Übung (U)</td>
<td>1</td>
<td>Petra Nieken</td>
</tr>
<tr>
<td>SS 2016</td>
<td>2573003</td>
<td>Incentives in Organisations</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Petra Nieken</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) (nach §4(2), 1 SPO).
Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.
Bei einer geringen Anzahl an zur Klausur angemeldeten Teilnehmern behalten wir uns die Möglichkeit vor, eine mündliche Prüfung anstelle einer schriftlichen Prüfung stattfinden zu lassen.

Voraussetzungen
Keine

Empfehlungen
Es werden Kenntnisse in Mikroökonomie, Spieltheorie und Statistik vorausgesetzt.

Anmerkung
Die Veranstaltung wird neu zum Sommersemester 2016 angeboten.
Teilleistung: Innovationstheorie und -politik [T-WIWI-102840]

Verantwortung: Ingrid Ott
Bestandteil von: [M-WIWI-101478] Innovation und Wachstum

Leistungspunkte 4,5
Sprache deutsch
Version 1

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2016</td>
<td>2560236</td>
<td>Innovationstheorie und -politik</td>
<td>Vorlesung (V)</td>
<td></td>
<td>Ivan Savin, Ingrid Ott</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60min.) (nach §4(2), 1 SPO). Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.
In der Vorlesung haben Studierende die Möglichkeit, durch eine kurze schriftliche Hausarbeit samt deren Präsentation in der Übung eine auf die Klausurnote anrechenbare Leistung zu erbringen. Für diese Ausarbeitung werden Punkte vergeben. Wenn in der Kreditpunkte-Klausur die für ein Bestehen erforderliche Mindestpunktzahl erreicht wird, werden die in der veranstaltungsbegleitend erbrachten Leistung erzielten Punkte zur in der Klausur erreichten Punktzahl addiert. Eine Notenverschlechterung ist damit definitionsgemäß nicht möglich, eine Notenverbesserung nicht zwangsläufig, aber sehr wahrscheinlich (nicht jeder zusätzliche Punkt verbessert die Note; besser als 1 geht nicht). Die Ausarbeitungen können die Note „nicht ausreichend“ in der Klausur dabei nicht ausgleichen.

Voraussetzungen
Keine

Empfehlungen

Die folgenden Informationen stammen aus der Veranstaltung Innovationstheorie und -politik (SS 2016):

Lernziel
Der/die Studierende

- ist in der Lage die Bedeutung alternativer Anreizmechanismen für die Entstehung und Verbreitung von Innovationen zu identifizieren
- lernt die Zusammenhänge zwischen Marktform und der Entstehung von Innovationen zu verstehen und
- kann begründen, in welchen Fällen Markteingriffe durch den Staat, bspw. in Form von Steuern und Subventionen legitimiert werden können und sie vor dem Hintergrund wohlfahrtsökonomischer Maßstäbe bewerten

Inhalt

- Anreize zur Entstehung von Innovationen
- Patente
- Diffusion
- Wirkung von technologischem Fortschritt
- Innovationspolitik

Arbeitsaufwand
Gesamtaufwand bei 4,5 Leistungspunkten: ca. 135.0 Stunden
Präsenzzeit: 30 Stunden
Vor – und Nachbereitung der LV: 45.0 Stunden
Prüfung und Prüfungsvorbereitung: 60.0 Stunden

Literatur

Auszug:

Teilleistung: Insurance Marketing [T-WIWI-102601]

Verantwortung: Edmund Schwake
Bestandteil von: [M-WIWI-101469] Insurance Management I

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Sprache</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>deutsch</td>
<td>1</td>
</tr>
</tbody>
</table>

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2016</td>
<td>2530323</td>
<td>Insurance Marketing</td>
<td>Vorlesung (V)</td>
<td>3</td>
<td>Edmund Schwake</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Note setzt sich zu je 50% aus den Vortragsleistungen (inkl. Ausarbeitungen) und der mündlichen Prüfung zusammen.

Voraussetzungen
Keine

Empfehlungen
Keine

Die folgenden Informationen stammen aus der Veranstaltung Insurance Marketing (SS 2016):

Lernziel
Grundlegende Bedeutung der Absatzpolitik für die Erstellung der verschiedenen, mitunter komplexen, Dienstleistungen von Versicherungsunternehmen kennen; Beitrag des Kunden als externem Produktionsfaktor über das Marketing steuern; absatzpolitische Instrumente in ihrer charakteristischen Prägung durch das Versicherungsgeschäft kundenorientiert gestalten.

Inhalt

1. Absatzpolitik als Teil der Unternehmenspolitik von Versicherungsunternehmen
2. Konstituenten der Absatzmärkte von Versicherungsunternehmen
3. Produkt- oder Programmpolitik (kundenorientiert)
4. Entgeltpolitik: Variablen und Restriktionen der Preispolitik
5. Distributionspolitik: Absatzwege, Absatzorgane und deren Vergütung
6. Kommunikationspolitik: Werbung, Verkaufsförderung, PR

Arbeitsaufwand
Gesamtaufwand bei 4,5 Leistungspunkten: ca. 135 Stunden
Präsenzzeit: 45 Stunden
Selbststudium: 90 Stunden

Literatur
Weiterführende Literatur:
- Farny, D.. Versicherungsbetriebslehre (Kapitel III.3 sowie V.4). Karlsruhe 2011
- Wiedemann, K.-P./Klee, A. Ertragsorientiertes Zielkundenmanagement für Finanzdienstleister, Wiesbaden 2003
Teilleistung: Insurance Production [T-WIWI-102648]

Verantwortung: Ute Werner
Bestandteil von: [M-WIWI-101469] Insurance Management I

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Sprache</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>deutsch</td>
<td>1</td>
</tr>
</tbody>
</table>

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2016</td>
<td>2530324</td>
<td>Insurance Production</td>
<td>Vorlesung (V)</td>
<td>3</td>
<td>Ute Werner</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Note setzt sich zu je 50% aus den Vortragsleistungen (inkl. Ausarbeitungen) und der mündlichen Prüfung zusammen.

Voraussetzungen

Keine

Empfehlungen

Keine

Anmerkung

Diese Veranstaltung wird nach Bedarf angeboten. Weitere Details finden Sie auf der Webseite des Instituts: http://insurance.fbv.kit.edu

Die folgenden Informationen stammen aus der Veranstaltung Insurance Production (SS 2016):

Lernziel

- Breite und Vielfalt der Leistungserstellung im Versicherungs-, Kapitalanlage- und Dienstleistungsgeschäft kennen;
- wichtige Strategien zur Förderung des Ausgleichs im Kollektiv und in der Zeit vergleichend beurteilen können;
- Besonderheiten der Abbildung des Versicherungsgeschäfts und der Kalkulation von Versicherungsprodukten verstehen;
- Einblick haben in die Deckungsbeitrags- und Prozesskostenrechnung in Versicherungsunternehmen.

Inhalt

Produktkonzeptionen, Produkte und Produktionsfaktoren von Versicherungsunternehmen; innerbetriebliche Transformati-
onsprozesse; Management des versicherungstechnischen Risikos und Ansätze zur wertorientierten Steuerung; produktions-
und kostentheoretische Modellierung des Versicherungsgeschäfts; Ansätze zur Berücksichtigung zufallsabhängiger Schwank-
ungen von Kosten und Leistungen im Rechnungswesen; ausgewählte Aspekte des Controlling im Versicherungsunterneh-
men.

Arbeitsaufwand

Gesamtaufwand bei 4,5 Leistungspunkten: ca. 135 Stunden
Präsenzzeit: 45 Stunden
Selbststudium: 90 Stunden

Literatur

Weiterführende Literatur:

Wirtschaftsmathematik (M.Sc.)

Modulhandbuch mit Stand 04.08.2016 für Wintersemester 16/17
Teilleistung: Insurance Risk Management [T-WIWI-102636]

Verantwortung: Harald Maser
Bestandteil von: [M-WIWI-101469] Insurance Management I

Leistungspunkte: 2,5
Version: 1

Erfolgskontrolle(n):
Die Erfolgskontrolle erfolgt in Form einer schriftlichen oder mündlichen Prüfung am Semesterende (nach §4(2), 1 o. 2 SPO).

Voraussetzungen:
Keine

Empfehlungen:
Keine

Anmerkung:
Blockveranstaltung; aus organisatorischen Gründen ist eine Anmeldung erforderlich im Sekretariat des Lehrstuhls: thomas.mueller3@kit.edu.
Teilleistung: Integralgleichungen [T-MATH-105834]

Verantwortung: Tilo Arens, Andreas Kirsch, Frank Hettlich
Bestandteil von: [M-MATH-102874] Integralgleichungen

Voraussetzungen
Keine

Leistungspunkte 8
Version 1
Teilleistung: Internationale Finanzierung [T-WIWI-102646]

Verantwortung: Marliese Uhrig-Homburg
Bestandteil von: [M-WIWI-101483] Finance 2
[M-WIWI-101480] Finance 3

Leistungspunkte: 3
Sprache: deutsch
Version: 1

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2016</td>
<td>2530570</td>
<td>Internationale Finanzierung</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Marliese Uhrig-Homburg, Ulrich Walter</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60min.) (nach §4(2), 1 SPO).
Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.
Bei einer geringen Anzahl an zur Klausur angemeldeten Teilnehmern behalten wir uns die Möglichkeit vor, eine mündliche Prüfung anstelle einer schriftlichen Prüfung stattfinden zu lassen.

Voraussetzungen
Keine

Empfehlungen
Keine

Anmerkung
Die Veranstaltung wird 14-tägig oder als Blockveranstaltung angeboten.

Die folgenden Informationen stammen aus der Veranstaltung Internationale Finanzierung (SS 2016):

Lernziel
Ziel der Vorlesung ist es, die Studierenden mit Investitions- und Finanzierungsaufgaben auf den internationalen Märkten vertraut zu machen und sie in die Lage zu versetzen, Wechselkursrisiken zu managen.

Inhalt

Arbeitsaufwand
Gesamtaufwand bei 3 Leistungspunkten: ca. 90 Stunden
Präsenzzeit: 30 Stunden
Vor- und Nachbereitung der LV: 45.0 Stunden
Prüfung und Prüfungsvorbereitung: 15.0 Stunden

Literatur
Weiterführende Literatur:

Teilleistung: Internationale Wirtschaftspolitik [T-WIWI-102897]

Verantwortung: Jan Kowalski

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60min.) (nach §4(2), 1 SPO).
Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen
Keine

Empfehlungen
Der vorherige Besuch der Veranstaltungen Volkswirtschaftslehre II: Makroökonomie [2600014] wird empfohlen.

Anmerkung
Die Prüfung wird noch bis Wintersemester 2015/16 angeboten. Eine letztmalige Wiederholungsprüfung wird es im Sommersemester 2016 geben (nur für Nachschreiber)!
Teilleistung: Inverse Probleme [T-MATH-105835]

Verantwortung: Andreas Rieder, Tilo Arens, Andreas Kirsch, Frank Hettlich
Bestandteil von: [M-MATH-102890] Inverse Probleme

Leistungspunkte 8
Version 1

Voraussetzungen
Keine
Teilleistung: Klassische Methoden für partielle Differentialgleichungen [T-MATH-105832]

Verantwortung: Michael Plum, Wolfgang Reichel, Jens Rottmann-Matthes, Dirk Hundertmark, Roland Schnaubelt, Lutz Weis, Tobias Lamm

Bestandteil von: [M-MATH-102870] Klassische Methoden für partielle Differentialgleichungen

Leistungspunkte 8
Version 1

Voraussetzungen
Keine
Die folgenden Informationen stammen aus der Veranstaltung Knowledge Discovery (WS 15/16):

Lernziel

Studierende

- kennen die Grundlagen des Maschinellen Lernens, Data Minings und Knowledge Discovery.
- können lernfähige Systeme, konzipieren, trainieren und evaluieren
- führen Knowledge Discovery Projekte unter Berücksichtigung von Algorithmen, Repräsentationen und Anwendungen durch

Inhalt

Arbeitsaufwand

Der Gesamtarbeitsaufwand für diese Lerneinheit beträgt ca. 150 Stunden (5.0 Credits).

Literatur

- P. Tan, M. Steinbach, V. Kumar: Introduction to Data Mining, 2005, Addison Wesley
<table>
<thead>
<tr>
<th>Teilleistung: Kombinatorik [T-MATH-105916]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verantwortung: Maria Aksenovich, Torsten Ueckerdt</td>
</tr>
<tr>
<td>Bestandteil von: [M-MATH-102950] Kombinatorik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>1</td>
</tr>
</tbody>
</table>

Voraussetzungen
Keine
Teilleistung: Kombinatorik in der Ebene [T-MATH-105895]

Verantwortung: Maria Aksenovich, Torsten Ueckerdt
Bestandteil von: [M-MATH-102925] Kombinatorik in der Ebene

Leistungspunkte 7
Version 1

Voraussetzungen
Keine
<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>1</td>
</tr>
</tbody>
</table>

Teilleistung: Komplexe Analysis [T-MATH-105849]

Verantwortung: Michael Plum, Christoph Schmoeger, Wolfgang Reichel, Gerd Herzog, Roland Schnaubelt, Lutz Weis

Bestandteil von: [M-MATH-102878] Komplexe Analysis

Voraussetzungen
Keine
<table>
<thead>
<tr>
<th>Teilleistung: Konvexe Analysis [T-WIWI-102856]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verantwortung: Oliver Stein</td>
</tr>
<tr>
<td>Bestandteil von: [M-WIWI-101473] Mathematische Optimierung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60min.) (nach §4(2), 1 SPO).

Voraussetzungen
Keine

Empfehlungen
Es wird dringend empfohlen, vor Besuch dieser Veranstaltung mindestens eine Vorlesung aus dem Bachelor-Programm des Lehrstuhls zu belegen.

Anmerkung
Die Lehrveranstaltung wird nicht regelmäßig angeboten. Das für drei Studienjahre im Voraus geplante Lehrangebot kann im Internet (www.ior.kit.edu) nachgelesen werden.
Teilleistung: Konvexe Geometrie [T-MATH-105831]

Verantwortung: Daniel Hug
Bestandteil von: [M-MATH-102864] Konvexe Geometrie

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>1</td>
</tr>
</tbody>
</table>

Voraussetzungen
Keine
Teilleistung: Krankenhausmanagement [T-WIWI-102787]

Verantwortung: Stefan Nickel
Bestandteil von: [M-WIWI-102805] Service Operations

Leistungspunkte: 4,5
Sprache: deutsch
Version: 1

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2016</td>
<td>2550493</td>
<td>Krankenhausmanagement</td>
<td>Block (B)</td>
<td>1</td>
<td>Martin Hansis</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen

Keine

Anmerkung

Die Lehrveranstaltung wird in jedem Semester angeboten. Das für drei Studienjahre im Voraus geplante Lehrangebot kann im Internet nachgelesen werden.

Die folgenden Informationen stammen aus der Veranstaltung Krankenhausmanagement (SS 2016):

Lernziel

Der/die Studierende

- besitzt grundlegende Kenntnisse über die Arbeitsabläufe in Krankenhäusern,
- setzt Methoden des Operations Research auch in sogenannten Non-Profit-Organisationen nutzenstiftend ein,
- erklärt, klassifiziert und nutzt die wesentlichen Einsatzbereiche für mathematische Modelle, wie z.B. Personalplanung oder Qualität.

Inhalt

Wesentliche Unterthemen sind: Normatives Umfeld, Binnenorganisation, Personalmanagement, Qualität, Externe Vernetzung und Marktauftritt. Die Studierenden haben die Möglichkeit, an einer Abschlussprüfung teilzunehmen.

Arbeitsaufwand

Gesamtaufwand bei 3 Leistungspunkten: ca. 90 Stunden
Präsenzzeit: 30 Stunden
Vor- und Nachbereitung der LV: 45.0 Stunden
Prüfung und Prüfungsvorbereitung: 15.0 Stunden
Teilleistung: Kreditrisiken [T-WIWI-102645]

Verantwortung: Marliese Uhrig-Homburg
Bestandteil von: [M-WIWI-101483] Finance 2
[M-WIWI-101480] Finance 3

Leistungspunkte: 4,5
Sprache: deutsch
Version: 1

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 15/16</td>
<td>2530565</td>
<td>Kreditrisiken</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Philipp Schuster</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (Klausur) nach §4, Abs. 2, 1 der SPO.

Voraussetzungen
Keine

Empfehlungen
Kenntnisse aus der Veranstaltung Derivate sind sehr hilfreich.

Die folgenden Informationen stammen aus der Veranstaltung Kreditrisiken (WS 15/16):

Lernziel

Inhalt

Arbeitsaufwand
Gesamtaufwand bei 4,5 Leistungspunkten: ca. 135.0 Stunden
Präsenzzeit: 30 Stunden
Vor – und Nachbereitung der LV: 45.0 Stunden
Prüfung und Prüfungsvorbereitung: 60.0 Stunden

Literatur

Weiterführende Literatur:

Teilleistung: L2-Invarianten [T-MATH-105924]

Verantwortung: Holger Kammeyer, Roman Sauer
Bestandteil von: [M-MATH-102952] L2-Invarianten

Leistungspunkte: 5
Version: 1

Voraussetzungen
Keine
Teilleistung: Management von Informatik-Projekten [T-WIWI-102667]

Verantwortung: Roland Schätzle
Bestandteil von: [M-WIWI-101472] Informatik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Sprache</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>deutsch</td>
<td>1</td>
</tr>
</tbody>
</table>

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2016</td>
<td>2511214</td>
<td>Management von Informatik-Projekten</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Roland Schätzle</td>
</tr>
<tr>
<td>SS 2016</td>
<td>2511215</td>
<td>Übungen zu Management von Informatik-Projekten</td>
<td>Übung (U)</td>
<td>1</td>
<td>Roland Schätzle</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (Klausur) im Umfang von 1h (nach §4(2), 1 SPO). Sie findet in der ersten Woche nach der Vorlesungszeit statt.

Voraussetzungen

Keine

Die folgenden Informationen stammen aus der Veranstaltung Management von Informatik-Projekten (SS 2016):

Lernziel

Die Studierenden

- erklären die Begriffswelt des IT-Projektmanagement und die dort typischerweise angewendeten Methoden zur Planung, Abwicklung und Steuerung,
- wenden die Methoden passend zur Projektphase und zum Projektkontext an,
- berücksichtigen dabei u.a. organisatorische und soziale Einflussfaktoren.

Inhalt

Es werden Rahmenbedingungen, Einflussfaktoren und Methoden bei der Planung, Abwicklung und Steuerung von Informatikprojekten behandelt. Insbesondere wird auf folgende Themen eingegangen:

- Projektumfeld
- Projektorganisation
- Projektplanung mit den Elementen:
 - Projektstrukturplan
 - Ablaufplan
 - Terminplan
 - Ressourcenplan
- Aufwandsschätzung
- Projektinfrastruktur
- Projektsteuerung und Projektcontrolling
- Risikomanagement
- Wirtschaftlichkeitsbetrachtung
- Entscheidungsprozesse, Verhandlungsführung, Zeitmanagement.

Arbeitsaufwand

Der Gesamtarbeitsaufwand für diese Lerneinheit beträgt ca. 150 Stunden (5.0 Credits).
Vorlesung 30h
Übung 15h
Vor-bzw. Nachbereitung der Vorlesung 30h
Vor-bzw. Nachbereitung der Übung 30h
Prüfungsvorbereitung 44h
Prüfung 1h
Summe: 150h

Literatur

- B. Hindel, K. Hörmann, M. Müller, J. Schmied. Basiswissen Software-Projektmanagement. dpunkt.verlag 2004

Weitere Literatur wird in der Vorlesung bekannt gegeben.
Teilleistung: Marketing Strategy Planspiel [T-WIWI-102835]

Verantwortung: Martin Klarmann

Bestandteil von: [M-WIWI-101490] Marketing Management

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2016</td>
<td>2571183</td>
<td>Marketing Strategy Planspiel</td>
<td>Block (B)</td>
<td>1</td>
<td>Martin Klarmann, Assistenten</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen

Keine

Empfehlungen

Keine

Anmerkung

Die folgenden Informationen stammen aus der Veranstaltung Marketing Strategy Planspiel (SS 2016):

Lernziel

Studierende

- können mit der Software des Unternehmensplanspiels “Markstrat” umgehen
- verfügen über die Fähigkeit, eigenverantwortlich in Gruppen strategische Marketing-Entscheidungen treffen zu können
- können grundlegende marketingstrategische Konzepte (z.B. zur Marktsegmentierung, Produkteinführung, Koordination des Marketing Mix, Marktforschung, Vertriebswegauswahl oder Wettbewerbsverhalten) auf einen praktischen Kontext anwenden
- können Informationen zur Entscheidungsfindung sammeln und sinnvoll selektieren
- können auf vorgegebene Markteignisse auf einer darauf abgestimmten Weise reagieren
- sind fähig, ihre Strategie in einer klaren und in sich stimmigen Weise zu präsentieren
- sind in der Lage, über Erfolg, Probleme, wichtige Ereignisse, externe Einflüsse und Strategiewechsel während des Planspiels zu referieren und ihre Lerneffekte reflektiert zu präsentieren

Inhalt

Arbeitsaufwand
Gesamtaufwand bei 1,5 Leistungspunkten: ca. 45.0 Stunden
Präsenzzeit: 15 Stunden
Vor- und Nachbereitung der LV: 22.5 Stunden
Prüfung und Prüfungsvorbereitung: 7.5 Stunden
Teilleistung: Marketingkommunikation [T-WIWI-102902]

Verantwortung: Ju-Young Kim

Leistungspunkte: 4,5
Sprache: deutsch
Version: 1

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2016</td>
<td>2540441</td>
<td>Übung zu Marketingkommunikation</td>
<td>Übung (U)</td>
<td>1</td>
<td>Wiebke Klingemann, Ju-Young Kim</td>
</tr>
<tr>
<td>SS 2016</td>
<td>2540440</td>
<td>Marketingkommunikation</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Ju-Young Kim</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) (nach §4(2), 1 SPO).

Voraussetzungen
Keine

Empfehlungen
Keine

Die folgenden Informationen stammen aus der Veranstaltung Marketingkommunikation (SS 2016):

Inhalt

Literatur

- Esch, F.-R./Herrmann, A./Sattler, H. "Marketing – Eine managementorientierte Einführung"
- Kroeber-Riel, W./Esch, F.-R. "Strategie und Technik der Werbung"

Weitere Literaturempfehlungen (Research Papers) finden Sie direkt im Skript.
Teilleistung: Markovsche Entscheidungsprozesse [T-MATH-105921]

Verantwortung: Nicole Bäuerle
Bestandteil von: [M-MATH-102907] Markovsche Entscheidungsprozesse

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Mündliche Prüfung im Umfang von ca. 20 Minuten.

Voraussetzungen
keine
Teilleistung: Marktforschung [T-WIWI-102811]

Verantwortung: Martin Klarmann
Bestandteil von: [M-WIWI-101490] Marketing Management

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Sprache</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>deutsch</td>
<td>1</td>
</tr>
</tbody>
</table>

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2016</td>
<td>2571151</td>
<td>Übung zu Marktforschung (Master)</td>
<td>Übung (U)</td>
<td>1</td>
<td>Verena Rieger</td>
</tr>
<tr>
<td>SS 2016</td>
<td>2571150</td>
<td>Marktforschung</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Martin Klarmann</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) (nach §4(2), 1 SPO).

Voraussetzungen
Keine

Empfehlungen
Keine

Anmerkung
Diese Veranstaltung ist Voraussetzung für Studierende, die an Abschlussarbeiten bei der Forschergruppe Marketing & Vertrieb interessiert sind.

Die folgenden Informationen stammen aus der Veranstaltung Marktforschung (SS 2016):

Lernziel

- Theoretische Grundlagen der Marktforschung
- Statistische Grundlagen der Marktforschung (z.B. uni- und bivariate Statistiken, Hypothesentests)
- Messung von Kundeneinstellungen (z.B. Zufriedenheitsmessung, Faktorenanalyse)
- Verstehen von Kundenverhalten (z.B. Regressionsanalyse, Experimente, Panels, Kausalanalyse)
- Treffen strategischer Entscheidungen (z.B. Marktsegmentierung, Clusteranalyse)

Inhalt

- Theoretische Grundlagen der Marktforschung
- Statistische Grundlagen der Marktforschung (z.B. Uni- und Bivariate Statistiken, Hypothesentests)
- Messung von Kundeneinstellungen (z.B. Zufriedenheitsmessung, Faktorenanalyse)
- Verstehen von Kundenverhalten (z.B. Regressionsanalyse, Experimente, Panels, Kausalanalyse)
- Treffen strategischer Entscheidungen (z.B. Marktsegmentierung, Clusteranalyse)
Arbeitsaufwand
Gesamtaufwand bei 4,5 Leistungspunkten: ca. 135.0 Stunden
Präsenzzeit: 30 Stunden
Vor- und Nachbereitung der LV: 45.0 Stunden
Prüfung und Prüfungsvorbereitung: 60.0 Stunden

Literatur
Teilleistung: Masterarbeit [T-MATH-105878]

Verantwortung: Sebastian Grensing
Bestandteil von: [M-MATH-102917] Modul Masterarbeit

Leistungspunkte: 30
Version: 1

Voraussetzungen
Keine
Teilleistung: Mathematische Methoden in Signal- und Bildverarbeitung [T-MATH-105862]

Verantwortung: Andreas Rieder

Leistungspunkte: 8
Version: 1

Erfolgskontrolle(n)
Mündliche Prüfung im Umfang von ca. 30 Minuten.

Voraussetzungen
keine
Teilleistung: Mathematische Modellierung und Simulation in der Praxis [T-MATH-105889]

Verantwortung: Gudrun Thäter

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Voraussetzungen
Keine
Teilleistung: Mathematische Statistik [T-MATH-105872]

Verantwortung: Bernhard Klar, Norbert Henze
Bestandteil von: [M-MATH-102909] Mathematische Statistik

Leistungspunkte: 4
Version: 1

Erfolgskontrolle(n)
Mündliche Prüfung im Umfang von ca. 20 Minuten.

Voraussetzungen
keine
Teilleistung: Mathematische Theorie der Demokratie [T-WIWI-102617]

Verantwortung: Andranik Melik-Tangian
Bestandteil von: [M-WIWI-101504] Collective Decision Making

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 15/16</td>
<td>2525537</td>
<td>Mathematische Theorie der Demokratie</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Andranik Melik-Tangian</td>
</tr>
</tbody>
</table>

Erfolgskontrollen(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (120 min.) (nach §4(2), 1 SPO). Bei geringer Teilnehmerzahl wird die Prüfung (nach §4(2), 2 SPO) mündlich (20 - 30 min.) durchgeführt. Die Note der schriftlichen bzw. mündlichen Prüfung

Voraussetzungen

Keine

Die folgenden Informationen stammen aus der Veranstaltung Mathematische Theorie der Demokratie (WS 15/16):

Lernziel

Der/die Studierende versteht die Grundlage der Demokratie und die Implementierungsprobleme und beherrscht die Operationalisierung der Probleme durch mathematische Modelle.

Inhalt

Die mathematische Theorie der Demokratie beschäftigt sich mit der Auswahl von Vertretern, die im Namen der ganzen Gesellschaft Entscheidungen treffen. Der Begriff der Repräsentanz wird mit dem Popularitäts-Index operationalisiert (durchschnittlicher Prozentsatz der zu repräsentierenden Bevölkerung für eine Themenreihe); sowie mit dem Universalitäts-Index (Prozentsatz der Themen wobei eine Bevölkerungsmehrheit repräsentiert wird). Mit diesen Indizes werden die Eigenschaften von einzelnen Vertretern (Präsident, Diktator) und Gremien (Parlament, Koalition, Kabinett, Magistrat, Geschworene) untersucht. Um die repräsentative und direkte Demokratien zu überbrücken, wird ein Wahlverfahren vorgeschlagen, das nicht auf einer Abstimmung basiert, sondern auf der Indizierung der Kandidaten hinsichtlich der politischen Profile der Wählerschaft. Darüber hinaus werden gesellschaftliche Anwendungen (Bundeswahl, Umfragen) sowie nicht gesellschaftliche Anwendungen (Multikriteria-Entscheidungen, Finanzen, Straßenverkehrskontrolle) betrachtet.

Arbeitsaufwand

Gesamtaufwand bei 4.5 LP ca. 135 Std.
Präsenzzeit: 30 Stunden
Selbststudium: 105 Stunden

Literatur

Teilleistung: Matrixfunktionen [T-MATH-105906]

Verantwortung: Volker Grimm
Bestandteil von: [M-MATH-102937] Matrixfunktionen

Leistungspunkte: 8
Version: 1

Voraussetzungen
Keine
Teilleistung: Maxwellgleichungen [T-MATH-105856]

Verantwortung: Tilo Arens, Andreas Kirsch, Frank Hettlich
Bestandteil von: [M-MATH-102885] Maxwellgleichungen

Leistungspunkte 8 Version 1

Voraussetzungen
Keine
Teilleistung: Modellierung von Geschäftsprozessen [T-WIWI-102697]

Verantwortung: Andreas Oberweis
Bestandteil von: [M-WIWI-101472] Informatik

Leistungspunkte 5 Sprache deutsch Version 1

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 15/16</td>
<td>2511210</td>
<td>Modellierung von Geschäftsprozessen</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Andreas Oberweis</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (Klausur) im Umfang von 1h nach § 4, Abs. 2, 1 SPO. Sie findet in der ersten Woche nach der Vorlesungszeit statt.

Voraussetzungen
Keine

Die folgenden Informationen stammen aus der Veranstaltung Modellierung von Geschäftsprozessen (WS 15/16):

Lernziel
Studierende
- erläutern die Ziele der Geschäftsprozessmodellierung und wenden unterschiedliche Modellierungssprachen an,
- wählen in einem gegebenen Anwendungskontext eine passende Modellierungssprache aus,
- nutzen selbständig geeignete Werkzeuge zur Geschäftsprozessmodellierung,
- wenden Analysemethoden an, um Prozessmodelle bezüglich ausgewählter Qualitätseigenschaften zu bewerten.

Inhalt

Arbeitsaufwand
Der Gesamtarbeitsaufwand für diese Lerneinheit beträgt ca. 150 Stunden.
Vorlesung 30h
Übung 15h

Vor-bzw. Nachbereitung der Vorlesung 30h
Vor- bzw. Nachbereitung der Übung 30h
Prüfungsvorbereitung 44h
Prüfung 1h
Summe: 150h

Literatur

Weitere Literatur wird in der Vorlesung bekannt gegeben.
Teilleistung: Modelling, Measuring and Managing of Extreme Risks [T-WIWI-102841]

Verantwortung: Ute Werner

Bestandteil von: [M-WIWI-101469] Insurance Management I

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2016</td>
<td>2530355</td>
<td>Modelling, Measuring and Managing of Extreme Risks</td>
<td>Vorlesung (V)</td>
<td></td>
<td>Stefan Hochrainer-Stigler</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle setzt sich zusammen aus Vorträgen während der Vorlesungszeit (nach §4 (2), 3 SPO) sowie Prüfungen.

Voraussetzungen

Keine

Empfehlungen

Keine

Die folgenden Informationen stammen aus der Veranstaltung Modelling, Measuring and Managing of Extreme Risks (SS 2016):

Lernziel

Die Studierenden

- lernen Risikokonzepte und Ansätze des Risikomanagements von Extremrisiken kennen sowie moderne Methoden der Bewertung und Handhabung von Risiken;
- lernen die Rolle des Staates und der Kapitalmärkte in wichtigen Anwendungsfeldern des Managements von Extremrisiken einzuschätzen, z.B. bei Risiken durch Naturkatastrophen oder durch den Klimawandel;
- erarbeiten theoretische Aspekte bzw. beschreiben und erklären anwendungsbezogene Lösungen zu neuesten Entwicklung der Finanzierung von Extremrisiken, z.B. index-basierte Versicherungen, excess-of-loss Kontrakte, Katastrophenanleihen sowie Rückversicherungskonzepte;
- führen Literaturrecherchen durch, identifizieren relevante Literatur und werten diese aus;
- lernen im Team zu arbeiten;
- stellen die Ergebnisse ihrer Arbeit in einem wissenschaftlichen Vortrag vor;
- fassen ihre Erkenntnisse aus Literatur- und eigener Forschungsarbeit in Form von Seminararbeiten zusammen und berücksichtigen dabei Formatierungsrichtlinien, wie sie von Verlagen bei der Veröffentlichung von Dokumenten vorgegeben werden.

Inhalt

Behandelte Themen:

- Threshold models, generalized pareto distribution, threshold selection, parameter estimation, point process characterization, estimation under maximum domain: Pickands’s estimator, Hill’s estimator, Deckers-Einmahl-de Haan estimator.
- Catastrophe model approaches, simulation of earthquakes, hurricanes, and floods, vulnerability functions, loss estimation. Indirectvsdirecteffects.
- Case study presentations: Household level index based insurance systems (India, Ethiopia, SriLanka, China), insurance back-up systems coupled with public private partnerships (France, US), Reinsurance approaches (Munich Re, Swiss Re, Allianz).
- Climate Change topics: IPCC report, global and climate change.

Arbeitsaufwand
Gesamtaufwand bei 2 Leistungspunkten: ca. 75 Stunden
Präsenzzeit: 30 Stunden
Selbststudium: 45 Stunden

Literatur

Teilleistung: Multivariate Verfahren [T-WIWI-103124]

Verantwortung: Oliver Grothe
Bestandteil von: [M-WIWI-101637] Analytics und Statistik
[M-WIWI-101639] Ökonometrie und Statistik II

Leistungspunkte: 4,5
Version: 1

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2016</td>
<td>2550554</td>
<td>Multivariate Verfahren</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Oliver Grothe</td>
</tr>
<tr>
<td>SS 2016</td>
<td>2550555</td>
<td>Übung zu Multivariate Verfahren</td>
<td>Übung (Ü)</td>
<td>2</td>
<td>Maximilian Coblenz, Oliver Grothe</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (Klausur) im Umfang von 1h nach § 4, Abs. 2, 1 SPO. Durch ein Bonusprogramm kann die Note der schriftlichen Prüfung um bis zu 0,3 Notenstufen verbessert werden. Die Prüfung wird im Prüfungszeitraum des Vorlesungssemesters angeboten. Zur Wiederholungsprüfung im Prüfungszeitraum des jeweiligen Folgesemesters werden ausschließlich Wiederholer (und keine Erstschreiber) zugelassen.

Voraussetzungen
Keine

Empfehlungen
Der Besuch der Veranstaltungen Statistik 1 und Statistik 2 wird empfohlen. Der Besuch der Veranstaltung Analyse multivariater Daten wird empfohlen. Alternativ kann interessierten Studierenden das Skript der Veranstaltung zur Verfügung gestellt werden.
Teilleistung: Naturinspirierte Optimierungsverfahren [T-WIWI-102679]

Verantwortung: Pradyumn Kumar Shukla
Bestandteil von: [M-WIWI-101472] Informatik

Leistungspunkte: 5
Sprache: english
Version: 1

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2016</td>
<td>2511106</td>
<td>Nature-Inspired Optimization Methods</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Pradyumn Kumar Shukla</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (Klausur) im Umfang von 1h nach §4, Abs. 2, 1 SPO. Sie findet in der ersten Woche nach Ende der Vorlesungszeit des Semesters statt.

Als weitere Erfolgskontrolle kann durch erfolgreiche Teilnahme an den Übungen (nach §4(2), 3 SPO) ein Bonus erworben werden. Die erfolgreiche Teilnahme wird durch eine Bonusklausur (60 min) oder durch mehrere kürzere schriftliche Tests nachgewiesen. Die Note für NOV ergibt sich aus der Note der schriftlichen Prüfung. Ist die Note der schriftliche Prüfung mindestens 4,0 und maximal 1,3, so verbessert der Bonus die Note um eine Notenstufe (d.h. um 0,3 oder 0,4).

Voraussetzungen

Keine

Die folgenden Informationen stammen aus der Veranstaltung Nature-Inspired Optimization Methods (SS 2016):

Literatur

* E. Bonabeau, M. Dorigo, G. Theraulaz: ‘Swarm Intelligence’. Oxford University Press, 1999
* Springer, 2003

Wirtschaftsmathematik (M.Sc.)
Modulhandbuch mit Stand 04.08.2016 für Wintersemester 16/17
Teilleistung: Nicht- und Semiparametrik [T-WIWI-103126]

Verantwortung: Melanie Schienle
Bestandteil von: [M-WIWI-101638] Ökonometrie und Statistik I
[M-WIWI-101639] Ökonometrie und Statistik II

Leistungspunkte 4,5
Version 1

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 15/16</td>
<td>2521300</td>
<td>Nicht- und Semiparametrik</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Melanie Schienle</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (90 min.) (nach §4(2), 1 SPO).

Voraussetzungen
Keine

Empfehlungen
Es werden inhaltliche Kenntnisse der Veranstaltung "Angewandte Ökonometrie" [2520020] vorausgesetzt.
Teilleistung: Nichtlineare Optimierung I [T-WIWI-102724]

Verantwortung: Oliver Stein
Bestandteil von:
[M-WIWI-101473] Mathematische Optimierung
[M-WIWI-101414] Methodische Grundlagen des OR
[M-WIWI-101400] Stochastische Methoden und Simulation

Leistungspunkte: 4,5
Version: 1

Erfolgskontrolle(n)

Voraussetzungen
Voraussetzung für die Zulassung zur Prüfung ist eine bestandene Vorleistung in Form einer Erfolgskontrolle anderer Art nach SPO 2007 bzw. einer Studienleistung nach SPO 2015.

Anmerkung
Teil I und II der Vorlesung werden nacheinander im selben Semester gelesen.
Teilleistung: Nichtlineare Optimierung I und II [T-WIWI-103637]

Verantwortung:
Bestandteil von: [M-WIWI-101473] Mathematische Optimierung
[M-WIWI-101414] Methodische Grundlagen des OR

Leistungspunkte 9 Version 1

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (120min.) (nach §4(2), 1 SPO) und eventuell durch weitere Leistungen als Erfolgskontrolle anderer Art (nach §4(2), 3 SPO).

Voraussetzungen
Voraussetzung für die Zulassung zur Prüfung ist eine bestandene Vorleistung in Form einer Erfolgskontrolle anderer Art.

Anmerkung
Teil I und II der Vorlesung werden nacheinander im selben Semester gelesen.
Teilleistung: Nichtlineare Optimierung II [T-WIWI-102725]

Verantwortung: Oliver Stein
Bestandteil von: [M-WIWI-101473] Mathematische Optimierung
[M-WIWI-101414] Methodische Grundlagen des OR

Erfolgskontrolle(n)

Voraussetzungen
Voraussetzung für die Zulassung zur Prüfung ist eine bestandene Vorleistung in Form einer Erfolgskontrolle anderer Art nach SPO 2007 bzw. einer Studienleistung nach SPO 2015.

Anmerkung
Teil I und II der Vorlesung werden nacheinander im selben Semester gelesen.
Teilleistung: Nichtparametrische Statistik [T-MATH-105873]

Verantwortung: Bernhard Klar, Norbert Henze
Bestandteil von: [M-MATH-102910] Nichtparametrische Statistik

Leistungspunkte: 4
Version: 1

Erfolgskontrolle(n)
Mündliche Prüfung im Umfang von ca. 20 Minuten.

Voraussetzungen
keine
Teilleistung: Numerische Fortsetzungsmethoden [T-MATH-105912]

Verantwortung: Jens Rottmann-Matthes
Bestandteil von: [M-MATH-102944] Numerische Fortsetzungsmethoden

Leistungspunkte: 5
Version: 1

Voraussetzungen
Keine
Teilleistung: Numerische Methoden für Differentialgleichungen [T-MATH-105836]

Verantwortung: Andreas Rieder, Tobias Jahnke, Marlis Hochbruck, Willy Dörfler, Christian Wieners
Bestandteil von: [M-MATH-102888] Numerische Methoden für Differentialgleichungen

Leistungspunkte: 8
Version: 1

Voraussetzungen
Keine
Teilleistung: Numerische Methoden für hyperbolische Gleichungen [T-MATH-105900]

Verantwortung: Willy Dörfler
Bestandteil von: [M-MATH-102915] Numerische Methoden für hyperbolische Gleichungen

Leistungspunkte: 6
Version: 1

Erfolgskontrolle(n)
Mündliche Prüfung im Umfang von ca. 25 Minuten.

Voraussetzungen
keine
Teilleistung: Numerische Methoden für Integralgleichungen [T-MATH-105901]

Verantwortung: Tilo Arens, Andreas Kirsch, Frank Hettlich
Bestandteil von: [M-MATH-102930] Numerische Methoden für Integralgleichungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>1</td>
</tr>
</tbody>
</table>

Voraussetzungen
Keine
Teilleistung: Numerische Methoden für zeitabhängige partielle Differentialgleichungen [T-MATH-105899]

Verantwortung: Tobias Jahnke, Marlis Hochbruck

Bestandteil von: [M-MATH-102928] Numerische Methoden für zeitabhängige partielle Differentialgleichungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>1</td>
</tr>
</tbody>
</table>

Voraussetzungen
Keine
Teilleistung: Numerische Methoden in der Elektrodynamik [T-MATH-105860]

Verantwortung: Andreas Rieder, Tobias Jahnke, Marlis Hochbruck, Willy Dörfler, Christian Wieners
Bestandteil von: [M-MATH-102894] Numerische Methoden in der Elektrodynamik

Leistungspunkte 6
Version 1

Voraussetzungen
keine
Teilleistung: Numerische Methoden in der Finanzmathematik [T-MATH-105865]

Verantwortung: Tobias Jahnke
Bestandteil von: [M-MATH-102901] Numerische Methoden in der Finanzmathematik

Leistungspunkte 8
Version 1

Erfolgskontrolle(n)
Mündliche Prüfung im Umfang von ca. 30 Minuten.

Voraussetzungen
keine

Empfehlungen
Grundlegende Inhalte des Moduls „Wahrscheinlichkeitstheorie“ und Grundkenntnisse über gewöhnliche Differentialgleichungen sowie Programmierkenntnisse (möglichst in MATLAB) werden benötigt.
<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>1</td>
</tr>
</tbody>
</table>

Voraussetzungen

keine
Teilleistung: Numerische Methoden in der Strömungsmechanik [T-MATH-105902]

Verantwortung: Gudrun Thäter, Willy Dörfler
Bestandteil von: [M-MATH-102932] Numerische Methoden in der Strömungsmechanik

Leistungspunkte: 4
Version: 1

Voraussetzungen
Keine
Teilleistung: Numerische Optimierungsmethoden [T-MATH-105858]

Verantwortung: Andreas Rieder, Tobias Jahnke, Marlis Hochbruck, Willy Dörfler, Christian Wieners
Bestandteil von: [M-MATH-102892] Numerische Optimierungsmethoden

Leistungspunkte 8 Version 1

Voraussetzungen
Keine
Teilleistung: Numerische Verfahren für die Maxwellgleichungen [T-MATH-105920]

Verantwortung: Tobias Jahnke
Bestandteil von: [M-MATH-102931] Numerische Verfahren für die Maxwellgleichungen

Voraussetzungen
Keine

Leistungspunkte: 6
Version: 1
Teilleistung: Open Innovation - Konzepte, Methoden und Best Practices [T-WIWI-102901]

Verantwortung: Alexander Hahn

Leistungspunkte: 1,5
Sprache: englisch
Version: 1

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2016</td>
<td>2571199</td>
<td>Open Innovation – Konzepte, Methoden und Best Practices</td>
<td>Block (B)</td>
<td></td>
<td>Alexander Hahn</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen
Keine

Empfehlungen
Keine

Anmerkung
Die Veranstaltung findet auf Englisch statt.
Ausnahme: Im Sommersemester 2016 können zwei Veranstaltungen belegt werden bzw. falls bereits eine der Veranstaltungen belegt wurde, noch eine zweite belegt werden.

Die folgenden Informationen stammen aus der Veranstaltung Open Innovation – Konzepte, Methoden und Best Practices (SS 2016):

Lernziel
Studierende

- kennen die Ansätze, Ziele, Vor- und Nachteile von Open Innovation,
- kennen Strategie, Prozesse, Methoden und Anwendungsbereiche von Open Innovation,
- verstehen Erfolgsfaktoren anhand von Best Practices aus realen Projekten,
- können Open Innovation Methoden eigenständig anwenden.

Inhalt
Joy’s Law: “No matter who you are, most of the smartest people work for someone else” (Bill Joy, Co-Founder Sun Microsystems)
Diese Vorlesung vermittelt ein Verständnis sowie Anwendungspraxis zu Open Innovation, d.h. die kollaborative Öffnung des Innovationsprozesses zu Kunden, Zulieferern, Partner, Wettbewerbern, neuen Märkten, ... Zu den Inhalten zählen unter anderem:
- Ansätze, Ziele, Vor- und Nachteile von Open Innovation
- Kenntnis der Ansätze, Ziele, Vor- und
- Nachteile von Open Innovation
- Eigenständige Anwendung von Open Innovation Methoden

Arbeitsaufwand

Gesamtaufwand bei 1,5 Leistungspunkten: ca. 45 Stunden.

- Präsenzzeit: 15 Stunden
- Vor- /Nachbereitung: 22,5 Stunden
- Prüfung und Prüfungsvorbereitung: 7,5 Stunden

Literatur

Wird im Kurs bekanntgegeben.
Teilleistung: Operations Research in Health Care Management [T-WIWI-102884]

- **Verantwortung:** Stefan Nickel
- **Bestandteil von:** [M-WIWI-102805] Service Operations

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Sprache</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>englisch</td>
<td>1</td>
</tr>
</tbody>
</table>

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2016</td>
<td>2550495</td>
<td>Operations Research in Health Care Management</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Stefan Nickel</td>
</tr>
<tr>
<td>SS 2016</td>
<td>2550496</td>
<td>Übungen zu OR im Health Care Management</td>
<td>Übung (Ü)</td>
<td>1</td>
<td>Anne Zander, Stefan Nickel</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen

Keine

Empfehlungen

Anmerkung

Die Lehrveranstaltung wird voraussichtlich im Sommersemester 2016 wieder angeboten. Das für drei Studienjahre im Voraus geplante Lehrangebot kann im Internet nachgelesen werden.

Die folgenden Informationen stammen aus der Veranstaltung Operations Research in Health Care Management (SS 2016):

Lernziel

Der/die Studierende
- kennt sich aus mit grundlegenden und fortgeschrittenen Verfahren des Operations Research im Gesundheitsbereich,
- besitzt die Fähigkeit, quantitative Modelle in der Ablaufplanung und der innerbetrieblichen Logistik (Termin-, Transport-, OP- und Dienstplanung sowie Lagerhaltung und Layoutplanung) im Krankenhausumfeld einzusetzen,
- erklärt Anwendungsmöglichkeiten von Simulationsmodellen im Health Care Bereich sowie Methoden zur Planung ambulanter Pflegedienste vermittelt,
- setzt die erlernten Verfahren werden im Detail anhand von Fallstudien praxisnah ein.

Inhalt

Um dies zu erreichen, ist es notwendig, bestehende Prozesse zu analysieren und bei Bedarf effizienter zu gestalten. Hierfür bietet das Operations Research zahlreiche Methoden, die nicht nur im industriellen Umfeld sondern auch in einem Krankenhaus zu deutlichen Verbesserungen führen können. Eine Besonderheit liegt jedoch darin, dass der Fokus nicht nur auf die Wirtschaftlichkeit gelegt werden darf, sondern dass auch die Berücksichtigung von Behandlungsqualität und Patientenzufriedenheit unerlässlich sind. Neben den Krankenhäusern liegt ein weiterer Vorlesungsschwerpunkt auf der Planung ambulanter Pflegedienste. Aufgrund des demographischen Wandels benötigen zunehmend mehr ältere Menschen Unterstützung in der Pflege, um weiterhin in

Arbeitsaufwand
Gesamtaufwand bei 4,5 Leistungspunkten: ca. 135,0 Stunden
Präsenzzeit: 30 Stunden
Vor – und Nachbereitung der LV: 45,0 Stunden
Prüfung und Prüfungsvorbereitung: 60,0 Stunden

Literatur
Weiterführende Literatur:

- Fleßa: Grundzüge der Krankenhausbetriebslehre, Oldenbourg, 2007
- Fleßa: Grundzüge der Krankenhaussteuerung, Oldenbourg, 2008
Erfolgskontrolle(n)

Voraussetzungen
Keine

Empfehlungen

Anmerkung
Die Lehrveranstaltung wird voraussichtlich im Wintersemester 2016/17 angeboten. Das für drei Studienjahre im Voraus geplante Lehrangebot kann im Internet nachgelesen werden.
T Teilleistung: Operatorfunktionen [T-MATH-105905]

Verantwortung: [M-MATH-102936] Operatorfunktionen

Voraussetzungen
Keine

Leistungspunkte 6
Version 1
Teilleistung: Optimierung in Banachräumen [T-MATH-105893]

Verantwortung: Andreas Kirsch
Bestandteil von: [M-MATH-102924] Optimierung in Banachräumen

Leistungspunkte

Version

Erfolgskontrolle(n)
Mündliche Prüfung im Umfang von ca. 30 Minuten.

Voraussetzungen
keine
Teilleistung: Optimierung in einer zufälligen Umwelt [T-WIWI-102628]

Verantwortung: Karl-Heinz Waldmann
Bestandteil von: [M-WIWI-101454] Stochastische Modellierung und Optimierung

Erfolgskontrolle(n)

Voraussetzungen
Keine

Anmerkung
Die Veranstaltung wird nicht regelmäßig angeboten. Das für zwei Jahre im Voraus geplante Lehrangebot kann auf der Lehrstuhl-Website nachgelesen werden.
Teilleistung: Optimierung und optimale Kontrolle bei Differentialgleichungen [T-MATH-105864]

Verantwortung:
Bestandteil von:

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Mündliche Prüfung im Umfang von ca. 20 Minuten.

Voraussetzungen
keine
Teilleistung: Organic Computing [T-WIWI-102659]

Verantwortung: Hartmut Schmeck
Bestandteil von: [M-WIWI-101472] Informatik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Sprache</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>englisch</td>
<td>1</td>
</tr>
</tbody>
</table>

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2016</td>
<td>2511104</td>
<td>Organic Computing</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Hartmut Schmeck</td>
</tr>
<tr>
<td>SS 2016</td>
<td>2511105</td>
<td>Übungen zu Organic Computing</td>
<td>Übung (U)</td>
<td>1</td>
<td>Micaela Wünsche, Hartmut Schmeck, Friederike Pfeiffer-Bohnen, Lukas König</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen
Keine

Die folgenden Informationen stammen aus der Veranstaltung Organic Computing (SS 2016):

Lernziel
Die Studierenden erwerben die Fähigkeit, Methoden und Konzepte des Organic Computing zu beherrschen und Innovationsfähigkeit bezüglich der eingesetzten Methoden zu demonstrieren.

Inhalt

Arbeitsaufwand
Gesamtaufwand bei 5 Leistungspunkten: ca. 150 Stunden
Präsenzzeit: 30 Stunden
Selbststudium: 120 Stunden

Literatur

Weiterführende Literatur:

Weitere Literatur wird in der Vorlesung bekannt gegeben
Teilleistung: OR-nahe Modellierung und Analyse realer Probleme (Projekt) [T-WIWI-102730]

Verantwortung: Karl-Heinz Waldmann
Bestandteil von: [M-WIWI-101454] Stochastische Modellierung und Optimierung

Leistungspunkte: 4,5
Version: 1

Erfolgskontrolle(n)
Präsentation und Dokumentation der Ergebnisse.

Voraussetzungen
Keine

Anmerkung
Die Lehrveranstaltung wird nicht regelmäßig angeboten. Das für zwei Studienjahre im Voraus geplante Lehrangebot kann im Internet nachgelesen werden.
Teilleistung: P&C Insurance Simulation Game [T-WIWI-102797]

Verantwortung: Ute Werner
Bestandteil von: [M-WIWI-101469] Insurance Management I

Leistungspunkte: 3
Version: 1

Erfolgskontrolle(n)
Die Erfolgskontrolle setzt sich zusammen aus Vorträgen und der aktiven Teilnahme in den konkurrierenden Teilnehmergruppen während der Vorlesungszeit (nach §4 (2), 3 SPO)

Voraussetzungen
Keine

Empfehlungen
Teilleistung: Paneldaten [T-WIWI-103127]

Verantwortung: Wolf-Dieter Heller
Bestandteil von: [M-WIWI-101638] Ökonometrie und Statistik I
[M-WIWI-101639] Ökonometrie und Statistik II

Leistungspunkte: 4,5
Version: 1

<table>
<thead>
<tr>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Übungen zu Paneldaten</td>
<td>Übung (U)</td>
<td>2</td>
<td>Wolf-Dieter Heller, Carlo Siebenschuh</td>
</tr>
<tr>
<td>Paneldaten</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Wolf-Dieter Heller</td>
</tr>
</tbody>
</table>

Voraussetzungen
Keine
Teilleistung: Parametrische Optimierung [T-WIWI-102855]

Verantwortung: Oliver Stein
Bestandteil von: [M-WIWI-101473] Mathematische Optimierung

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>4,5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60min.) (nach §4(2), 1 SPO).
Die Prüfung wird im Vorlesungssemester und dem darauf folgenden Semester angeboten.
Zulassungsvoraussetzung zur schriftlichen Prüfung ist der Erwerb von mindestens 30% der Übungspunkte. Die Prüfungsanmeldung über das Online-Portal für die schriftliche Prüfung gilt somit vorbehaltlich der Erfüllung der Zulassungsvoraussetzung.

Voraussetzungen
Keine

Empfehlungen
Es wird dringend empfohlen, vor Besuch dieser Veranstaltung mindestens eine Vorlesung aus dem Bachelor-Programm des Lehrstuhls zu belegen.

Anmerkung
Die Lehrveranstaltung wird nicht regelmäßig angeboten. Das für drei Studienjahre im Voraus geplante Lehrangebot kann im Internet (www.ior.kit.edu) nachgelesen werden.
Teilleistung: Perkolation [T-MATH-105869]

Verantwortung: Günter Last
Bestandteil von: [M-MATH-102905] Perkolation

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Mündliche Prüfung im Umfang von ca. 30 Minuten.

Voraussetzungen
keine
Teilleistung: Portfolio and Asset Liability Management [T-WIWI-103128]

Verantwortung: Mher Safarian

Bestandteil von: [M-WIWI-101639] Ökonometrie und Statistik II

Leistungspunkte: 4,5

Sprache: englisch

Version: 1

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2016</td>
<td>2520357</td>
<td>Portfolio and Asset Liability Management</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Mher Safarian</td>
</tr>
<tr>
<td>SS 2016</td>
<td>2520358</td>
<td>Übungen zu Portfolio and Asset Liability Management</td>
<td>Übung (Ü)</td>
<td>2</td>
<td>Mher Safarian</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen

Keine

Die folgenden Informationen stammen aus der Veranstaltung Portfolio and Asset Liability Management (SS 2016):

Lernziel

Vorstellung und Vertiefung verschiedener Verfahren aus der Portfolioverwaltung von Finanzinstituten.

Inhalt

Portfoliotheorie: Investmentprinzipien, Markowitz-Portfolioanalyse, Modigliani-Miller Theorems und Arbitragefreiheit, effiziente Märkte, Capital Asset Pricing Model (CAPM), multifaktorielles CAPM, Arbitrage Pricing Theorie (APT), Arbitrage und Hedging, Multifaktormodelle, Equity-Portfoliomanagement, passive Strategien, actives Investing.

Arbeitsaufwand

Der Gesamtarbeitsaufwand für diese Lerneinheit beträgt ca. 150 Stunden (5.0 Credits).

Literatur

Wird in der Vorlesung bekannt gegeben.

Weiterführende Literatur:

Wird in der Vorlesung bekannt gegeben.

Wirtschaftsmathematik (M.Sc.)

Modulhandbuch mit Stand 04.08.2016 für Wintersemester 16/17
Teilleistung: Potentialtheorie [T-MATH-105850]

Verantwortung: Tilo Arens, Wolfgang Reichel, Andreas Kirsch, Frank Hettlich
Bestandteil von: [M-MATH-102879] Potentialtheorie

Leistungspunkte: 8
Version: 1

Voraussetzungen
Keine
Leistungspunkte: Praktikum Informatik [T-WIWI-103523]

Verantwortung:
Rudi Studer, Hartmut Schmeck, Andreas Oberweis, York Sure-Vetter, Johann Marius Zöllner

Bestandteil von:
[M-WIWI-101472] Informatik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Sprache</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>deutsch/englisch/englisch</td>
<td>1</td>
</tr>
</tbody>
</table>

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2016</td>
<td>2513306</td>
<td>Event Processing: Verarbeitung von Echtzeitdaten und deren Geschäftspotenzial</td>
<td>Seminar / Praktikum 2 (S/P)</td>
<td>2</td>
<td>Ljiljana Stojanovic, Rudi Studer, Suad Sejdovic, Dominik Riemer, York Sure-Vetter</td>
</tr>
<tr>
<td>SS 2016</td>
<td>2512300</td>
<td>Knowledge Discovery and Data Mining</td>
<td>Seminar / Praktikum 3 (S/P)</td>
<td>3</td>
<td>Aditya Mogadala, Achim Rettinger, Rudi Studer, York Sure-Vetter, Andreas Thalhammer</td>
</tr>
<tr>
<td>SS 2016</td>
<td>2512200</td>
<td>Praktikum Betriebliche Informationssysteme: Softwareanwendungen im Geschäftsprozessmanagement</td>
<td>Praktikum (P)</td>
<td>3</td>
<td>Andreas Oberweis, Murat Citak</td>
</tr>
<tr>
<td>SS 2016</td>
<td>2512100</td>
<td>Optimierung in der Lehre</td>
<td>Praktikum (P)</td>
<td>4</td>
<td>Pradyumn Kumar Shukla</td>
</tr>
<tr>
<td>WS 15/16</td>
<td>2512100</td>
<td>Smart Home Security</td>
<td>Praktikum (P)</td>
<td>4</td>
<td>Hartmut Schmeck, Kaibin Bao, Michael Meier, Andreas Drescher, Andreas Oberweis, Frederic Toussaint</td>
</tr>
<tr>
<td>SS 2016</td>
<td>2512101</td>
<td>Praktikum Betriebliche Informationssysteme: Realisierung innovativer Dienste für Studierende</td>
<td>Praktikum (P)</td>
<td>3</td>
<td>Andreas Oberweis, Murat Citak</td>
</tr>
<tr>
<td>WS 15/16</td>
<td>2512307</td>
<td>Anwendungen von Semantic MediaWiki</td>
<td>Seminar / Praktikum 3 (S/P)</td>
<td>3</td>
<td>Patrick Philipp, Achim Rettinger, Rudi Studer, Maribel Acosta Deibe, Andreas Harth, York Sure-Vetter</td>
</tr>
<tr>
<td>WS 15/16</td>
<td>2512101</td>
<td>Praktikum Betriebliche Informationssysteme: Realisierung innovativer Dienste für Studierende</td>
<td>Praktikum (P)</td>
<td>4</td>
<td>Michael Meier, Andreas Drescher, Andreas Oberweis, Frederic Toussaint</td>
</tr>
<tr>
<td>WS 15/16</td>
<td>2512308</td>
<td>NLP meets the Semantic Web</td>
<td>Seminar / Praktikum 3 (S/P)</td>
<td>3</td>
<td>Achim Rettinger, Rudi Studer, Michael Färber, Tobias Christof Käfer, Steffen Stadtmüller, Rudi Studer, Maribel Acosta Deibe, Andreas Harth, York Sure-Vetter</td>
</tr>
<tr>
<td>WS 15/16</td>
<td>2512301</td>
<td>Linked Open Data basierte Web 3.0 Anwendungen und Services</td>
<td>Seminar / Praktikum 3 (S/P)</td>
<td>3</td>
<td>Andreas Oberweis, Murat Citak</td>
</tr>
<tr>
<td>WS 15/16</td>
<td>2512200</td>
<td>Praktikum Betriebliche Informationssysteme: Softwareanwendungen im Geschäftsprozessmanagement</td>
<td>Praktikum (P)</td>
<td>3</td>
<td>Andreas Oberweis, Murat Citak</td>
</tr>
</tbody>
</table>
Erfolgskontrolle(n)

Voraussetzungen
Keine

Anmerkung

Die folgenden Informationen stammen aus der Veranstaltung Event Processing: Verarbeitung von Echtzeitdaten und deren Geschäftspotenzial (SS 2016):

Inhalt
Mögliche Themen umfassen z.B.:

- Vorhersage von lukrativen Arealen/Routen
- Echtzeitvisualisierung von Ereignisströmen
- Fraud Detection
- Umsatzprognose

Gerne können die Daten mit weiteren Daten (z.B. Wetter- oder Veranstaltungsdaten für NYC) verknüpft werden.

Die folgenden Informationen stammen aus der Veranstaltung Knowledge Discovery and Data Mining (SS 2016):

Inhalt
Mögliche Anwendungsbereiche sind z.B.:

- Medizin
- Soziale Medien
- Finanzmarkt

Literatur
Detaillierte Referenzen werden zusammen mit den jeweiligen Themen angegeben. Allgemeine Hintergrundinformationen ergeben sich z.B. aus den folgenden Lehrbüchern:

- Mitchell, T.; Machine Learning
Teilistung: Praxis-Seminar: Health Care Management (mit Fallstudien) [T-WIWI-102716]

Verantwortung: Stefan Nickel
Bestandteil von: [M-WIWI-102805] Service Operations

Leistungspunkte: 7
Sprache: deutsch
Version: 1

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
</table>
| SS 2016 | 2550498 | Praxis-Seminar: Health Care Management | Seminar (S) | 5 | Melanie Reuter-Oppermann, Anne
| | | (mit Fallstudien) | | | Zander, Stefan Nickel |

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer zu bearbeitenden Fallstudie, einer zu erstellenden Seminararbeit und einer abschließenden mündlichen Prüfung (nach §4(2), 2 SPO).

Voraussetzungen
Keine

Empfehlungen

Anmerkung
Die Lehrveranstaltung wird in jedem Semester angeboten.
Das für drei Studienjahre im Voraus geplante Lehrangebot kann im Internet nachgelesen werden.

Die folgenden Informationen stammen aus der Veranstaltung Praxis-Seminar: Health Care Management (mit Fallstudien) (SS 2016):

Lernziel
Der/die Studierende

- weiß reale Problemstellungen vor Ort in einem Krankenhaus einzuschätzen,
- entwickelt unter Anwendung von Methoden des Operations Research Lösungsansätze für diese Probleme,
- ist in der Lage, krankenhausspezifische Probleme zu analysieren, notwendige Daten zu erheben sowie Modelle aufzustellen und zu lösen.

Inhalt

Arbeitsaufwand
Gesamtaufwand bei 7 Leistungspunkten: ca. 210 Stunden
Präsenzzeit: 30 Stunden
Vor – und Nachbereitung der LV: 45.0 Stunden
Prüfung und Prüfungsvorbereitung: 135.0 Stunden

Literatur
Weiterführende Literatur:

- Fleßa: Grundzüge der Krankenhausbetriebslehre, Oldenbourg, 2007
- Fleßa: Grundzüge der Krankenhaussteuerung, Oldenbourg, 2008
Teilleistung: Predictive Mechanism and Market Design [T-WIWI-102862]

Verantwortung: Johannes Philipp Reiß

Bestandteil von: [M-WIWI-101505] Experimentelle Wirtschaftsforschung

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>1</td>
</tr>
</tbody>
</table>

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 15/16</td>
<td>2520402</td>
<td>Predictive Mechanism and Market Design</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Martin Schmidt, Johannes Philipp Reiß</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) (nach §4(2), 1 SPO).

Die Note ist die Note der schriftlichen Prüfung.

Voraussetzungen

Keine

Anmerkung

Die Vorlesung wird jedes zweite Wintersemester angeboten, z.B. im WS2013/14, WS2015/16,...

Die Wiederholungsprüfung kann zu jedem späteren, ordentlichen Prüfungstermin angetreten werden. Die Stoffinhalte beziehen sich auf den zuletzt gehaltenen Kurs.
Teilleistung: Principles of Insurance Management [T-WIWI-102603]

Verantwortung: Ute Werner
Bestandteil von: [M-WIWI-101469] Insurance Management I

Leistungspunkte: 4,5
Sprache: deutsch
Version: 1

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2016</td>
<td>2530055</td>
<td>Principles of Insurance Management</td>
<td>Vorlesung (V)</td>
<td>3</td>
<td>Ute Werner</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Note setzt sich zu je 50% aus den Vortragsleistungen (inkl. Ausarbeitungen) und der mündlichen Prüfung zusammen.

Voraussetzungen
Keine

Empfehlungen
Keine

Die folgenden Informationen stammen aus der Veranstaltung Principles of Insurance Management (SS 2016):

Lernziel
Die Studierenden
- lernen die Funktion von Versicherungsschutz als risikopolitisches Instrument auf einzel- und gesamtwirtschaftlicher Ebene einzuschätzen;
- lernen die aufsichtsrechtlichen Rahmenbedingungen und die Technik der Produktion von Versicherungsschutz sowie weiterer Leistungen von Versicherungsunternehmen (Kapitalanlage, Risikoberatung, Schadenmanagement) kennen;
- erarbeiten wichtige Fragestellungen, z.B. zur Finanzierungsfunktion (wer finanziert die Versicherer? wen finanzieren die Versicherer? über wie viel Kapital müssen Versicherer mindestens verfügen, um die übernommenen Risiken tragen zu können?);
- beschreiben und erklären ausgewählte Aspekte wichtiger Versicherungsprodukte;
- führen Literaturrecherchen durch, identifizieren relevante Literatur und werten diese aus;
- lernen im Team zu arbeiten;
- stellen die Ergebnisse ihrer Arbeit in einem wissenschaftlichen Vortrag vor;
- fassen ihre Erkenntnisse aus Literatur- und eigener Forschungsarbeit in Form von Seminararbeiten zusammen und berücksichtigen dabei Formatierungsrichtlinien, wie sie von Verlagen bei der Veröffentlichung von Dokumenten vorgegeben werden.

Arbeitsaufwand
Gesamtaufwand bei 4,5 Leistungspunkten: ca. 135 Stunden
Präsenzzeit: 45 Stunden
Selbststudium: 90 Stunden

Literatur
- U. Werner. Einführung in die Versicherungsbetriebslehre. Skript zur Vorlesung.

Weiterführende Literatur:
Erweiterte Literaturangaben werden in der Vorlesung bekannt gegeben.
Teilleistung: Produkt- und Innovationsmanagement [T-WIWI-102812]

Verantwortung: Martin Klarmann

Leistungspunkte: 3
Sprache: deutsch
Version: 1

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2016</td>
<td>2571154</td>
<td>Produkt- und Innovationsmanagement</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Martin Klarmann</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) (nach §4(2), 1 SPO).

Voraussetzungen
Keine

Anmerkung
Nähere Informationen erhalten Sie direkt bei der Forschergruppe Marketing & Vertrieb (marketing.iism.kit.edu).

Die folgenden Informationen stammen aus der Veranstaltung Produkt- und Innovationsmanagement (SS 2016):

Lernziel
Studierende
- Kennen die wichtigsten Begriffe des Produkt- und Innovationskonzeptes
- Verstehen die Modelle des Produktwahlverhaltens (z.B. das Markov-Modell, das Luce-Modell, das Logit-Modell)
- Sind mit den Grundlagen der Netzwerktheorie vertraut (u.a. das Triadic Closure Konzept)
- Kennen die zentralen strategischen Konzepte des Innovationsmanagements (insbesondere der Market Driving-Ansatz, Pionier und Folger, Miles/Snow-Typologie, Blockbuster-Strategie)
- Beherrschen die wichtigsten Methoden und Quellen der Ideengewinnung (u.a. Open Innovation, Lead User Methoden, Crowdsourcing, Kreativitätstechniken, Voice of the Customer, Innovationsspiele, Conjoint-Analyse, Quality Function Deployment, Online Toolkits)
- Sind fähig, Neuprodukt-Konzepte zu definieren und zu bewerten und kennen die damit verbundenen Instrumente (z.B. Adoptions- und Diffusionsmodelle Bass, Fourt/Woodlock, Mansfield)
- Haben wichtige Zusammenhänge des Innovationsprozesses verstanden (Clusterbildung, Innovationskultur, Teams, Stage-Gate Prozess)

Inhalt

- Grundlagen
- Innovationsstrategien
- Ideengewinnung
- Konzeptdefinition

Wirtschaftsmathematik (M.Sc.)
Modulhandbuch mit Stand 04.08.2016 für Wintersemester 16/17
• Konzeptbewertung
• Markteinführung
• Management des Innovationprozesses

Arbeitsaufwand
Gesamtaufwand bei 3 Leistungspunkten: ca. 90 Stunden
Präsenzzeit: 30 Stunden
Vor- und Nachbereitung der LV: 45.0 Stunden
Prüfung und Prüfungsvorbereitung: 15.0 Stunden

Literatur
Teilleistung: Projektorientiertes Softwarepraktikum [T-MATH-105907]

Verantwortung: Gudrun Thäter
Bestandteil von: [M-MATH-102938] Projektorientiertes Softwarepraktikum

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Voraussetzungen
Keine
Teilleistung: Public Management [T-WIWI-102740]

Verantwortung: Berthold Wigger
Bestandteil von: [M-WIWI-101504] Collective Decision Making

Leistungspunkte: 4.5
Sprache: deutsch
Version: 1

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 15/16</td>
<td>2561127</td>
<td>Public Management</td>
<td>Vorlesung (VU) / Übung 3</td>
<td>Berthold Wigger</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (Klausur) im Umfang von 90min nach § 4, Abs. 2, 1 SPO. Die Note entspricht der Note der schriftlichen Prüfung.

Voraussetzungen
Keine

Empfehlungen
Es wird Kenntnis der Grundlagen der Finanzwissenschaft vorausgesetzt.

Die folgenden Informationen stammen aus der Veranstaltung Public Management (WS 15/16):

Lernziel
Der/ die Studierende

- besitzt weiterführende Kenntnisse in der Theorie der Administration des öffentlichen Sektors,
- ist in der Lage die Effizienzprobleme klassisch organisiierter öffentlicher Verwaltungen zu erkennen und zu differenzieren,
- erlernt die kontrakttheoretisch orientierten Reformkonzepte des New Public Managements.

Inhalt

Arbeitsaufwand
Gesamtaufwand bei 4,5 Leistungspunkten: ca. 135 Stunden
Präsenzzeit: 30 Stunden
Selbststudium: 105 Stunden

Literatur
Weiterführende Literatur:

Teilleistung: Qualitätssicherung I [T-WIWI-102728]

Verantwortung: Karl-Heinz Waldmann
Bestandteil von: [M-WIWI-101454] Stochastische Modellierung und Optimierung

Leistungspunkte: 4,5
Version: 1

Erfolgskontrolle(n)

Voraussetzungen
Keine

Anmerkung
Die Veranstaltung wird nicht regelmäßig angeboten. Das für zwei Jahre im Voraus geplante Lehrangebot kann auf der Lehrstuhl-Website nachgelesen werden.
Teilleistung: Qualitätssicherung II [T-WIWI-102729]

Verantwortung: Karl-Heinz Waldmann
Bestandteil von: [M-WIWI-101454] Stochastische Modellierung und Optimierung

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen
Keine

Anmerkung
Die Veranstaltung wird nicht regelmäßig angeboten. Das für zwei Jahre im Voraus geplante Lehrangebot kann auf der Lehrstuhl-Website nachgelesen werden.
Teilleistung: Rand- und Eigenwertprobleme [T-MATH-105833]

Verantwortung: Michael Plum, Wolfgang Reichel, Jens Rottmann-Matthes, Dirk Hundertmark, Roland Schnaubelt, Lutz Weis, Tobias Lamm

Bestandteil von: [M-MATH-102871] Rand- und Eigenwertprobleme

Voraussetzungen
Keine

Leistungspunkte 8
Version 1
Teilleistung: Räumliche Stochastik [T-MATH-105867]

Verantwortung: Günter Last, Daniel Hug
Bestandteil von: [M-MATH-102903] Räumliche Stochastik

Leistungspunkte: 8
Version: 1

Erfolgskontrolle(n):
Mündliche Prüfung im Umfang von ca. 30 Minuten.

Voraussetzungen:
keine
Teilleistung: Risk Communication [T-WIWI-102649]

Verantwortung: Ute Werner
Bestandteil von: [M-WIWI-101469] Insurance Management I

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>1</td>
</tr>
</tbody>
</table>

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 15/16</td>
<td>2530395</td>
<td>Risk Communication</td>
<td>Vorlesung (V)</td>
<td>3</td>
<td>Ute Werner</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Note setzt sich zu je 50% aus den Vortragsleistungen und Ausarbeitungen sowie der mündlichen Prüfung zusammen.

Voraussetzungen
Keine

Empfehlungen
Keine
Teilleistung: Semantic Web Technologien [T-WIWI-102874]

Verantwortung: Rudi Studer, Andreas Harth
Bestandteil von: [M-WIWI-101472] Informatik

Leistungspunkte: 5
Sprache: englisch
Version: 1

<table>
<thead>
<tr>
<th>Veranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester</td>
</tr>
<tr>
<td>SS 2016</td>
</tr>
<tr>
<td>SS 2016</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60min.) (nach §4(2), 1 SPO) oder in Form einer mündlichen Prüfung (20min.) (nach §4(2), 2 SPO). Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen
Keine

Empfehlungen
Informatikvorlesungen des Bachelor Informationswirtschaft/Wirtschaftsingenieur Semester 1-4 oder gleichwertige Veranstaltungen werden vorausgesetzt.

Die folgenden Informationen stammen aus der Veranstaltung Semantic Web Technologies (SS 2016):

Lernziel
Der/die Studierende
- besitzt Grundkenntnisse über Ideen und Realisierung von Semantic Web Technologien, inklusive Linked Data
- besitzt grundlegende Kompetenz im Bereich Daten- und Systemintegration im Web
- beherrscht fortgeschrittene Fertigkeiten zur Wissensmodellierung mit Ontologien

Inhalt
Folgende Themenbereiche werden abgedeckt:
- Resource Description Framework (RDF) und RDF Schema (RDFS)
- Web Architektur und Linked Data
- Web Ontology Language (OWL)
- Anfragesprache SPARQL
- Regelsprachen
- Anwendungen

Arbeitsaufwand
- Gesamtaufwand bei 5 Leistungspunkten: ca. 150 Stunden
- Präsenzzeit: 45 Stunden
- Vor- und Nachbereitung der LV: 67.5 Stunden
- Prüfung und Prüfungsvorbereitung: 37.5 Stunden
Literatur

Weitere Literatur

Teilleistung: Seminar Betriebswirtschaftslehre A (Master) [T-WIWI-103474]

Verantwortung: Martin Klarmann, Marliese Uhrg-Homburg, Christof Weinhardt, Andreas Geyer-Schulz, Ju-Young Kim, Hagen Lindstädt, Thomas Lützkendorf, Stefan Nickel, Marcus Wouters, Petra Nieken, Wolf Fichtner, Hansjörg Fromm, Ute Werner, David Lorenz, Gerhard Satzger, Frank Schultmann, Bruno Neibecker, Orestis Terzidis, Marion Weissenberger-Eibl, Martin Ruckes

Bestandteil von: [M-WIWI-102971] Seminar

Leistungspunkte: 3 Sprache: englisch Version: 1

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2016</td>
<td>2579904</td>
<td>Seminar Management Accounting</td>
<td>Seminar (S)</td>
<td>2</td>
<td>Frank Stadtherr, Michael Pelz</td>
</tr>
<tr>
<td>SS 2016</td>
<td>2579905</td>
<td>Special Topics in Management Accounting</td>
<td>Seminar (S)</td>
<td>2</td>
<td>Ana Mickovic</td>
</tr>
<tr>
<td>SS 2016</td>
<td>2540510</td>
<td>Masterseminar aus Informationswirtschaft (auch Diplom)</td>
<td>Seminar (S)</td>
<td>2</td>
<td>Andreas Sonnenbichler</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

- Regelmäßiger Teilnahme an den Seminarterminen
- Der Anfertigung einer Seminararbeit zu einem Teilaspekt des Seminarthemas nach wissenschaftlichen Methoden.
- Einem Vortrag zum Thema der Seminararbeit.

Die Gewichtung der einzelnen Komponenten legt der Dozent der jeweiligen Lehrveranstaltung fest. Sie wird im Vorle-
sungsverzeichnis unter https://campus.kit.edu/ und auf den Internetseiten der Institute bekannt gegeben.

Voraussetzungen
Keine.

Empfehlungen
Siehe Lehrveranstaltungsbeschreibung im Vorlesungsverzeichnis unterhttps://campus.kit.edu/.

Anmerkung
In der Regel werden die aktuellen Seminarthemen eines jeden Semesters bereits zum Ende des vorangehenden Semesters bekannt gegeben. Bei der Planung des Seminarmoduls sollte darauf geachtet werden, dass für manche Seminare eine Anmeldung bereits zum Ende des vorangehenden Semesters erforderlich ist.

Die folgenden Informationen stammen aus der Veranstaltung Seminar Management Accounting (SS 2016):

Lernziel
Die Studierenden
- können weitgehend selbständig ein abgegrenztes Thema aus dem Bereich des Controlling (Management Accounting) identifizieren,
- sind in der Lage das Thema zu recherchieren, die Informationen zu analysieren, zu abstrahieren sowie grundsätzliche Prinzipien und Gesetzmäßigkeiten aus wenig strukturierten Informationen zusammenzutragen,
- und können die Ergebnisse anschließend unter Berücksichtigung der wissenschaftlichen Arbeitsweise (Strukturierung, Fachterminologie, Quellenangabe) logisch und systematisch in schriftlicher und mündlicher Form präsentieren.
Inhalt
Das Seminar ist eine Kombination aus Vorlesung, Diskussionen und Studentenpräsentationen.
Die Studierenden fertigen in kleinen Gruppen eine Seminararbeit an und präsentieren diese in der Abschlusswoche.
Die Themen können im Rahmen des Seminarthemas frei gewählt werden.

Arbeitsaufwand
Gesamtaufwand bei 3 Leistungspunkten: ca. 30*3 Stunden.
Präsenzzeit: [30] Stunden (2 SWS)
Vor-/Nachbereitung (zum Schreiben des Aufsatzes): [60] Stunden

Literatur
Wird im Seminar bekanntgegeben.

Die folgenden Informationen stammen aus der Veranstaltung Special Topics in Management Accounting (SS 2016):

Lernziel
Die Studierenden
- können weitgehend selbständig ein abgegrenztes Thema aus dem Bereich des Controlling (Management Accounting) identifizieren,
- sind in der Lage das Thema zu recherchieren, die Informationen zu analysieren, zu abstrahieren sowie grundsätzliche Prinzipien und Gesetzmäßigkeiten aus wenig strukturierten Informationen zusammenzutragen,
- und können die Ergebnisse anschließend unter Berücksichtigung der wissenschaftlichen Arbeitsweise (Strukturierung, Fachterminologie, Quellenangabe) logisch und systematisch in schriftlicher und mündlicher Form präsentieren.

Inhalt
Das Seminar ist eine Kombination aus Vorlesung, Diskussionen und Studentenpräsentationen.
Die Studierenden fertigen in kleinen Gruppen eine Seminararbeit an und präsentieren diese in der Abschlusswoche.
Die Themen werden vorgegeben.

Arbeitsaufwand
Gesamtaufwand bei 3 Leistungspunkten: ca. 30*3 Stunden.
Präsenzzeit: [28] Stunden (2 SWS)
Vor-/Nachbereitung (zum Schreiben des Aufsatzes): [60] Stunden

Literatur
Wird im Seminar bekanntgegeben.
Teilleistung: Seminar Betriebswirtschaftslehre B (Master) [T-WIWI-103476]

Verantwortung: Martin Klarmann, Marliese Uhrig-Homburg, Christof Weinhardt, Andreas Geyer-Schulz, Ju-Young Kim, Hagen Lindstädt, Thomas Lützkendorf, Stefan Nickel, Marcus Wouters, Petra Nieken, Wolf Fichtner, Hansjörg Fromm, Ute Werner, David Lorenz, Gerhard Satzger, Frank Schultmann, Bruno Neibecker, Orestis Terzidis, Marion Weissenberger-Eibl, Martin Ruckes

Bestandteil von: [M-WIWI-102972] Seminar

Leistungspunkte 3
Sprache englisch
Version 1

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2016</td>
<td>2579904</td>
<td>Seminar Management Accounting</td>
<td>Seminar (S)</td>
<td>2</td>
<td>Frank Stadtherr, Michael Pelz</td>
</tr>
<tr>
<td>SS 2016</td>
<td>2579905</td>
<td>Special Topics in Management Accounting</td>
<td>Seminar (S)</td>
<td>2</td>
<td>Ana Mickovic</td>
</tr>
<tr>
<td>SS 2016</td>
<td>2540510</td>
<td>Masterseminar aus Informationswirtschaft (auch Diplom)</td>
<td>Seminar (S)</td>
<td>2</td>
<td>Andreas Sonnenbichler</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

- Regelmäßiger Teilnahme an den Seminarterminein
- Der Anfertigung einer Seminararbeit zu einem Teilaspekt des Seminarthemas nach wissenschaftlichen Methoden.
- Einem Vortrag zum Thema der Seminararbeit.

Voraussetzungen

Keine.

Empfehlungen

Siehe Lehrveranstaltungsbeschreibung im Vorlesungsverzeichnis unterhttps://campus.kit.edu/.

Anmerkung

In der Regel werden die aktuellen Seminarthemen eines jeden Semesters bereits zum Ende des vorangehenden Semesters bekannt gegeben. Bei der Planung des Seminarmoduls sollte darauf geachtet werden, dass für manche Seminare eine Anmeldung bereits zum Ende des vorangehenden Semesters erforderlich ist.

Die folgenden Informationen stammen aus der Veranstaltung Seminar Management Accounting (SS 2016):

Lernziel

Die Studierenden
- können weitgehend selbständig ein abgegrenztes Thema aus dem Bereich des Controlling (Management Accounting) identifizieren,
- sind in der Lage das Thema zu recherchieren, die Informationen zu analysieren, zu abstrahieren sowie grundsätzliche Prinzipien und Gesetzmäßigkeiten aus wenig strukturierten Informationen zusammenzutragen,
- und können die Ergebnisse anschließend unter Berücksichtigung der wissenschaftlichen Arbeitsweise (Strukturierung, Fachterminologie, Quellenangabe) logisch und systematisch in schriftlicher und mündlicher Form präsentieren.
Inhalt

Arbeitsaufwand

Literatur
Wird im Seminar bekanntgegeben.

Die folgenden Informationen stammen aus der Veranstaltung Special Topics in Management Accounting (SS 2016):

Lernziel
Die Studierenden
- können weitgehend selbständig ein abgegrenztes Thema aus dem Bereich des Controlling (Management Accounting) identifizieren,
- sind in der Lage das Thema zu recherchieren, die Informationen zu analysieren, zu abstrahieren sowie grundsätzliche Prinzipien und Gesetzmäßigkeiten aus wenig strukturierten Informationen zusammenzutragen,
- und können die Ergebnisse anschließend unter Berücksichtigung der wissenschaftlichen Arbeitsweise (Strukturierung, Fachterminologie, Quellenangabe) logisch und systematisch in schriftlicher und mündlicher Form präsentieren.

Inhalt

Arbeitsaufwand

Literatur
Wird im Seminar bekanntgegeben.
Teilleistung: Seminar Informatik A (Master) [T-WIWI-103479]

Verantwortung: Rudi Studer, Hartmut Schmeck, Andreas Oberweis, York Sure-Vetter, Johann Marius Zöllner
Bestandteil von: [M-WIWI-102973] Seminar

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 15/16</td>
<td>2595470</td>
<td>Seminar Service Science, Management & Engineering</td>
<td>Seminar (S)</td>
<td>2</td>
<td>Christof Weinhardt, Rudi Studer, Stefan Nickel, Roland Görlitz, Wolf Fichtner, Hansjörg Fromm, Gerhard Satzger</td>
</tr>
<tr>
<td>SS 2016</td>
<td>2513306</td>
<td>Event Processing: Verarbeitung von Echtzeitdaten und deren Geschäftspotenzial</td>
<td>Seminar / Praktikum 2 (S/P)</td>
<td></td>
<td>Ljiljana Stojanovic, Rudi Studer, Suad Sejdicov, Dominik Riemer, York Sure-Vetter</td>
</tr>
<tr>
<td>SS 2016</td>
<td>2595470</td>
<td>Seminar Service Science, Management & Engineering</td>
<td>Seminar (S)</td>
<td>2</td>
<td>Christof Weinhardt, Rudi Studer, Stefan Nickel, Wolf Fichtner, York Sure-Vetter, Gerhard Satzger</td>
</tr>
<tr>
<td>WS 15/16</td>
<td>2513104</td>
<td>Modellierung und Simulation im Smart Grid</td>
<td>Seminar (S)</td>
<td>2</td>
<td>Hartmut Schmeck, Christian Hirsch, Marlon Braun, Fabian Rigoll</td>
</tr>
<tr>
<td>SS 2016</td>
<td>2512300</td>
<td>Knowledge Discovery and Data Mining</td>
<td>Seminar / Praktikum 3 (S/P)</td>
<td></td>
<td>Aditya Mogadala, Achim Rettinger, Rudi Studer, York Sure-Vetter, Andreas Thalhammer</td>
</tr>
<tr>
<td>WS 15/16</td>
<td>2513306</td>
<td>Seminar Betriebliche Informationssysteme: Business Process Management (BPM) und kontextbasierte Zugriffskontrolle</td>
<td>Seminar (S)</td>
<td>2</td>
<td>Andreas Drescher, Andreas Schoeknecht, Andreas Oberweis</td>
</tr>
<tr>
<td>SS 2016</td>
<td>2513206</td>
<td>Seminar Betriebliche Informationssysteme: 3. Studierendenkonferenz (Master)</td>
<td>Seminar (S)</td>
<td>2</td>
<td>Andreas Schoeknecht, Jonas Lehner, Andreas Oberweis, Ugur Cayoglu</td>
</tr>
<tr>
<td>SS 2016</td>
<td>2513103</td>
<td>Energieinformatiksysteme weltweit</td>
<td>Seminar (S)</td>
<td>2</td>
<td>Hartmut Schmeck, Marlon Braun, Fabian Rigoll</td>
</tr>
<tr>
<td>WS 15/16</td>
<td>2513305</td>
<td>Developing IT based Business Models</td>
<td>Seminar (S)</td>
<td>2</td>
<td>Rudi Studer, Maria Maleshkova, Felix Leif Keppmann</td>
</tr>
<tr>
<td>WS 15/16</td>
<td>2512307</td>
<td>Anwendungen von Semantic MediaWiki</td>
<td>Seminar / Praktikum 3 (S/P)</td>
<td></td>
<td>Patrick Philipp, Achim Rettinger, Rudi Studer, Michael Beigl, Felix Leif Keppmann, Wilhelm Stork</td>
</tr>
<tr>
<td>WS 15/16</td>
<td>2400105</td>
<td>Sensorgetriebene Information Appliances</td>
<td>Seminar (S)</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
Erfolgskontrolle(n)

- Regelmäßiger Teilnahme an den Seminarterminen
- Der Anfertigung einer Seminararbeit zu einem Teilaspekt des Seminarthemas nach wissenschaftlichen Methoden.
- Einem Vortrag zum Thema der Seminararbeit.

Voraussetzungen
Keine.

Empfehlungen
Siehe Lehrveranstaltungsbeschreibung im Vorlesungsverzeichnis unterhttps://campus.kit.edu/.

Anmerkung
In der Regel werden die aktuellen Seminarthemen eines jeden Semesters bereits zum Ende des vorangehenden Semesters bekannt gegeben. Bei der Planung des Seminarmoduls sollte darauf geachtet werden, dass für manche Seminare eine Anmeldung bereits zum Thema der Seminararbeit erforderlich ist.

Die folgenden Informationen stammen aus der Veranstaltung Seminar Service Science, Management & Engineering (SS
Lernziel
Der/die Studierende
- illustriert und bewertet aktuelle und klassische Fragestellungen im Bereich des Service Science, Management und Engineering,
- wendet Modelle und Techniken des Service Science an, auch mit Blick auf ihre Praxistaiglichkeit,
- hat den erste Kontakt mit wissenschaftlichem Arbeiten erfolgreich bewältigt, indem er/sie durch die vertiefte Bearbeitung eines wissenschaftlichen Spezialthemas die Grundsätze wissenschaftlichen Recherchierens und Argumentierens erlernt,
- besitzt gute rhetorische Fähigkeiten und setzt Präsentationstechniken gut ein.

Für eine weitere Vertiefung des wissenschaftlichen Arbeitens wird bei Studierenden des Masterstudiengangs insbesondere auf die kritische Bearbeitung der Seminarthemen Wert gelegt.

Inhalt
Auf der Website des KSRI finden Sie weitere Informationen über dieses Seminar: www.ksri.kit.edu

Arbeitsaufwand
Gesamtaufwand bei 4 Leistungspunkten: ca. 120 Stunden
Präsenzzeit: 30 Stunden
Selbststudium: 90 Stunden

Literatur
Die Basisliteratur wird entsprechend der zu bearbeitenden Themen bereitgestellt.

Die folgenden Informationen stammen aus der Veranstaltung Event Processing: Verarbeitung von Echtzeitdaten und deren Geschäftspotenzial (SS 2016):

Inhalt
Mögliche Themen umfassen z.B.:
- Vorhersage von lukrativen Arealen/Routen
- Echtzeitvisualisierung von Ereignisströmen
- Fraud Detection
- Umsatzprognose

Gerne können die Daten mit weiteren Daten (z.B. Wetter- oder Veranstaltungsdaten für NYC) verknüpft werden.

Die folgenden Informationen stammen aus der Veranstaltung Knowledge Discovery and Data Mining (SS 2016):

Inhalt
Mögliche Anwendungsbereiche sind z.B.:
- Medizin
- Soziale Medien
- Finanzmarkt

Literatur
Detaillierte Referenzen werden zusammen mit den jeweiligen Themen angegeben. Allgemeine Hintergrundinformationen ergeben sich z.B. aus den folgenden Lehrbüchern:
- Mitchell, T.; Machine Learning
Die folgenden Informationen stammen aus der Veranstaltung Sensorgetriebene Information Appliances (WS 15/16):

Lernziel

Inhalt
Das Seminar entwickelt aus dem Stand der Forschung heraus einen praktischen, innovativen Entwurf einer IoT Appliance. In Dreiergruppen bestehend aus Studierenden der E-Technik, der WiWi und der Informatik sollen disziplinspezifische Aspekte herausgearbeitet werden.

Die folgenden Informationen stammen aus der Veranstaltung Cognitive Computing in the Medical Domain (SS 2016):

Lernziel

Inhalt
Mögliche Themen umfassen z.B.:

- Entscheidungsunterstützende Systeme
- Klinische Prozessanalyse
- KI Systeme im Medizinbereich
- Ontologie analyse

Literatur
Literaturhinweise werden in der Veranstaltung gegeben.
Teilleistung: Seminar Informatik B (Master) [T-WIWI-103480]

Verantwortung: Rudi Studer, Hartmut Schmeck, Andreas Oberweis, York Sure-Vetter, Johann Marius Zöllner

Bestandteil von: [M-WIWI-102974] Seminar

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Sprache</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>deutsch/deutsch/englisch/englisch</td>
<td>1</td>
</tr>
</tbody>
</table>

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 15/16</td>
<td>2595470</td>
<td>Seminar Service Science, Management & Engineering</td>
<td>Seminar (S)</td>
<td>2</td>
<td>Christof Weinhardt, Rudi Studer, Stefan Nickel, Roland Görlitz, Wolf Fichtner, Hansjörg Fromm, Gerhard Satzger</td>
</tr>
<tr>
<td>SS 2016</td>
<td>2513306</td>
<td>Event Processing: Verarbeitung von Echtzeitdaten und deren Geschäftspotenzial</td>
<td>Seminar / Praktikum 2 (S/P)</td>
<td></td>
<td>Ljiljana Stojanovic, Rudi Studer, Suad Sejobovic, Dominik Riemer, York Sure-Vetter</td>
</tr>
<tr>
<td>SS 2016</td>
<td>2595470</td>
<td>Seminar Service Science, Management & Engineering</td>
<td>Seminar (S)</td>
<td>2</td>
<td>Christof Weinhardt, Rudi Studer, Stefan Nickel, Wolf Fichtner, York Sure-Vetter, Gerhard Satzger</td>
</tr>
<tr>
<td>WS 15/16</td>
<td>2513104</td>
<td>Modellierung und Simulation im Smart Grid</td>
<td>Seminar (S)</td>
<td>2</td>
<td>Hartmut Schmeck, Christian Hirsch, Marlon Braun, Fabian Rigoll</td>
</tr>
<tr>
<td>SS 2016</td>
<td>2512300</td>
<td>Knowledge Discovery and Data Mining</td>
<td>Seminar / Praktikum 3 (S/P)</td>
<td></td>
<td>Aditya Mogadala, Achim Rettinger, Rudi Studer, York Sure-Vetter, Andreas Thalhammer</td>
</tr>
<tr>
<td>WS 15/16</td>
<td>2513306</td>
<td>Seminar Betriebliche Informationssysteme: Business Process Management (BPM) und kontextbasierte Zugriffskontrolle</td>
<td>Seminar (S)</td>
<td>2</td>
<td>Andreas Drescher, Andreas Schoenkecht, Andreas Oberweis</td>
</tr>
<tr>
<td>SS 2016</td>
<td>2513206</td>
<td>Seminar Betriebliche Informationssysteme: 3. Studierendenkonferenz (Master)</td>
<td>Seminar (S)</td>
<td>2</td>
<td>Andreas Schoenkecht, Jonas Lehner, Andreas Oberweis, Ugur Cayoglu</td>
</tr>
<tr>
<td>SS 2016</td>
<td>2513103</td>
<td>Energieinformatiksysteme weltweit</td>
<td>Seminar (S)</td>
<td>2</td>
<td>Hartmut Schmeck, Marlon Braun, Fabian Rigoll</td>
</tr>
<tr>
<td>WS 15/16</td>
<td>2513305</td>
<td>Developing IT based Business Models</td>
<td>Seminar (S)</td>
<td>2</td>
<td>Rudi Studer, Maria Maleshkova, Felix Leif Keppmann</td>
</tr>
<tr>
<td>WS 15/16</td>
<td>2512307</td>
<td>Anwendungen von Semantic MediaWiki</td>
<td>Seminar / Praktikum 3 (S/P)</td>
<td></td>
<td>Patrick Philipp, Achim Rettinger, Rudi Studer</td>
</tr>
<tr>
<td>WS 15/16</td>
<td>2400105</td>
<td>Sensorgetriebene Information Appliances</td>
<td>Seminar (S)</td>
<td>2</td>
<td>Rudi Studer, Michael Beigl, Felix Leif Keppmann, Wilhelm Stork</td>
</tr>
</tbody>
</table>
Erfolgskontrolle(n)

- Regelmäßiger Teilnahme an den Seminarterminen
- Der Anfertigung einer Seminararbeit zu einem Teilaspekt des Seminarthemas nach wissenschaftlichen Methoden.
- Einem Vortrag zum Thema der Seminararbeit.

Voraussetzungen

Keine.

Empfehlungen

Siehe Lehrveranstaltungsbeschreibung im Vorlesungsverzeichnis unterhttps://campus.kit.edu/.

Anmerkung

In der Regel werden die aktuellen Seminarthemen eines jeden Semesters bereits zum Ende des vorangehenden Semesters bekannt gegeben. Bei der Planung des Seminarmoduls sollte darauf geachtet werden, dass für manche Seminare eine Anmeldung bereits zum Thema des vorangehenden Semesters erforderlich ist.

*Die folgenden Informationen stammen aus der Veranstaltung Seminar Service Science, Management & Engineering (SS
2016):

Lernziel
Der/die Studierende

- illustriert und bewertet aktuelle und klassische Fragestellungen im Bereich des Service Science, Management und Engineering,
- wendet Modelle und Techniken des Service Science an, auch mit Blick auf ihre Praxistaiglichkeit,
- hat den erste Kontakt mit wissenschaftlichem Arbeiten erfolgreich bewältigt, indem er/sie durch die vertiefte Bearbeitung eines wissenschaftlichen Spezialthemas die Grundsätze wissenschaftlichen Recherchierens und Argumentierens erlernt,
- besitzt gute rhetorische Fähigkeiten und setzt Präsentationstechniken gut ein.

Für eine weitere Vertiefung des wissenschaftlichen Arbeitens wird bei Studierenden des Masterstudiengangs insbesondere auf die kritische Bearbeitung der Seminarthemen Wert gelegt.

Inhalt

Auf der Website des KSRI finden Sie weitere Informationen über dieses Seminar: www.ksri.kit.edu

Arbeitsaufwand
Gesamtaufwand bei 4 Leistungspunkten: ca. 120 Stunden
Präsenzzeit: 30 Stunden
Selbststudium: 90 Stunden

Literatur
Die Basisliteratur wird entsprechend der zu bearbeitenden Themen bereitgestellt.

Die folgenden Informationen stammen aus der Veranstaltung Event Processing: Verarbeitung von Echtzeitedaten und deren Geschäftspotenzial (SS 2016):

Inhalt
Mögliche Themen umfassen z.B.:

- Vorhersage von lukrativen Arealen/Routen
- Echtzeitvisualisierung von Ereignisströmen
- Fraud Detection
- Umsatzprognose

Gerne können die Daten mit weiteren Daten (z.B. Wetter- oder Veranstaltungsdaten für NYC) verknüpft werden.

Die folgenden Informationen stammen aus der Veranstaltung Knowledge Discovery and Data Mining (SS 2016):

Inhalt
Mögliche Anwendungsbereiche sind z.B.:

- Medizin
- Soziale Medien
- Finanzmarkt

Literatur
Detaillierte Referenzen werden zusammen mit den jeweiligen Themen angegeben. Allgemeine Hintergrundinformationen ergeben sich z.B. aus den folgenden Lehrbüchern:

- Mitchell, T.; Machine Learning
Die folgenden Informationen stammen aus der Veranstaltung Sensorgetriebene Information Appliances (WS 15/16):

Lernziel

Inhalt
Das Seminar entwickelt aus dem Stand der Forschung heraus einen praktischen, innovativen Entwurf einer IoT Appliance. In Dreiergruppen bestehend aus Studierenden der E-Technik, der WiWi und der Informatik sollen disziplinspezifische Aspekte herausgearbeitet werden.

Die folgenden Informationen stammen aus der Veranstaltung Cognitive Computing in the Medical Domain (SS 2016):

Lernziel

Inhalt
Mögliche Themen umfassen z.B.:
- Entscheidungsunterstützende Systeme
- Klinische Prozessanalyse
- KI Systeme im Medizinbereich
- Ontologie analyse

Literatur
Literaturhinweise werden in der Veranstaltung gegeben.
Teilleistung: Seminar Mathematik [T-MATH-105686]

Verantwortung:
Bestandteil von: [M-MATH-102730] Seminar

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
Erfolgskontrolle(n)

- Regelmäßiger Teilnahme an den Seminarterminen
- Der Anfertigung einer Seminararbeit zu einem Teilspektrum des Seminarthemas nach wissenschaftlichen Methoden.
- Einem Vortrag zum Thema der Seminararbeit.

Voraussetzungen
Keine.

Empfehlungen
Siehe Lehrveranstaltungsbeschreibung im Vorlesungsverzeichnis unterhttps://campus.kit.edu/.

Anmerkung
In der Regel werden die aktuellen Seminarthemen eines jeden Semesters bereits zum Ende des vorangehenden Semesters bekannt gegeben. Bei der Planung des Seminarmoduls sollte darauf geachtet werden, dass für manche Seminare eine Anmeldung bereits zum Ende des vorangehenden Semesters erforderlich ist.

Die verfügbaren Seminarplätze werden im WIWi-Portal unter https://portal.wiwi.kit.edu aufgeführt.

Teilleistung: Seminar Operations Research B (Master) [T-WIWI-103482]

Verantwortung: Oliver Stein, Karl-Heinz Waldmann, Stefan Nickel

Bestandteil von: [M-WIWI-102974] Seminar

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

- Regelmäßiger Teilnahme an den Seminarterminen
- Der Anfertigung einer Seminararbeit zu einem Teilspekt des Seminarthemas nach wissenschaftlichen Methoden.
- Einem Vortrag zum Thema der Seminararbeit.

Voraussetzungen
Keine.

Empfehlungen
Siehe Lehrveranstaltungsbeschreibung im Vorlesungsverzeichnis unter https://campus.kit.edu/.

Anmerkung
In der Regel werden die aktuellen Seminarthemen eines jeden Semesters bereits zum Ende des vorangehenden Semesters bekannt gegeben. Bei der Planung des Seminarmoduls sollte darauf geachtet werden, dass für manche Seminare eine Anmeldung bereits zum Ende des vorangehenden Semesters erforderlich ist.

Die verfügbaren Seminarplätze werden im WIWi-Portal unter https://portal.wiwi.kit.edu aufgeführt.

Erfolgskontrolle(n)

- Regelmäßiger Teilnahme an den Seminarterminen
- Der Anfertigung einer Seminararbeit zu einem Teilspektrum des Seminarthemas nach wissenschaftlichen Methoden.
- Einem Vortrag zum Thema der Seminararbeit.

Voraussetzungen
Keine.

Empfehlungen
Siehe Lehrveranstaltungsbeschreibung im Vorlesungsverzeichnis unterhttps://campus.kit.edu/.

Anmerkung
In der Regel werden die aktuellen Seminarthemen eines jeden Semesters bereits zum Ende des vorangehenden Semesters bekannt gegeben. Bei der Planung des Seminarmoduls sollte darauf geachtet werden, dass für manche Seminare eine Anmeldung bereits zum Ende des vorangehenden Semesters erforderlich ist.

Die verfügbaren Seminarplätze werden im WIWi-Portal unter https://portal.wiwi.kit.edu aufgeführt.

Erfolgskontrolle(n)

- Regelmäßiger Teilnahme an den Seminarterminen
- Der Anfertigung einer Seminararbeit zu einem Teilspektrum des Seminarthemas nach wissenschaftlichen Methoden.
- Einem Vortrag zum Thema der Seminararbeit.

Voraussetzungen
Keine.

Empfehlungen
Siehe Lehrveranstaltungsbeschreibung im Vorlesungsverzeichnis unterhttps://campus.kit.edu/.

Anmerkung
In der Regel werden die aktuellen Seminarthemen eines jeden Semesters bereits zum Ende des vorangehenden Semesters bekannt gegeben. Bei der Planung des Seminarmoduls sollte darauf geachtet werden, dass für manche Seminare eine Anmeldung bereits zum Ende des vorangehenden Semesters erforderlich ist.

Teilleistung: Seminar Volkswirtschaftslehre A (Master) [T-WIWI-103478]

Verantwortung: Kay Mütisch, Ingrid Ott, Jan Kowalski, Marten Hillebrand, Clemens Puppe, Johannes Philipp Reiß, Berthold Wigger

Bestandteil von: [M-WIWI-102971] Seminar

Leistungspunkte 3
Version 1

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2016</td>
<td>2560282</td>
<td>Wirtschaftspolitisches Seminar</td>
<td>Seminar (S)</td>
<td>2</td>
<td>Ingrid Ott, Assistenten</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

- Regelmäßiger Teilnahme an den Seminarterminen
- Der Anfertigung einer Seminararbeit zu einem Teilspektrum des Seminarthemas nach wissenschaftlichen Methoden.
- Einem Vortrag zum Thema der Seminararbeit.

Voraussetzungen
Keine.

Empfehlungen
Siehe Lehrveranstaltungsbeschreibung im Vorlesungsverzeichnis unterhttps://campus.kit.edu/.

Anmerkung
In der Regel werden die aktuellen Seminarthemen eines jeden Semesters bereits zum Ende des vorangehenden Semesters bekannt gegeben. Bei der Planung des Seminarmoduls sollte darauf geachtet werden, dass für manche Seminare eine Anmeldung bereits zum Ende des vorangehenden Semesters erforderlich ist.

Bitte benutzen Sie bei der Online-Anmeldung des ersten Seminars grundsätzlich die A-Variante.
Teilleistung: Seminar Volkswirtschaftslehre B (Master) [T-WIWI-103477]

Verantwortung: Kay Mitusch, Ingrid Ott, Jan Kowalski, Marten Hillebrand, Clemens Puppe, Johannes Philipp Reiß, Berthold Wigger

Bestandteil von: [M-WIWI-102972] Seminar

Leistungspunkte 3 Version 1

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2016</td>
<td>2560282</td>
<td>Wirtschaftspolitisches Seminar</td>
<td>Seminar (S)</td>
<td>2</td>
<td>Ingrid Ott, Assisten-</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

- Regelmäßiger Teilnahme an den Seminarterminen
- Der Anfertigung einer Seminararbeit zu einem Teilaspekt des Seminarthemas nach wissenschaftlichen Methoden.
- Einem Vortrag zum Thema der Seminararbeit.

Voraussetzungen

Keine.

Empfehlungen

Siehe Lehrveranstaltungsbeschreibung im Vorlesungsverzeichnis unterhttps://campus.kit.edu/.

Anmerkung

Teilleistung: Service Oriented Computing [T-WIWI-105801]

Verantwortung: Barry Norton, Sudhir Agarwal, Rudi Studer

Bestandteil von: [M-WIWI-101472] Informatik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Sprache</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>deutsch/englisch</td>
<td>1</td>
</tr>
</tbody>
</table>

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2016</td>
<td>2511308</td>
<td>Service Oriented Computing</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Rudi Studer, Maria Maleshkova</td>
</tr>
<tr>
<td>SS 2016</td>
<td>2511309</td>
<td>Übungen zu Service Oriented Computing</td>
<td>Übung (Ü)</td>
<td>1</td>
<td>Rudi Studer, Maria Maleshkova, Felix Leif Keppmann</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60min.) (nach §4(2), 1 SPO) oder in Form einer mündlichen Prüfung (nach §4(2), 2 SPO).

Voraussetzungen

Keine

Die folgenden Informationen stammen aus der Veranstaltung Service Oriented Computing (SS 2016):

Lernziel

Die Studentinnen und Studenten vertiefen ihr Wissen im Bereich moderner Service-orientierter Techniken. Sie erwerben dabei die Fähigkeit innovative und forschungsnahe Konzepte und Methoden zu verstehen, anzuwenden und zu bewerten.

Inhalt

Arbeitsaufwand

- Gesamtaufwand bei 5 Leistungspunkten: ca. 150 Stunden
- Präsenzzeit: 45 Stunden
- Vor – und Nachbereitung der LV: 67.5 Stunden
- Prüfung und Prüfungsvorbereitung: 37.5 Stunden

Literatur

Literatur wird in der Vorlesung bekannt gegeben.
Teilleistung: Simulation I [T-WIWI-102627]

Verantwortung: Karl-Heinz Waldmann
Bestandteil von:
- [M-WIWI-101400] Stochastische Methoden und Simulation
- [M-WIWI-101454] Stochastische Modellierung und Optimierung

Leistungspunkte: 4,5
Sprache: deutsch
Version: 1

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2016</td>
<td>2550663</td>
<td>Übung zu Simulation I</td>
<td>Übung (Ü)</td>
<td></td>
<td>Karl-Heinz Waldmann</td>
</tr>
<tr>
<td>SS 2016</td>
<td>2550662</td>
<td>Simulation I</td>
<td>Vorlesung (V)</td>
<td></td>
<td>Ellen Platt, Karl-Heinz Waldmann, André Lust</td>
</tr>
<tr>
<td>SS 2016</td>
<td>2550664</td>
<td>Rechnerübung zu Simulation I</td>
<td>Übung (Ü)</td>
<td></td>
<td>Karl-Heinz Waldmann</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen
Keine

Empfehlungen
Keine

Anmerkung
Die Vorlesung Simulation I wird im SS 2015 und im SS 2016 gelesen.

Die folgenden Informationen stammen aus der Veranstaltung Simulation I (SS 2016):

Lernziel

Inhalt
Erzeugung von Zufallszahlen, Monte Carlo Integration, Diskrete Simulation, Zufallszahlen diskreter und stetiger Zufallsvariablen, statistische Analyse simulierter Daten.

Arbeitsaufwand
Gesamtaufwand bei 4,5 Leistungspunkten: ca. 135.0 Stunden
Präsenzzeit: 30 Stunden
Vor – und Nachbereitung der LV: 45.0 Stunden
Prüfung und Prüfungsvorbereitung: 60.0 Stunden

Literatur

- Skript

Weiterführende Literatur

Teilleistung: Simulation II [T-WIWI-102703]

Verantwortung: Karl-Heinz Waldmann
Bestandteil von: [M-WIWI-101400] Stochastische Methoden und Simulation
[M-WIWI-101454] Stochastische Modellierung und Optimierung

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>1</td>
</tr>
</tbody>
</table>

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 15/16</td>
<td>2550665</td>
<td>Simulation II</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Karl-Heinz Waldmann, André Lust</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen

Keine

Empfehlungen

Es sind Kenntnisse, wie sie in Simulation I [2550662] vermittelt werden, wünschenswert.

Anmerkung

Teilleistung: Smart Energy Distribution [T-WIWI-102845]

Verantwortung: Hartmut Schmeck
Bestandteil von: [M-WIWI-101472] Informatik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Sprache</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>englisch</td>
<td>1</td>
</tr>
</tbody>
</table>

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2016</td>
<td>2511108</td>
<td>Smart Energy Distribution</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Hartmut Schmeck</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen
Keine

Empfehlungen
Informatikankenntnisse sind hilfreich, aber nicht Voraussetzung

Anmerkung
Diese Vorlesung wird speziell für Studierende des MSc Studiengangs Energietechnik der Fakultät für Maschinenbau angeboten. Sie ist aber auch von Studierenden der Masterstudiengänge Wirtschaftsingenieurwesen, TVWL, Informationswirtschaft und Wirtschaftsmathematik wählbar.

Die folgenden Informationen stammen aus der Veranstaltung Smart Energy Distribution (SS 2016):

Lernziel
The students will develop an understanding of the basic problems that arise from decentralisation and an increased share of renewables in the power mix and they will know how to deal with these problems by using concepts like virtualisation and self-organisation. They will know how to design and apply adequate methods for smart energy distribution in various related problem settings and they will be capable to explain the appropriate use of these methods. The students will get to know the scope of topics in energy informatics.

Inhalt

Arbeitsaufwand
Der Arbeitsaufwand entspricht ca 120 Strunden (4LP)
Teilnahme: Sobolevräume [T-MATH-105896]

Verantwortung: Andreas Kirsch
Bestandteil von: [M-MATH-102926] Sobolevräume

Leistungspunkte: 5
Version: 1

Voraussetzungen
Keine
Teilleistung: Social Choice Theory [T-WIWI-102859]

Verantwortung: Clemens Puppe
Bestandteil von: [M-WIWI-101504] Collective Decision Making
[M-WIWI-101500] Microeconomic Theory

Leistungspunkte: 4,5
Sprache: englisch
Version: 1

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2016</td>
<td>2520539</td>
<td>Übung zu Social Choice Theory</td>
<td>Übung (U)</td>
<td>1</td>
<td>Anselma Wörner, Clemens Puppe, Tobias Dittrich</td>
</tr>
<tr>
<td>SS 2016</td>
<td>2520537</td>
<td>Social Choice Theory</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Clemens Puppe, Michael Müller</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) (nach §4(2), 1 SPO).
Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen
Keine

Die folgenden Informationen stammen aus der Veranstaltung Social Choice Theory (SS 2016):

Lernziel
The student should acquire knowledge of formal theories of collective decision making and learn to apply them to real life situations.

Inhalt
The course provides a comprehensive treatment of preference and judgement aggregation, including proofs of general results that have Arrow’s famous impossibility theorem and Gibbard’s oligarchy theorem as corollaries. The second part of the course is devoted to voting theory. Among other things, we prove the Gibbard-Satterthwaite theorem. An introduction into tournament theory concludes the course.

Arbeitsaufwand
Gesamtaufwand bei 4,5 Leistungspunkten: ca. 135.0 Stunden
Präsenzzeit: 30 Stunden
Vor- und Nachbereitung der LV: 45.0 Stunden
Prüfung und Prüfungsvorbereitung: 60.0 Stunden

Literatur
Main texts:

Secondary texts:
Teilleistung: Software-Praktikum: OR-Modelle I [T-WIWI-102717]

Verantwortung: Stefan Nickel

Leistungspunkte: 4,5
Sprache: deutsch
Version: 1

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 15/16</td>
<td>2550490</td>
<td>Software-Praktikum: OR-Modelle I</td>
<td>Praktikum (P)</td>
<td>3</td>
<td>Melanie Reuter-Oppermann</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen
Keine

Empfehlungen

Anmerkung

Die folgenden Informationen stammen aus der Veranstaltung Software-Praktikum: OR-Modelle I (WS 15/16):

Lernziel
Der/die Studierende

- schätzt die Einsatzmöglichkeiten des Computers in der praktischen Anwendung von Methoden des Operations Research richtig ein,
- besitzt die Fähigkeit, die grundlegenden Möglichkeiten und Verwendungszwecke von Modellierungssoftware und Implementierungssprachen für OR Modelle einzuordnen und anzuwenden
- modelliert und löst die in Industrieanwendungen auftretenden Problemstellungen durch den angemessenen Einsatz computergestützter Optimierungsverfahren.

Inhalt
Nach einer Einführung in die allgemeinen Konzepte von Modellierungstools (Implementierung, Datenhandling, Ergebnisinterpretation, ...) wird konkret anhand der Software IBM ILOG CPLEX Optimization Studio und der zugehörigen Modellierungssprache OPL vorgestellt, wie OR-Probleme am Rechner gelöst werden können.

Im Anschluss daran werden Übungsaufgaben ausführlich behandelt. Ziele der aus Lehrbuch- und Praxisbeispielen bestehenden Aufgaben liegen in der Modellierung linearer und gemischt-ganzzahliger Programme, dem sicheren Umgang mit den vorgestellten Tools zur Lösung dieser Optimierungsprobleme, sowie der Implementierung heuristischer Lösungsverfahren für gemischt-ganzzahlige Probleme.

Arbeitsaufwand
Gesamtaufwand bei 4,5 Leistungspunkten: ca. 135.0 Stunden
Präsenzzeit: 15 Stunden
Vor – und Nachbereitung der LV: 22.5 Stunden
Prüfung und Prüfungsvorbereitung: 97.5 Stunden
Teilleistung: Software-Praktikum: OR-Modelle II [T-WIWI-102784]

Verantwortung: Stefan Nickel

Leistungspunkte 4,5
Version 1

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer Prüfung mit schriftlichem und praktischem Teil (nach §4(2), 1 SPO).
Die Prüfung wird im Semester des Software-Praktikums und dem darauf folgenden Semester angeboten.

Voraussetzungen
Keine

Empfehlungen
Erfolgreicher Abschluss der Lehrveranstaltung Software-Praktikum: OR-Modelle I [2550490].

Anmerkung
Aufgrund der begrenzten Teilnehmerzahl wird um eine Voranmeldung gebeten. Weitere Informationen entnehmen Sie der Internetseite des Software-Praktikums.
Die Veranstaltung wird unregelmäßig angeboten. Das für drei Studienjahre im Voraus geplante Lehrangebot kann im Internet nachgelesen werden.
Teilleistung: Software-Qualitätsmanagement [T-WIWI-102895]

Verantwortung: Andreas Oberweis
Bestandteil von: [M-WIWI-101472] Informatik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Sprache</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>deutsch</td>
<td>1</td>
</tr>
</tbody>
</table>

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2016</td>
<td>2511209</td>
<td>Übungen zu Software-Qualitätsmanagement</td>
<td>Übung (U)</td>
<td>1</td>
<td>Meike Ullrich, Andreas Oberweis, Timm Caporale</td>
</tr>
<tr>
<td>SS 2016</td>
<td>2511208</td>
<td>Software-Qualitätsmanagement</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Andreas Oberweis</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (Klausur) im Umfang von 1h nach § 4, Abs. 2, 1 SPO. Sie findet in der ersten Woche nach der Vorlesungszeit statt.

Voraussetzungen
Keine

Anmerkung
Bis einschließlich SS 2014 lautete der LV-Titel “Softwaretechnik: Qualitätsmanagement”.

Die folgenden Informationen stammen aus der Veranstaltung Software-Qualitätsmanagement (SS 2016):

Lernziel
Die Studierenden
- erläutern die relevanten Qualitätsmodelle,
- wenden aktuelle Methoden zur Beurteilung der Softwarequalität an und bewerten die Ergebnisse,
- kennen die wichtigsten Modelle zur Zertifizierung der Qualität in der Softwareentwicklung, vergleichen und bewerten diese Modelle,
- formulieren wissenschaftliche Arbeiten zum Qualitätsmanagement in der Softwareentwicklung, entwickeln selbstständig innovative Lösungen für Anwendungsprobleme.

Inhalt
Die Vorlesung vermittelt Grundlagen zum aktiven Software-Qualitätsmanagement (Qualitätsplanung, Qualitätsprüfung, Qualitätslenkung, Qualitätssicherung) und veranschaulicht diese anhand konkreter Beispiele, wie sie derzeit in der industriellen Softwareentwicklung Anwendung finden. Stichworte aus dem Inhalt sind: Software und Softwarequalität, Vorgehensmodelle, Softwareprozessqualität, ISO 9000-3, CMM(I), BOOTSTRAP, SPICE, Software-Tests.

Arbeitsaufwand
Der Gesamtarbeitsaufwand für diese Lerneinheit beträgt ca. 150 Stunden (5.0 Credits).
Vorlesung 30h
Übung 15h
Vor- bzw. Nachbereitung der Vorlesung 30h
Vor- bzw. Nachbereitung der Übung 30h
Prüfungsvorbereitung 44h
Prüfung 1h
Summe: 150h

Literatur
- Peter Liggesmeyer: Software-Qualität, Testen, Analysieren und Verifizieren von Software. Spektrum Akademischer Verlag 2002
- Mauro Pezzè, Michal Young: Software testen und analysieren. Oldenbourg Verlag 2009

Weitere Literatur wird in der Vorlesung bekanntgegeben.
Teilleistung: Spatial Economics [T-WIWI-103107]

Verantwortung: Ingrid Ott

Leistungspunkte: 4,5
Sprache: englisch
Version: 1

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 15/16</td>
<td>2561260</td>
<td>Spatial Economics</td>
<td>Vorlesung (V)</td>
<td></td>
<td>Ingrid Ott</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) (nach §4(2), 1 SPO).

Voraussetzungen
Keine

Empfehlungen

Die folgenden Informationen stammen aus der Veranstaltung Spatial Economics (WS 15/16):

Lernziel
Der/ die Studierende

- Analysiert Determinanten von räumlicher Verteilung ökonomischer Aktivität
- Wendet quantitative Methoden im Rahmen ökonomischer Modelle an
- Besitzt grundlegende Kenntnisse formal-analytischer Methoden
- Versteht die Verbindung von ökonomischer Theorie und deren empirische Anwendung
- Versteht, inwiefern Konzentrationsprozesse aus der Interaktion von Agglomerations- und Dispersionskräften resultieren
- Kann theoriebasierte Politikempfehlungen ableiten

Inhalt
Geographie, Handel und Entwicklung
Geographie und ökonomische Theorie
Kernmodelle der ökonomischen Geographie und empirische Evidenz
Agglomeration, Home Market Effect (HME), räumliche Lohnstrukturen
Anwendungen und Erweiterungen

Arbeitsaufwand
Gesamtaufwand bei 4,5 Leistungspunkten: ca. 135.0 Stunden
Präsenzzeit: 30 Stunden
Vor – und Nachbereitung der LV: 45.0 Stunden
Prüfung und Prüfungsvorbereitung: 60.0 Stunden

Literatur
Steven Brakman, Harry Garretsen, Charles van Marrewijk (2009), The New Introduction to Geographical Economics
Weitere Literatur wird im Laufe der Veranstaltung bekanntgegeben.
Teilleistung: Spektraltheorie - Prüfung [T-MATH-103414]

Verantwortung: Christoph Schmoeger, Gerd Herzog, Peer Kunstmann, Roland Schnaubelt, Lutz Weis
Bestandteil von: [M-MATH-101768] Spektraltheorie

Leistungspunkte: 8
Version: 1

Voraussetzungen: keine
Teilleistung: Spezialvorlesung Betriebliche Informationssysteme [T-WIWI-102676]

Verantwortung: Andreas Oberweis
Bestandteil von: [M-WIWI-101472] Informatik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 15/16</td>
<td>2511220</td>
<td>Spezialvorlesung Betriebliche Informationssysteme: Software-Ergonomie</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Agnes Koschmider</td>
</tr>
<tr>
<td>WS 15/16</td>
<td>2511224</td>
<td>Spezialvorlesung Betriebliche Informationssysteme: Datenschutz und IT-Sicherheit</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Stefanie Betz</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen oder ggf. mündlichen Prüfung nach §4(2) der Prüfungsordnung.

Voraussetzungen
Keine
Teilleistung: Spezialvorlesung Effiziente Algorithmen [T-WIWI-102657]

Verantwortung: Hartmut Schmeck
Bestandteil von: [M-WIWI-101472] Informatik

Leistungspunkte: 5
Version: 1

Erfolgskontrolle(n)
Zusätzlich kann, sofern die erfolgreiche Teilnahme an den Übungen festgestellt wurde, eine in der Klausur erzielte Prüfungsnote zwischen 1,3 und 4,0 um eine Notenstufe (d.h. um 0,3 oder 0,4) verbessert werden.

Voraussetzungen
Keine

Anmerkung
Diese Veranstaltung kann insbesondere für die Anrechnung von externen Lehrveranstaltungen genutzt werden, deren Inhalt in den weiteren Bereich der Algorithmen, Daten- und Rechnerstrukturen fällt, aber nicht einer anderen Lehrveranstaltung aus diesem Themenbereich zugeordnet werden kann.
Teilleistung: Spezialvorlesung Software- und Systemsengineering [T-WIWI-102678]

Verantwortung: Andreas Oberweis
Bestandteil von: [M-WIWI-101472] Informatik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen 60min. Prüfung oder einer mündlichen Prüfung in der ersten Woche nach Ende der Vorlesungszeit des Semesters (nach §4(2), 1 o. 2 SPO).

Voraussetzungen
Keine

Anmerkung
Diese Veranstaltung kann insbesondere für die Anrechnung von externen Lehrveranstaltungen genutzt werden, deren Inhalt in den weiteren Bereich des Software- und Systemsengineering fällt, aber nicht einer anderen Lehrveranstaltung aus diesem Themenbereich zugeordnet werden kann.
Teilleistung: Spezialvorlesung Wissensmanagement [T-WIWI-102671]

Verantwortung: Rudi Studer
Bestandteil von: [M-WIWI-101472] Informatik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen
Keine

Anmerkung
Diese Veranstaltung kann insbesondere für die Anrechnung von externen Lehrveranstaltungen genutzt werden, deren Inhalt in den weiteren Bereich des Wissensmanagements fällt, aber nicht einer anderen Lehrveranstaltung aus diesem Themenbereich zugeordnet werden kann.
Teilleistung: Spezialvorlesung zur Optimierung I [T-WIWI-102721]

Verantwortung: Oliver Stein
Bestandteil von: [M-WIWI-101473] Mathematische Optimierung

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60min.) (nach §4(2), 1 SPO).

Die Prüfung wird im Vorlesungssemester und dem darauf folgenden Semester angeboten.

Zulassungsvoraussetzung zur schriftlichen Prüfung ist der Erwerb von mindestens 30% der Übungspunkte. Die Prüfungsanmeldung über das Online-Portal für die schriftliche Prüfung gilt somit vorbehaltlich der Erfüllung der Zulassungsvoraussetzung.

Die Erfolgskontrolle kann auch zusammen mit der Erfolgskontrolle zu Spezialvorlesung zur Optimierung II [25126] erfolgen. In diesem Fall beträgt die Dauer der schriftlichen Prüfung 120 min.

Voraussetzungen
Keine

Empfehlungen
Es wird dringend empfohlen, vor Besuch dieser Veranstaltung mindestens eine Vorlesung aus dem Bachelor-Programm des Lehrstuhls zu belegen.

Anmerkung
Die Lehrveranstaltung wird nicht regelmäßig angeboten. Das für drei Studienjahre im Voraus geplante Lehrangebot kann im Internet (www.ior.kit.edu) nachgelesen werden.
Teilleistung: Spezialvorlesung zur Optimierung II [T-WIWI-102722]

Verantwortung: Oliver Stein
Bestandteil von: [M-WIWI-101473] Mathematische Optimierung

Leistungspunkte 4,5 Version 1

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) (nach §4(2), 1 SPO).

Die Prüfung wird im Vorlesungssemester und dem darauf folgenden Semester angeboten.

Zulassungsvoraussetzung zur schriftlichen Prüfung ist der Erwerb von mindestens 30% der Übungspunkte. Die Prüfungsanmeldung über das Online-Portal für die schriftliche Prüfung gilt somit vorbehaltlich der Erfüllung der Zulassungsvoraussetzung.

Die Erfolgskontrolle kann auch zusammen mit der Erfolgskontrolle zu Spezialvorlesung zur Optimierung I [25128] erfolgen. In diesem Fall beträgt die Dauer der schriftlichen Prüfung 120 min.

Voraussetzungen
Keine

Empfehlungen
Es wird dringend empfohlen, vor Besuch dieser Veranstaltung mindestens eine Vorlesung aus dem Bachelor-Programm des Lehrstuhls zu belegen.

Anmerkung
Die Lehrveranstaltung wird nicht regelmäßig angeboten. Das für drei Studienjahre im Voraus geplante Lehrangebot kann im Internet (www.ior.kit.edu) nachgelesen werden.
<table>
<thead>
<tr>
<th>Voraussetzungen</th>
<th>keine</th>
</tr>
</thead>
</table>

Verantwortung: Marlis Hochbruck
Bestandteil von: [M-MATH-102920] Spezielle Themen der numerischen linearen Algebra
Teilleistung: Spin-Mannigfaltigkeiten, alpha-Invariante und positive Skalarkrümmung [T-MATH-105932]

Verantwortung: Stephan Klaus, Wilderich Tuschmann
Bestandteil von: [M-MATH-102958] Spin-Mannigfaltigkeiten, alpha-Invariante und positive Skalarkrümmung

Leistungspunkte 5
Version 1

Voraussetzungen
Keine
Teilleistung: Standortplanung und strategisches Supply Chain Management [T-WIWI-102704]

Verantwortung: Stefan Nickel

Bestandteil von:
- [M-WIWI-101414] Methodische Grundlagen des OR

Leistungspunkte: 4,5
Sprache: deutsch
Version: 1

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 15/16</td>
<td>2550486</td>
<td>Standortplanung und strategisches Supply</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Stefan Nickel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chain Management</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer 120-minütigen schriftlichen Prüfung (nach §4(2), 1 SPO).

Zulassungsvoraussetzung zur Klausur ist die erfolgreiche Teilnahme an den Online-Übungen.

Voraussetzungen

Zulassungsvoraussetzung zur Klausur ist die erfolgreiche Teilnahme an den Online-Übungen.

Modellierte Voraussetzungen

Es müssen die folgenden Bestandteile erfüllt werden:

Empfehlungen

Keine

Anmerkung

Die Lehrveranstaltung wird in jedem Wintersemester angeboten. Das für drei Studienjahre im Voraus geplante Lehrangebot kann im Internet nachgelesen werden.

Die folgenden Informationen stammen aus der Veranstaltung Standortplanung und strategisches Supply Chain Management (WS 15/16):

Lernziel

Der/die Studierende
- kennt und erklärt grundlegende quantitative Methoden der Standortplanung im Rahmen des strategischen Supply Chain Managements,
- wendet verschiedene Möglichkeiten zur Standortbeurteilung im Rahmen von klassischen Standortplanungsmodellen (planare Modelle, Netzwerkmodelle und diskrete Modelle) sowie speziellen Standortplanungsmodellen für das Supply Chain Management (Einperiodenmodelle, Mehrperiodenmodelle) an,
- setzt die erlerneten Verfahren praxisnah um.

Inhalt

Arbeitsaufwand
Gesamtaufwand bei 4,5 Leistungspunkten: ca. 135,0 Stunden
Präsenzzeit: 30 Stunden
Vor- und Nachbereitung der LV: 45,0 Stunden
Prüfung und Prüfungsvorbereitung: 60,0 Stunden

Literatur
Weiterführende Literatur:

- Love, Morris, Wesolowsky: Facilities Location: Models and Methods, North Holland, 1988
Teilleistung: Statistik für Fortgeschrittene [T-WIWI-103123]

Verantwortung: Oliver Grothe
Bestandteil von: [M-WIWI-101637] Analytics und Statistik

Leistungspunkte: 4,5
Version: 1

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 15/16</td>
<td>2550552</td>
<td>Statistik für Fortgeschrittene</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Oliver Grothe</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (Klausur) im Umfang von 1h nach § 4, Abs. 2, 1 SPO. Durch ein Bonusprogramm kann die Note der schriftlichen Prüfung um bis zu 0,3 Notenstufen verbessert werden. Die Prüfung wird im Prüfungszeitraum des Vorlesungssemesters angeboten. Zur Wiederholungsprüfung im Prüfungszeitraum des jeweiligen Folgesemesters werden ausschließlich Wiederholer (und keine Erstschreiber) zugelassen.

Voraussetzungen
Keine

Anmerkung
Neue Lehrveranstaltung ab WS15/16
Teilleistung: Statistische Modellierung von allgemeinen Regressionsmodellen [T-WIWI-103065]

Verantwortung: Wolf-Dieter Heller
Bestandteil von: [M-WIWI-101638] Ökonometrie und Statistik I
[M-WIWI-101639] Ökonometrie und Statistik II

Leistungspunkte: 4,5
Version: 1

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 15/16</td>
<td>2521350</td>
<td>Statistische Modellierung von Allgemeinen Regressionsmodellen</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Wolf-Dieter Heller</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (Klausur) im Umfang von 1h nach § 4, Abs. 2, 1 SPO.

Voraussetzungen
Keine

Modellierte Voraussetzungen
Es müssen die folgenden Bestandteile erfüllt werden:

Empfehlungen
Teilleistung: Steinsche Methode [T-MATH-105914]

Verantwortung: Matthias Schulte
Bestandteil von: [M-MATH-102946] Steinsche Methode

Leistungspunkte

Version

Voraussetzungen
Keine
Teilleistung: Steuerung stochastischer Prozesse [T-MATH-105871]

Verantwortung: Nicole Bäuerle
Bestandteil von: [M-MATH-102908] Steuerung stochastischer Prozesse

Leistungspunkte 4
Version 1

Erfolgskontrolle(n)
Mündliche Prüfung im Umfang von ca. 20 Minuten.

Voraussetzungen
keine
<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>

Teilleistung: Steuerungstheorie [T-MATH-105909]

Verantwortung: Roland Schnaubelt, Lutz Weis
Bestandteil von: [M-MATH-102941] Steuerungstheorie

Voraussetzungen
Keine
Teilleistung: Stochastic Calculus and Finance [T-WIWI-103129]

Verantwortung: Mher Safarian
Bestandteil von: [M-WIWI-101639] Ökonometrie und Statistik II

Leistungspunkte: 4,5
Sprache: deutsch
Version: 1

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 15/16</td>
<td>2521331</td>
<td>Stochastic Calculus and Finance</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Mher Safarian</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen
Keine

Anmerkung
Für weitere Informationen: http://statistik.econ.kit.edu/

Die folgenden Informationen stammen aus der Veranstaltung Stochastic Calculus and Finance (WS 15/16):

Lernziel
Nach erfolgreichem Besuch dieser Vorlesung werden viele gängige Verfahren zur Preisbestimmung und Portfoliomodelle im Finance verstanden werden. Der Fokus liegt aber nicht nur auf dem Finance alleine, sondern auch auf der dahinterliegenden Theorie.

Inhalt
The course will provide rigorous yet focused training in stochastic calculus and finance. The program will cover modern approaches in stochastic calculus and mathematical finance. Topics to be covered:

Stochastische Prozesse (Poisson-Prozess, Brownsche Bewegung, Martingale), Stochastisches Integral (Integral, quadratische und Kovariation, Ito-Formeln), stochastische Differentialgleichung für Preisprozesse, Handelsstrategien, Optionspreise (Feynman-Kac), risikoneutrale Bewertungen (äquivalentes Martingalmaß, Theoreme von Girsanov), Zinsstrukturmodelle.

Arbeitsaufwand
Der Gesamtarbeitsaufwand für diese Lerneinheit beträgt ca. 150 Stunden (5.0 Credits).

<table>
<thead>
<tr>
<th>Aktivität & Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzzeit &</td>
</tr>
<tr>
<td>Besuch der Vorlesung & 15 x 15min & 11h 15m</td>
</tr>
</tbody>
</table>
\begin{tabular}{|l|c|}
\hline
Vor- / Nachbereitung der Vorlesung & 22h 30m \\
Vor- / Nachbereitung der Übung & 11h 15m \\
Skript 2x wiederholen & 2 x 20h & 40h 00m \\
Klausurvorbereitung & & 40h 00m \\
\hline
Summe & & 147h 30m \\
\end{tabular}

\caption{Arbeitsaufwand für die Lerneinheit “Stochastic Calculus and Finance”}

\textbf{Literatur}

Wird in der Vorlesung bekannt gegeben.

\textbf{Weiterführende Literatur:}

- An Introduction to Stochastic Integration (Probability and its Applications) by Kai L. Chung, Ruth J. Williams, Birkhaueser,
- Methods of Mathematical Finance by Ioannis Karatzas, Steven E. Shreve, Springer 1998
Teilleistung: Stochastische Differentialgleichungen [T-MATH-105852]

Verantwortung: Roland Schnaubelt, Lutz Weis
Bestandteil von: [M-MATH-102881] Stochastische Differentialgleichungen

Voraussetzungen
Keine
Teilleistung: Stochastische Entscheidungsmodelle I [T-WIWI-102710]

Verantwortung: Karl-Heinz Waldmann
Bestandteil von: [M-WIWI-101414] Methodische Grundlagen des OR
[M-WIWI-101400] Stochastische Methoden und Simulation
[M-WIWI-101454] Stochastische Modellierung und Optimierung

Leistungspunkte 5
Sprache deutsch
Version 1

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 15/16</td>
<td>2550679</td>
<td>Stochastische Entscheidungsmodelle I</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Karl-Heinz Waldmann, André Lust</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen
Keine

Die folgenden Informationen stammen aus der Veranstaltung Stochastische Entscheidungsmodelle I (WS 15/16):

Lernziel

Inhalt
Markov Ketten, Poisson Prozesse.

Arbeitsaufwand
Gesamtaufwand bei 4,5 Leistungspunkten: ca. 135.0 Stunden
Präsenzzeit: 30 Stunden
Vor – und Nachbereitung der LV: 45.0 Stunden
Prüfung und Prüfungsvorbereitung: 60.0 Stunden

Literatur
Teilleistung: Stochastische Entscheidungsmodelle II [T-WIWI-102711]

Verantwortung: Karl-Heinz Waldmann
Bestandteil von: [M-WIWI-101400] Stochastische Methoden und Simulation
[M-WIWI-101454] Stochastische Modellierung und Optimierung

Leistungspunkte: 4,5
Sprache: deutsch
Version: 1

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2016</td>
<td>2550682</td>
<td>Stochastische Entscheidungsmodelle II</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Ellen Platt, Karl-Heinz Waldmann, André Lust</td>
</tr>
<tr>
<td>SS 2016</td>
<td>2550684</td>
<td>Rechnerübungen zu Stochastische Entscheidungsmodelle II</td>
<td>Übung (Ü)</td>
<td>2</td>
<td>Karl-Heinz Waldmann</td>
</tr>
<tr>
<td>SS 2016</td>
<td>2550683</td>
<td>Übungen zu Stochastische Entscheidungsmodelle II</td>
<td>Übung (Ü)</td>
<td>1</td>
<td>Karl-Heinz Waldmann</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen
Keine

Empfehlungen
Es sind Kenntnisse, wie sie in Stochastische Entscheidungsmodelle I [2550679] vermittelt werden, wünschenswert.

Anmerkung
Die Lehrveranstaltung wird nicht regelmäßig angeboten. Das für zwei Studienjahre im Voraus geplante Lehrangebot kann im Internet nachgelesen werden.

Die folgenden Informationen stammen aus der Veranstaltung Stochastische Entscheidungsmodelle II (SS 2016):

Lernziel

Inhalt
Warteschlangen, Stochastische Entscheidungsprozesse.

Arbeitsaufwand
Gesamtaufwand bei 4,5 Leistungspunkten: ca. 135.0 Stunden
Präsenzzeit: 30 Stunden
Vor – und Nachbereitung der LV: 45.0 Stunden
Prüfung und Prüfungsvorbereitung: 60.0 Stunden

Literatur

Wirtschaftsmathematik (M.Sc.) 1051
Modulhandbuch mit Stand 04.08.2016 für Wintersemester 16/17
Teilleistung: Stochastische Evolutionsgleichungen [T-MATH-105910]

Verantwortung: Lutz Weis

Bestandteil von: [M-MATH-102942] Stochastische Evolutionsgleichungen

Leistungspunkte: 8
Version: 1

Voraussetzungen
Keine
Teilleistung: Stochastische Geometrie [T-MATH-105840]

Verantwortung: Günter Last, Daniel Hug
Bestandteil von: [M-MATH-102865] Stochastische Geometrie

Leistungspunkte: 8
Version: 1

Voraussetzungen
Keine
Teileistung: Strategic Brand Management [T-WIWI-102842]

Verantwortung: Joachim Blickhäuser, Martin Klarmann

Leistungspunkte: 1,5
Sprache: deutsch
Version: 1

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2016</td>
<td>2571185</td>
<td>Strategic Brand Management</td>
<td>Block (B)</td>
<td></td>
<td>Joachim Blickhäuser, Martin Klarmann</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen

Keine

Empfehlungen

Keine

Anmerkung

Die folgenden Informationen stammen aus der Veranstaltung Strategic Brand Management (SS 2016):

Lernziel

Studierende

- wissen, dass Markenstrategie und -steuerung kein Selbstzweck sind, sondern dem Wachstum von Marken und damit den dahinter stehenden Unternehmen dienen.
- sind mit den Stichwörtern Corporate Identity (inkl. deren Entwicklung in den letzten Jahrzehnten), Brand Identity (mit den Schwerpunkten Brand Design, Brand Communication und Brand Behaviour), Product Identity, Markenstrukturinstrumente (Markenhierarchie, Subbrands, Angebotsstrukturen), Brand Codes und deren Übersetzung/Operationalisierung in die Dimension 2D (klassische Medien), 3D (räumliche Medien, Marke im Raum) und 4D (Marke in digitalen Medien) vertraut.
- können eine eigene Branding-Strategie entwickeln und zeigen dies im Rahmen einer Case Präsentation.

Inhalt

Die Veranstaltung konzentriert sich auf das strategische Markenmanagement. Der Fokus liegt dabei auf zentralen Branding-Elementen wie z.B. Markenpositionierungen und -identitäten. Gehalten wird die Veranstaltung von Herrn Blickhäuser,
einem langjährigen Manager der BMW Group, der aktuell für das Brand Management des Automobilherstellers zuständig ist.

Arbeitsaufwand
Gesamtaufwand bei 1,5 Leistungspunkten: ca. 45 Stunden
Präsenzzeit: 15 Stunden
Selbststudium: 30 Stunden
Teilleistung: Strategische Aspekte der Energiewirtschaft [T-WIWI-102633]

Verantwortung: Armin Ardone
Bestandteil von: [M-WIWI-101452] Energiewirtschaft und Technologie

Leistungspunkte: 3,5
Sprache: deutsch
Version: 1

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 15/16</td>
<td>2581958</td>
<td>Strategische Aspekte der Energiewirtschaft</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Armin Ardone</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (nach §4 (2), 1 SPO).

Voraussetzungen
Keine

Empfehlungen
Keine

Die folgenden Informationen stammen aus der Veranstaltung Strategische Aspekte der Energiewirtschaft (WS 15/16):

Lernziel
Der/die Studierende
 - besitzt detaillierte Kenntnisse zu heutigen und zukünftigen Energieerzeugungs technologien und marktwirtschaftlichen Gegebenheiten der Elektrizitätswirtschaft, insbesondere der Kosten der Elektrizitätserzeugung,
 - kennt Methoden und Lösungsansätze für die kurz- bis langfristigen Planung in der Elektrizitätserzeugung.

Inhalt
1) Energieversorgung
 1.1 Grundbegriffe
 1.2 Weltweite Energieversorgung (Öl, Kohle, Gas, Elektrizität)
2) Kraftwerkstypen
 2.1 Thermische Kraftwerke
 2.2 Erneuerbare
3) Kosten der Elektrizitätserzeugung
 3.1 Investitionsabhängige Kosten
 3.2 Fixe Kosten
 3.3 Variable Kosten
 3.4 Vollkostenrechnung
4) Strommärkte
 4.1 Entwicklung der Strommärkte
 4.2 Produkte im Strommarkt
5) Energiesystemplanung (Elektrizitätserzeugung)
 5.1 Grundlagen
 5.2 Einflussgrößen
 5.3 Planungsstufen
 5.4 Kurzfristige Optimierung: Kraftwerkseinsatzplanung
 5.5 Mittelfristige Optimierung: Brennstoffbeschaffung, Revisionsplanung
 5.6 Langfristoptimierung: Ausbauplanung
 5.7 Lösungsverfahren

Arbeitsaufwand
Gesamtaufwand bei 3,5 Leistungspunkten: ca. 105 Stunden
Präsenzzeit: 30 Stunden
Selbststudium: 75 Stunden

Literatur
Wird in der Vorlesung bekannt gegeben.
Teilleistung: Strategische und innovative Marketingentscheidungen [T-WIWI-102618]

Verantwortung: Bruno Neibecker

Leistungspunkte: 4,5 Sprache: deutsch Version: 1

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2016</td>
<td>2571166</td>
<td>Übungen zu Strategische und Innovative Marketingentscheidungen</td>
<td>Übung (Ü)</td>
<td>1</td>
<td>Bruno Neibecker</td>
</tr>
<tr>
<td>SS 2016</td>
<td>2571165</td>
<td>Strategische und innovative Marketingentscheidungen</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Bruno Neibecker</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) (nach §4(2), 1 SPO).
Die Prüfung wird im Wintersemester 2016/17 zum letzten Mal im Erstversuch angeboten. Ausschließlich für Wiederholer
(nicht für aus triftigen Gründen Zurückgetretene), die ihren Erstversuch im Wintersemester 2016/17 hatten, wird im
Sommersemester 2017 gegebenenfalls eine Wiederholungsmöglichkeit angeboten. Das Wintersemester 2016/17 ist die
letzte Wiederholungsmöglichkeit für alle, die ihren Erstversuch in einem davor liegenden Semester hatten.

Voraussetzungen
Keine

Empfehlungen
Keine

Die folgenden Informationen stammen aus der Veranstaltung Strategische und innovative Marketingentscheidungen (SS 2016):

Lernziel
Die Studierenden erwerben folgende Fähigkeiten:
- Auflisten der Schlüsselbegriffe aus dem Marketingmanagement und der Innovationsforschung
- Erkennen und definieren von strategischen Konzepten
- Identifizieren wichtiger Forschungstrends
- Analysieren und interpretieren von wissenschaftlichen Journalbeiträgen
- Entwickeln von Teamfähigkeit ("weiche" Kompetenz) und Planungskompetenz ("harte" Faktoren)
- "Beurteilung von methodisch fundierten Forschungsergebnissen und vorbereiten praktischer Handlungsanweisungen und

Inhalt
Ziel ist die Vermittlung der grundlegenden Methoden und Werkzeuge zur Unterstützung von strategischen Marketingentscheidungen. Ergänzend wird die Effektivität radikaler Innovationen aus Management- und Kundenperspektive bewertet. Es wird die Fähigkeit geschult, mittel- bis langfristige Managemententscheidungen systematisch durchzuführen. Der Kurs umfasst im Einzelnen:
- Strategische Planungskonzepte im Marketingmanagement (Grundlagen der strategischen Erfolgsfaktorenforschung im Marketing / Analyse der strategischen Ausgangssituation (Wettbewerbsanalyse) / Formulierung, Bewertung und Auswahl von Marketingstrategien / Erfahrungskurvenanalyse / Fallstudie zur Portfoliosanalyse).
- Organisationales Beschaffungsverhalten.
- Unternehmensstrategie im globalen Wettbewerb (Internationale Konfiguration und Koordination / Internationale Gesamtstrategie / Marktorientierung als Wettbewerbsvorteil
- Innovation und Diffusionsprozess (Theorien zur Diffusion von Innovationen / Innovationsmodelle / Imitationsmodelle / Bass-Modell).
- Entscheidungsverhalten und Innovationsprozess (Adoption versus Diffusion / Konsumentenpräferenzen und Neuprodukt-Diffusion: eine Conjoint-Studie / Porter’s “Single Diamond” Theorie: Analyse und Kritik)
Arbeitsaufwand
Der Gesamtarbeitsaufwand für diese Lerneinheit beträgt ca. 140 Stunden (4,5 Credits).

Literatur
(Auszüge entsprechend den Angaben in der Vorlesung/Übung)

Teilleistung: Strategisches Management der betrieblichen Informationsverarbeitung [T-WIWI-102669]

Verantwortung: Thomas Wolf
Bestandteil von: [M-WIWI-101472] Informatik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Sprache</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>deutsch</td>
<td>1</td>
</tr>
</tbody>
</table>

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2016</td>
<td>2511602</td>
<td>Strategisches Management der betrieblichen Informationsverarbeitung</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Thomas Wolf</td>
</tr>
<tr>
<td>SS 2016</td>
<td>2511603</td>
<td>Übungen zu Strategisches Management der betrieblichen Informationsverarbeitung</td>
<td>Übung (Ü)</td>
<td>1</td>
<td>Thomas Wolf</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen oder ggf. mündlichen Prüfung nach §4(2) der Prüfungsordnung.

Voraussetzungen

Keine

Die folgenden Informationen stammen aus der Veranstaltung Strategisches Management der betrieblichen Informationsverarbeitung (SS 2016):

Lernziel
Studierende kennen sowohl den äußeren Rahmen von IT im Unternehmen und wissen, welche Aufgabenbereiche die IT im Unternehmen hat. Sie verstehen die Organisation und Inhalte dieser Aufgabenbereiche.

Inhalt

Literatur

Wirtschaftsmathematik (M.Sc.)
Modulhandbuch mit Stand 04.08.2016 für Wintersemester 16/17
Teilleistung: Supply Chain Management in der Prozessindustrie [T-WIWI-102860]

Verantwortung: Stefan Nickel
Bestandteil von: [M-WIWI-102805] Service Operations

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Sprache</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>englisch</td>
<td>1</td>
</tr>
</tbody>
</table>

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 15/16</td>
<td>2550494</td>
<td>Supply Chain Management in der Prozessindustrie</td>
<td>Vorlesung / Übung (VÜ)</td>
<td>3</td>
<td>Robert Blackburn</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Bewertung findet auf Basis einer Klausur von 60 Minuten (gemäß §4(2),1 der Prüfungsordnung) (individuelle Bewertung), Fallstudienpräsentation eines Studierendenteams (Gruppenbewertung) und der Mitarbeit im Hörsaal (individuelle Bewertung) statt. Die Prüfungsleistungen werden innerhalb des Lehrveranstaltungssemesters erbracht.

Voraussetzungen

Keine

Empfehlungen

Anmerkung

Die folgenden Informationen stammen aus der Veranstaltung Supply Chain Management in der Prozessindustrie (WS 15/16):

Lernziel

Der/die Studierende

- kennt und klassifiziert aktuelle Ansätze zur Gestaltung, Planung und dem Management von globalen Wertschöpfungsketten in der Prozessindustrie,
- unterscheidet die Qualität von Supply Chains und identifiziert relevante Bestandteile, Muster und Konzepte für Strategie, Gestaltung und Planung von Wertschöpfungsketten,
- erklärt spezifische Herausforderungen und Ansätze zu Supply Chain Operations in der Prozessindustrie, insbesondere zu Transport und Lagerhaltung und zeigt zudem interdisziplinäre Bezüge von SCM zu Informationssystemen, Erfolgsmessung, Projektmanagement, Risiko- und Nachhaltigkeitsmanagement auf,
- transferiert die erarbeiteten Erkenntnissen in die Praxis durch SCM-Fallstudien und SCM-Projektdokumentationen.

Inhalt

Arbeitsaufwand

Gesamtaufwand bei 4,5 Leistungspunkten: ca. 135.0 Stunden
Präsenzzeit: 30 Stunden
Vor- und Nachbereitung der LV: 45.0 Stunden
Prüfung und Prüfungsvorbereitung: 60.0 Stunden

Literatur

- Verschiedene Fallstudien, die während des Kurses zur Verfügung gestellt werden.
Teilleistung: Taktisches und operatives Supply Chain Management [T-WIWI-102714]

Verantwortung: Stefan Nickel
[M-WIWI-101400] Stochastische Methoden und Simulation

Leistungspunkte: 4,5
Sprache: deutsch
Version: 1

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2016</td>
<td>2550486</td>
<td>Taktisches und operatives SCM Vorlesung (V)</td>
<td>2</td>
<td></td>
<td>Stefan Nickel</td>
</tr>
<tr>
<td>SS 2016</td>
<td>2550487</td>
<td>Übungen zu Taktisches und operatives SCM Übung (Ü)</td>
<td>1</td>
<td></td>
<td>Brita Rohrbeck, Stefan Nickel</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen
Zulassungsvoraussetzung zur Klausur ist die erfolgreiche Teilnahme an den Online-Übungen.

Modellierte Voraussetzungen
Es müssen die folgenden Bestandteile erfüllt werden:

Empfehlungen
Keine

Anmerkung
Die Lehrveranstaltung wird in jedem Sommersemester angeboten. Das für drei Studienjahre im Voraus geplante Lehrangebot kann im Internet nachgelesen werden.

Die folgenden Informationen stammen aus der Veranstaltung Taktisches und operatives SCM (SS 2016):

Inhalt
Die Vorlesung vermittelt grundlegende quantitative Methoden der Standortplanung im Rahmen des strategischen Supply Chain Managements. Neben verschiedenen Möglichkeiten zur Standortbeurteilung werden die Studierenden mit den klassischen Standortplanungsmodellen (planare Modelle, Netzwerkmodelle und diskrete Modelle) sowie speziellen Standortplanungsmodellen für das Supply Chain Management (Einperiodenmodelle, Mehrperiodenmodelle) vertraut gemacht. Die parallel zur Vorlesung angebotenen Übungen bieten die Gelegenheit, die erlernten Verfahren praxisnah umzusetzen.

Literatur
Weiterführende Literatur

- Love, Morris, Wesołowsky: Facilities Location: Models and Methods, North Holland, 1988
Teilleistung: Technologischer Wandel in der Energiewirtschaft [T-WIWI-102694]

Verantwortung: Martin Wietschel
Bestandteil von: [M-WIWI-101452] Energiewirtschaft und Technologie

Leistungspunkte 3 Sprache deutsch Version 1

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 15/16</td>
<td>2581000</td>
<td>Technologischer Wandel in der Energiewirtschaft</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Martin Wietschel</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (nach §4 (2), 1 SPO).

Voraussetzungen
Keine

Empfehlungen
Keine

Die folgenden Informationen stammen aus der Veranstaltung Technologischer Wandel in der Energiewirtschaft (WS 15/16):

Lernziel
Der/die Studierende

- besitzt ein allgemeines Verständnis über Innovationstheorie, Innovationsökonomie und Innovationsysteme,
- hat Kenntnisse über verschiedene quantitative Methoden zur Prognose des technologischen Wandels in der Energiewirtschaft, wie Wachstumskurven, Modelle der Optimierung, Simulation sowie Ansätze aus der Indikatorik und kann den richtigen Ansatz problembezogen auswählen,
- kann die wichtigsten technologischen Zukunftsentwicklungen im Energiesektor (Energieerzeugung, Energienachfrage, alternative Kraftstoffe und Antriebssysteme im Verkehr sowie Infrastruktur (Netze und Speicher)) aus einer technoökonomischen Perspektive bewerten.

Inhalt
I. Wichtige Rahmenbedingungen für den technologischen Wandel
Energienachfrageentwicklung und Ressourcensituation
Der Klimawandel und weitere umweltpolitische Herausforderungen
Charakteristika der Energiewirtschaft und Liberalisierung in der Energiewirtschaft
Grundlagen zur Innovationsökonomie
Innovationssystem
II. Methoden zur Abbildung des technologischen Wandels
Wachstumskurven
Einführung in die Modellbildung
Optimiermethoden
Simulationsmethoden
Indikatorik
Foresight und Delphi-Methode
III. Übersicht zu neuen technologischen Entwicklungen
Kernspaltung und -fusion
Konventionelle Kraftwerke
Erneuerbare Kraftwerke
Rationelle Energienutzung

Wirtschaftsmathematik (M.Sc.)
Modulhandbuch mit Stand 04.08.2016 für Wintersemester 16/17
Wasserstoff und Brennstoffzelle
Energy-to-Mobility (Elektromobilität, Biokraftstoffe)

Arbeitsaufwand
Gesamtaufwand bei 3 Leistungspunkten: ca. 90 Stunden
Präsenzzeit: 30 Stunden
Selbststudium: 60 Stunden

Literatur
Wird in der Vorlesung bekannt gegeben.
Teilleistung: Topics in Experimental Economics [T-WIWI-102863]

Verantwortung: Johannes Philipp Reiß
Bestandteil von: [M-WIWI-101505] Experimentelle Wirtschaftsforschung

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>1</td>
</tr>
</tbody>
</table>

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2016</td>
<td>25602333</td>
<td>Übungen zu Topics in Experimental Economics</td>
<td>Übung (Ü)</td>
<td>1</td>
<td>Martin Schmidt,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Johannes Philipp Reiß</td>
</tr>
<tr>
<td>SS 2016</td>
<td>2560232</td>
<td>Topics in Experimental Economics</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Martin Schmidt,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Johannes Philipp Reiß</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (nach §4(2), 1 SPO).

Voraussetzungen

Keine

Empfehlungen

Es werden Kenntnisse in Experimenteller Wirtschaftsforschung vorausgesetzt. Daher empfiehlt es sich, die Lehrveranstaltung „Experimentelle Wirtschaftsforschung“ im Vorfeld zu besuchen.

Anmerkung

Teilleistung: Valuation [T-WIWI-102621]

Verantwortung: Martin Ruckes
Bestandteil von: [M-WIWI-101482] Finance 1
[M-WIWI-101483] Finance 2
[M-WIWI-101480] Finance 3

Leistungspunkte: 4,5
Sprache: englisch
Version: 1

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 15/16</td>
<td>2530212</td>
<td>Corporate Finance I</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Martin Ruckes</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen 60min. Prüfung in der vorlesungsfreien Zeit des Semesters (nach §4(2), 1 SPO).
Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen
Keine

Empfehlungen
Keine

Die folgenden Informationen stammen aus der Veranstaltung Corporate Finance I (WS 15/16):

Inhalt
Die Studierenden werden in die Lage versetzt, unternehmerische Investitionsprojekte aus finanzwirtschaftlicher Sicht zu beurteilen.

Literatur
Weiterführende Literatur
Teilleistung: Variationsrechnung [T-MATH-105853]

Verantwortung: Michael Plum, Wolfgang Reichel, Andreas Kirsch, Tobias Lamm
Bestandteil von: [M-MATH-102882] Variationsrechnung

Leistungspunkte: 8
Version: 1

Voraussetzungen: Keine
Teilleistung: Vergleichsgeometrie [T-MATH-105917]

Verantwortung: Wilderich Tuschnmann
Bestandteil von: [M-MATH-102940] Vergleichsgeometrie

Leistungspunkte: 5
Version: 1

Voraussetzungen:
Keine
Teilleistung: Verhaltenswissenschaftliches Marketing [T-WIWI-102619]

Verantwortung: Bruno Neibecker
Bestandteil von: Marketing Management

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Sprache</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>deutsch</td>
<td>1</td>
</tr>
</tbody>
</table>

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 15/16</td>
<td>2572167</td>
<td>Verhaltenswissenschaftliches Marketing</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Bruno Neibecker</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen

Keine

Empfehlungen

Keine

Lernziel

Die Studierenden erwerben folgende Fähigkeiten:

- Auflisten der Schlüsselbegriffe in der Marketing- und Kommunikationsforschung
- Erkennen und definieren von verhaltenswissenschaftlichen Konstrukten zur Analyse von Marketingkommunikation
- Identifizieren wichtiger Forschungstrends
- Analysieren und interpretieren von wissenschaftlichen Journalbeiträgen
- Entwickeln von Teamfähigkeit (”weiche“ Kompetenz) und Planungskompetenz (”harte“ Faktoren)
- Beurteilung von methodisch fundierten Forschungsergebnissen und vorbereiten praktischer Handlungsanweisungen und Empfehlungen

Inhalt

- Empirische und praxisorientierte Marketing- und Werbewirkungsforschung aus Fallstudien (Aktuelle Fragestellungen der Markenpolitik / Effiziente Beilagenwerbung / Gestaltungsmerkmale in der TV-Werbung).

- Individualentscheidungen und psychologische Einflussfaktoren (Grundlegende Begriffe und wissenschaftstheoretische Einführung / Erzielung von Aufmerksamkeit / Aufmerksamkeit und Platzierungswirkungen von TV-Spots / Feldstudie zur Überprüfung der Effizienz von TV-Spots.)
Erlebniswirkung und Emotionen.

Informationsverarbeitung und -speicherung (Speichermöglichkeiten und Schematheorie / Visuelle Informationsverarbeitung/Grounded Theory).

Komplexe Erklärungsansätze von Verbundwirkungen (Akzeptanzforschung (Einstellung zum Werbemittel) / Einstellung zur Marke und Kaufabsicht / Persuasion / Kontexteffekte und Lernleistung / Modelle zum Entscheidungsverhalten / "Means-end"-Theorie und strategische Werbegestaltung)

Soziale Prozesse: Kultur und Produktwirkung (Kultur, Subkultur und Kulturvergleich (cross cultural influence) / Ganzeitliche Wirkung und Messung von Produktdesign)

Neuromarketing

Arbeitsaufwand
Der Gesamtarbeitsaufwand für diese Lerneinheit beträgt ca. 140 Stunden (4,5 Credits).

Literatur
(Auszüge entsprechend den Angaben in der Vorlesung/Übung)

Teilleistung: Vorhersagen: Theorie und Praxis [T-MATH-105928]

Verantwortung: Tilmann Gneiting
Bestandteil von: [M-MATH-102956] Vorhersagen: Theorie und Praxis

Voraussetzungen
Keine
Teilleistung: Vorleistung zu Nichtlineare Optimierung I (Bachelor) [T-WIWI-103062]

Verantwortung:
Bestandteil von:
[M-WIWI-101414] Methodische Grundlagen des OR
[M-WIWI-101400] Stochastische Methoden und Simulation

Erfolgskontrolle(n)
Nachweis der erfolgreichen Teilnahme am Übungsbetrieb. Mindestens 60% der Punkte in den Online-Tests zu Nichlineare Optimierung I müssen erreicht werden.

Voraussetzungen
Keine
Teilleistung: Vorleistung zu Nichtlineare Optimierung I (Master) [T-WIWI-103635]

Verantwortung:
Bestandteil von: [M-WIWI-101473] Mathematische Optimierung

Erfolgskontrolle(n)
Nachweis der erfolgreichen Teilnahme am Übungsbetrieb. Mindestens 70% der Punkte in den Online-Tests zu Nichtlineare Optimierung I müssen erreicht werden.

Voraussetzungen
Keine
Teilleistung: Vorleistung zu Nichtlineare Optimierung II (Bachelor) [T-WIWI-103060]

Verantwortung: Oliver Stein
Bestandteil von: [M-WIWI-101414] Methodische Grundlagen des OR

Leistungspunkte Version
1

Erfolgskontrolle(n)
Nachweis der erfolgreichen Teilnahme am Übungsbetrieb. Mindestens 60% der Punkte in den Online-Tests zu Nichlineare Optimierung I müssen erreicht werden.

Voraussetzungen
Keine
Teilleistung: Vorleistung zu Nichtlineare Optimierung II (Master) [T-WIWI-103636]

Verantwortung:
Bestandteil von: [M-WIWI-101473] Mathematische Optimierung

Leistungspunkte Version

Erfolgskontrolle(n)
Nachweis der erfolgreichen Teilnahme am Übungsbetrieb. Mindestens 70% der Punkte in den Online-Tests zu Nichlineare Optimierung I müssen erreicht werden.

Voraussetzungen
Keine
Teilleistung: Vorleistung zu Standortplanung und strategisches Supply Chain Management [T-WIWI-103061]

Verantwortung: Stefan Nickel
Bestandteil von:
[M-WIWI-101414] Methodische Grundlagen des OR

Leistungspunkte	Version
1 | 1

Erfolgskontrolle(n)
Nachweis der erfolgreichen Teilnahme am Übungsbetrieb.

Voraussetzungen
Keine
Teilleistung: Vorleistung zu Taktisches und operatives Supply Chain Management [T-WIWI-105940]

Verantwortung: Stefan Nickel
[M-WIWI-101400] Stochastische Methoden und Simulation

Erfolgskontrolle(n)
Nachweis der erfolgreichen Teilnahme am Übungsbetrieb.

Voraussetzungen
Keine
| Voraussetzungen | Keine |
Teilleistung: Wandernde Wellen [T-MATH-105897]

Verantwortung: Jens Rottmann-Matthes
Bestandteil von: [M-MATH-102927] Wandernde Wellen

Leistungspunkte: 6
Version: 1

Voraussetzungen
Keine
Teilleistung: Wärmewirtschaft [T-WIWI-102695]

Verantwortung: Wolf Fichtner
Bestandteil von: [M-WIWI-101452] Energiewirtschaft und Technologie

Leistungspunkte: 3
Sprache: deutsch
Version: 1

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2016</td>
<td>2581001</td>
<td>Wärmewirtschaft</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Wolf Fichtner</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (nach § 4(2), 1 SPO).

Voraussetzungen
Keine

Empfehlungen
Keine

Anmerkung
Zum Ende der Lehrveranstaltung findet ein Laborpraktikum statt.

Die folgenden Informationen stammen aus der Veranstaltung Wärmewirtschaft (SS 2016):

Lernziel
Der/die Studierende besitzt weitgehende Kenntnisse über wärmebereitstellende Technologien und deren Anwendungsgebiete, insbesondere im Bereich der Kraft-Wärme-Kopplung, und ist in der Lage, sowohl technische als auch ökonomische Fragestellungen zu bearbeiten.

Inhalt
1. Einführung: Wärmemarkt
2. KWK-Technologien (inkl. Wirtschaftlichkeitsberechnungen)
3. Heizsysteme (inkl. Wirtschaftlichkeiteitberechnungen)
4. Wärmeverteilung
5. Raumwärmebedarf und Wärmeschutzmaßnahmen
6. Wärmespeicher
7. Gesetzliche Rahmenbedingungen
8. Laborversuch Kompressionswärmepumpe

Arbeitsaufwand
Gesamtaufwand bei 3 Leistungspunkten: ca. 90 Stunden
Präsenzzeit: 30 Stunden
Selbststudium: 60 Stunden
Teilleistung: Wavelets [T-MATH-105838]

Verantwortung: Andreas Rieder
Bestandteil von: [M-MATH-102895] Wavelets

Leistungspunkte: 8
Version: 1

Voraussetzungen
keine

Empfehlungen
Teileistung: Web Science [T-WIWI-103112]

Verantwortung: York Sure-Vetter
Bestandteil von: [M-WIWI-101472] Informatik

Leistungspunkte: 5
Sprache: deutsch
Version: 1

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 15/16</td>
<td>2511312</td>
<td>Web Science</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>York Sure-Vetter</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60min.) (nach §4(2), 1 SPO) oder in Form einer mündlichen Prüfung (20min.) (nach §4(2), 2 SPO). Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen
Keine

Anmerkung
Neue Vorlesung ab Wintersemester 2015/2016.

Die folgenden Informationen stammen aus der Veranstaltung Web Science (WS 15/16):

Literatur

Teilleistung: Workflow-Management [T-WIWI-102662]

Verantwortung: Andreas Oberweis
Bestandteil von: [M-WIWI-101472] Informatik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Sprache</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>deutsch</td>
<td>1</td>
</tr>
</tbody>
</table>

Veranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>LV-Nr.</th>
<th>Veranstaltungen</th>
<th>Art</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2016</td>
<td>2511204</td>
<td>Workflow-Management</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Andreas Oberweis</td>
</tr>
<tr>
<td>SS 2016</td>
<td>2511205</td>
<td>Übungen zu Workflow-Management</td>
<td>Übung (Ü)</td>
<td>1</td>
<td>Andreas Drescher, Andreas Oberweis</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (Klausur) im Umfang von 1h nach § 4, Abs. 2, 1 SPO. Sie findet in der ersten Woche nach der Vorlesungszeit statt.

Voraussetzungen

Keine

Die folgenden Informationen stammen aus der Veranstaltung Workflow-Management (SS 2016):

Lernziel

Studierende
- erklären die Begriffe und Prinzipien von Workflow-Management-Konzepten und -Systemen und deren Einsatzmöglichkeiten,
- erstellen und bewerten Geschäftsprozessmodelle,
- analysieren statische und dynamische Eigenschaften von Workflows.

Inhalt

Arbeitsaufwand

Der Gesamtarbeitsaufwand für diese Lerneinheit beträgt ca. 150 Stunden (5.0 Credits).
- Vorlesung: 30h
- Übung: 15h

Vor-bzw. Nachbereitung der Vorlesung 30h
Vor- bzw. Nachbereitung der Übung 30h
- Prüfungsvorbereitung: 44h
- Prüfung: 1h
- Summe: 150h

Literatur

Wirtschaftsmathematik (M.Sc.)
Modulhandbuch mit Stand 04.08.2016 für Wintersemester 16/17
1086

Weitere Literatur wird in der Vorlesung bekannt gegeben.
Teilleistung: Zeitreihenanalyse [T-MATH-105874]

Verantwortung: Bernhard Klar, Norbert Henze
Bestandteil von: [M-MATH-102911] Zeitreihenanalyse

Leistungspunkte: 4
Version: 1

Erfolgskontrolle(n)
Mündliche Prüfung im Umfang von ca. 20 Minuten.

Voraussetzungen
keine
Teilleistung: Zufällige Graphen [T-MATH-105929]

Verantwortung: Matthias Schulte
Bestandteil von: [M-MATH-102951] Zufällige Graphen

Voraussetzungen
Keine

Leistungspunkte: 6
Version: 1
Studien- und Prüfungsordnung

des Karlsruher Instituts für Technologie (KIT) für den Masterstudiengang

Wirtschaftsmathematik

vom 17.12.2015

Der Präsident hat seine Zustimmung gemäß § 20 Absatz 2 KITG iVm. § 32 Absatz 3 Satz 1 LHG am 17. Dezember 2015 erteilt.

Inhaltsverzeichnis

I. Allgemeine Bestimmungen
§ 1 Geltungsbereich
§ 2 Ziele des Studiums, akademischer Grad
§ 3 Regelstudienzeit, Studienaufbau, Leistungspunkte
§ 4 Modulprüfungen, Studien- und Prüfungsleistungen
§ 5 Anmeldung und Zulassung zu den Modulprüfungen und Lehrveranstaltungen
§ 6 Durchführung von Erfolgskontrollen
§ 6 a Erfolgskontrollen im Antwort-Wahl-Verfahren
§ 6 b Computergestützte Erfolgskontrollen
§ 7 Bewertung von Studien- und Prüfungsleistungen
§ 8 Wiederholung von Erfolgskontrollen, endgültiges Nichtbestehen
§ 9 Verlust des Prüfungsanspruchs
§ 10 Abmeldung; Versäumnis, Rücktritt
§ 11 Täuschung, Ordnungsverstoß
§ 12 Mutterschutz, Elternzeit, Wahrnehmung von Familienpflichten
§ 13 Studierende mit Behinderung oder chronischer Erkrankung
§ 14 Modul Masterarbeit
§ 15 Zusatzleistungen
§ 16 Prüfungsausschuss
§ 17 Prüfende und Beisitzende
§ 18 Anerkennung von Studien- und Prüfungsleistungen, Studienzeiten
II. Masterprüfung

§ 19 Umfang und Art der Masterprüfung
§ 20 Bestehen der Masterprüfung, Bildung der Gesamtnote
§ 21 Masterzeugnis, Masterurkunde, Diploma Supplement und Transcript of Records

III. Schlussbestimmungen

§ 22 Bescheinigung von Prüfungsleistungen
§ 23 Aberkennung des Mastergrades
§ 24 Einsicht in die Prüfungsakten
§ 25 Inkrafttreten, Übergangsvorschriften
Präambel

Das KIT hat sich im Rahmen der Umsetzung des Bolognaprozesses zum Aufbau eines europäischen Hochschulraumes zum Ziel gesetzt, dass am Abschluss des Studiums am KIT der Mastergrad stehen soll. Das KIT sieht daher die am KIT angebotenen konsekutiven Bachelor- und Masterstudiengänge als Gesamtkonzept mit konsekutivem Curriculum.

I. Allgemeine Bestimmungen

§ 1 Geltungsbereich
Diese Masterprüfungsordnung regelt Studienablauf, Prüfungen und den Abschluss des Studiums im Masterstudiengang Wirtschaftsmathematik am KIT.

§ 2 Ziel des Studiums, akademischer Grad
(1) Im konsekutiven Masterstudium sollen die im Bachelorstudium erworbenen wissenschaftlichen Qualifikationen weiter vertieft, verbreitert, erweitert oder ergänzt werden. Ziel des Studiums ist die Fähigkeit, die wissenschaftlichen Erkenntnisse und Methoden selbstständig anzuwenden und ihre Bedeutung und Reichweite für die Lösung komplexer wissenschaftlicher und gesellschaftlicher Problemstellungen zu bewerten.
(2) Aufgrund der bestandenen Masterprüfung wird der akademische Grad „Master of Science (M.Sc.)“ für den Masterstudiengang Wirtschaftsmathematik verliehen.

§ 3 Regelstudienzeit, Studienaufbau, Leistungspunkte
(1) Die Regelstudienzeit beträgt vier Semester.
(4) Der Umfang der für den erfolgreichen Abschluss des Studiums erforderlichen Studien- und Prüfungsleistungen wird in Leistungspunkten gemessen und beträgt insgesamt 120 Leistungspunkte.
(5) Lehrveranstaltungen können nach vorheriger Ankündigung auch in englischer Sprache angeboten werden.

§ 4 Modulprüfungen, Studien- und Prüfungsleistungen
(2) Prüfungsleistungen sind:
1. schriftliche Prüfungen,
2. mündliche Prüfungen oder
3. Prüfungsleistungen anderer Art.

(3) Studienleistungen sind schriftliche, mündliche oder praktische Leistungen, die von den Studierenden in der Regel lehrveranstaltungsbegleitend erbracht werden. Die Masterprüfung darf nicht mit einer Studienleistung abgeschlossen werden.

(4) Von den Modulprüfungen sollen mindestens 70 % benotet sein.

(5) Bei sich ergänzenden Inhalten können die Modulprüfungen mehrerer Module durch eine auch modulübergreifende Prüfungsleistung (Absatz 2 Nr.1 bis 3) ersetzt werden.

§ 5 Anmeldung und Zulassung zu den Modulprüfungen und Lehrveranstaltungen

(1) Um an den Modulprüfungen teilnehmen zu können, müssen sich die Studierenden online im Studierendenportal zu den jeweiligen Erfolgskontrollen anmelden. In Ausnahmefällen kann eine Anmeldung schriftlich im Studierendenservice oder in einer anderen, vom Studierendenservice autorisierten Einrichtung erfolgen. Für die Erfolgskontrollen können durch die Prüfenden Anmeldefristen festgelegt werden. Die Anmeldung der Masterarbeit ist im Modulhandbuch geregelt.

(3) Zu einer Erfolgskontrolle ist zuzulassen, wer
1. in den Masterstudiengang Wirtschaftsmathematik am KIT eingeschrieben ist; die Zulassung beurlaubter Studierender ist auf Prüfungsleistungen beschränkt; und
2. nachweist, dass er die im Modulhandbuch für die Zulassung zu einer Erfolgskontrolle festgelegten Voraussetzungen erfüllt und
3. nachweist, dass er in dem Masterstudiengang Wirtschaftsmathematik den Prüfungsanspruch nicht verloren hat.

(4) Nach Maßgabe von § 30 Abs. 5 LHG kann die Zulassung zu einzelnen Pflichtveranstaltungen beschränkt werden. Der/die Prüfende entscheidet über die Auswahl unter den Studierenden, die sich rechtzeitig bis zu dem von dem/der Prüfenden festgesetzten Termin angemeldet haben unter Berücksichtigung des Studienfortschritts dieser Studierenden und unter Beachtung von § 13 Abs. 1 Satz 1 und 2, sofern ein Abbau des Überhangs durch andere oder zusätzliche Veranstaltungen nicht möglich ist. Für den Fall gleichen Studienfortschritts sind durch die KIT-Fakultäten weitere Kriterien festzulegen. Das Ergebnis wird den Studierenden rechtzeitig bekannt gegeben.

§ 6 Durchführung von Erfolgskontrollen

(1) Erfolgskontrollen werden studienbegleitend, in der Regel im Verlauf der Vermittlung der Lehrinhalte der einzelnen Module oder zeitnah danach, durchgeführt.

(2) Die Art der Erfolgskontrolle (§ 4 Abs. 2 Nr. 1 bis 3, Abs. 3) wird von der/dem Prüfenden der betreffenden Lehrveranstaltung in Bezug auf die Lehrinhalte der Lehrveranstaltung und die Lernziele des Moduls festgelegt. Die Art der Erfolgskontrolle, ihre Häufigkeit, Reihenfolge und Gewichtung sowie gegebenenfalls die Bildung der Modulnote müssen mindestens sechs Wo-
chen vor Vorlesungsbeginn im Modulhandbuch bekannt gemacht werden. Im Einvernehmen von Prüfendem und Studierender bzw. Studierendem können die Art der Prüfungsleistung sowie die Prüfungssprache auch nachträglich geändert werden; im ersten Fall ist jedoch § 4 Abs. 4 zu berücksichtigen. Bei der Prüfungsorganisation sind die Belange Studierender mit Behinderung oder chronischer Erkrankung gemäß § 13 Abs. 1 zu berücksichtigen. § 13 Abs. 1 Satz 3 und 4 gelten entsprechend.

(3) Bei unvertretbar hohem Prüfungsaufwand kann eine schriftlich durchzuführende Prüfungsleistung auch mündlich, oder eine mündlich durchzuführende Prüfungsleistung auch schriftlich abgenommen werden. Diese Änderung muss mindestens sechs Wochen vor der Prüfungsleistung bekannt gegeben werden.

(4) Bei Lehrveranstaltungen in englischer Sprache (§ 3 Abs. 6) können die entsprechenden Erfolgskontrollen in dieser Sprache abgenommen werden. § 6 Abs. 2 gilt entsprechend.

(6) Mündliche Prüfungen (§ 4 Abs. 2 Nr. 2) sind von mehreren Prüfenden (Kollegialprüfung) oder von einer/einem Prüfenden in Gegenwart einer/eines Beisitzenden als Gruppen- oder Einzelprüfungen abzunehmen und zu bewerten. Vor der Festsetzung der Note hört die/der Prüfende die anderen an der Kollegialprüfung mitwirkenden Prüfenden an. Mündliche Prüfungen dauern in der Regel mindestens 15 Minuten und maximal 60 Minuten pro Studierenden.

Die wesentlichen Gegenstände und Ergebnisse der mündlichen Prüfung sind in einem Protokoll festzuhalten. Das Ergebnis der Prüfung ist den Studierenden im Anschluss an die mündliche Prüfung bekannt zu geben.

Studierende, die sich in einem späteren Semester der gleichen Prüfung unterziehen wollen, werden entsprechend den räumlichen Verhältnissen und nach Zustimmung des Prüflings als Zuhörerinnen und Zuhörer bei mündlichen Prüfungen zugelassen. Die Zulassung erstreckt sich nicht auf die Beratung und Bekanntgabe der Prüfungsergebnisse.

Schriftliche Arbeiten im Rahmen einer Prüfungsleistung anderer Art haben dabei die folgende Erklärung zu tragen: „Ich versichere wahrheitsgemäß, die Arbeit selbstständig angefertigt, alle benutzten Hilfsmittel vollständig und genau angegeben und alles kenntlich gemacht zu haben, was aus Arbeiten anderer unverändert oder mit Abänderungen entnommen wurde.“ Trägt die Arbeit diese Erklärung nicht, wird sie nicht angenommen. Die wesentlichen Gegenstände und Ergebnisse einer solchen Erfolgskontrolle sind in einem Protokoll festzuhalten.

§ 6 a Erfolgskontrollen im Antwort-Wahl-Verfahren

Das Modulhandbuch regelt, ob und in welchem Umfang Erfolgskontrollen im Wege des Antwort-Wahl-Verfahrens abgelegt werden können.
§ 6 b Computergestützte Erfolgskontrollen

(2) Vor der computergestützten Erfolgskontrolle hat die/der Prüfende sicherzustellen, dass die elektronischen Daten eindeutig identifiziert und unverwechselbar und dauerhaft den Studierenden zugeordnet werden können. Der störungsfreie Verlauf einer computergestützten Erfolgskontrolle ist durch entsprechende technische Betreuung zu gewährleisten, insbesondere ist die Erfolgskontrolle in Anwesenheit einer fachlich sachkundigen Person durchzuführen. Alle Prüfungsauflagen müssen während der gesamten Bearbeitungszeit zur Bearbeitung zur Verfügung stehen.

(3) Im Übrigen gelten für die Durchführung von computergestützten Erfolgskontrollen die §§ 6 bzw. 6 a.

§ 7 Bewertung von Studien- und Prüfungsleistungen

(1) Das Ergebnis einer Prüfungsleistung wird von den jeweiligen Prüfenden in Form einer Note festgesetzt.

(2) Folgende Noten sollen verwendet werden:

- sehr gut (very good): hervorragende Leistung,
- gut (good): eine Leistung, die erheblich über den durchschnittlichen Anforderungen liegt,
- befriedigend (satisfactory): eine Leistung, die durchschnittlichen Anforderungen entspricht,
- ausreichend (sufficient): eine Leistung, die trotz ihrer Mängel noch den Anforderungen genügt,
- nicht ausreichend (failed): eine Leistung, die wegen erheblicher Mängel nicht den Anforderungen genügt.

Zur differenzierten Bewertung einzelner Prüfungsleistungen sind nur folgende Noten zugelassen:

- 1,0; 1,3: sehr gut
- 1,7; 2,0; 2,3: gut
- 2,7; 3,0; 3,3: befriedigend
- 3,7; 4,0: ausreichend
- 5,0: nicht ausreichend

(3) Studienleistungen werden mit „bestanden“ oder mit „nicht bestanden“ gewertet.

(4) Bei der Bildung der gewichteten Durchschnitte der Modulnoten, der Fachnoten und der Gesamtnote wird nur die erste Dezimalstelle hinter dem Komma berücksichtigt; alle weiteren Stellen werden ohne Rundung geschnitten.

(5) Jedes Modul und jede Erfolgskontrolle darf in demselben Studiengang nur einmal gewertet werden.

(6) Eine Prüfungsleistung ist bestanden, wenn die Note mindestens „ausreichend“ (4,0) ist.

(8) Die Ergebnisse der Erfolgskontrollen sowie die erworbenen Leistungspunkte werden durch den Studierendenservice des KIT verwaltet.

(9) Die Noten der Module eines Faches gehen in die Fachnote mit einem Gewicht proportional zu den ausgewiesenen Leistungspunkten der Module ein.

(10) Die Gesamtnote der Masterprüfung, die Fachnoten und die Modulnoten lauten:

\[
\begin{align*}
\text{bis 1,5} & = \text{sehr gut} \\
\text{von 1,6 bis 2,5} & = \text{gut} \\
\text{von 2,6 bis 3,5} & = \text{befriedigend} \\
\text{von 3,6 bis 4,0} & = \text{ausreichend}
\end{align*}
\]

§ 8 Wiederholung von Erfolgskontrollen, endgültiges Nichtbestehen

(1) Studierende können eine nicht bestandene schriftliche Prüfung (§ 4 Absatz 2 Nr. 1) einmal wiederholen. Wird eine schriftliche Wiederholungsprüfung mit „nicht ausreichend“ (5,0) bewertet, so findet eine mündliche Nachprüfung im zeitlichen Zusammenhang mit dem Termin der nicht bestandenen Prüfung statt. In diesem Falle kann die Note dieser Prüfung nicht besser als „ausreichend“ (4,0) sein.

(2) Studierende können eine nicht bestandene mündliche Prüfung (§ 4 Absatz 2 Nr. 2) einmal wiederholen.

(3) Wiederholungsprüfungen nach Absatz 1 und 2 müssen in Inhalt, Umfang und Form (mündlich oder schriftlich) der ersten entsprechen. Ausnahmen kann der zuständige Prüfungsausschuss auf Antrag zulassen.

(4) Prüfungsleistungen anderer Art (§ 4 Absatz 2 Nr. 3) können einmal wiederholt werden.

(5) Studienleistungen können mehrfach wiederholt werden.

(6) Die Prüfungsleistung ist endgültig nicht bestanden, wenn die mündliche Nachprüfung im Sinne des Absatzes 1 mit „nicht ausreichend“ (5,0) bewertet wurde. Die Prüfungsleistung ist ferner endgültig nicht bestanden, wenn die mündliche Prüfung im Sinne des Absatzes 2 oder die Prüfungsleistung anderer Art gemäß Absatz 4 zweimal mit „nicht bestanden“ bewertet wurde.

(7) Das Modul ist endgültig nicht bestanden, wenn eine für sein Bestehen erforderliche Prüfungsleistung endgültig nicht bestanden ist.

(8) Eine zweite Wiederholung derselben Prüfungsleistung gemäß § 4 Abs. 2 ist nur in Ausnahmefällen auf Antrag des/der Studierenden zulässig („Antrag auf Zweitwiederholung“). Der Antrag ist schriftlich beim Prüfungsausschuss in der Regel bis zwei Monate nach Bekanntgabe der Note zu stellen.

(9) Die Wiederholung einer bestandenen Prüfungsleistung ist nicht zulässig.
§ 9 Verlust des Prüfungsanspruchs

§ 10 Abmeldung; Versäumnis, Rücktritt

(1) Studierende können ihre Anmeldung zu schriftlichen Prüfungen ohne Angabe von Gründen bis zur Ausgabe der Prüfungsaufgaben widerrufen (Abmeldung). Eine Abmeldung kann online im Studierendenportal bis 24:00 Uhr des Vortages der Prüfung oder in begründeten Ausnahmefällen beim Studierendenservice innerhalb der Geschäftszeiten erfolgen. Erfolgt die Abmeldung gegenüber dem/der Prüfenden hat diese/r Sorge zu tragen, dass die Abmeldung im Campus Management System verbucht wird.

(3) Die Abmeldung von Prüfungsleistungen anderer Art sowie von Studienleistungen ist im Modulhandbuch geregelt.

(4) Eine Erfolgskontrolle gilt als mit „nicht ausreichend“ (5,0) bewertet, wenn die Studierenden einen Prüfungstermin ohne triftigen Grund versäumen oder wenn sie nach Beginn der Erfolgskontrolle ohne triftigen Grund von dieser zurücktreten. Dasselbe gilt, wenn die Masterarbeit nicht innerhalb der vorgesehenen Bearbeitungszeit erbracht wird, es sei denn, der/die Studierende hat die Fristüberschreitung nicht zu vertreten.

§ 11 Täuschung, Ordnungsverstoß

(1) Versuchen Studierende das Ergebnis ihrer Erfolgskontrolle durch Täuschung oder Benutzung nicht zugelassener Hilfsmittel zu beeinflussen, gilt die betreffende Erfolgskontrolle als mit „nicht ausreichend“ (5,0) bewertet.

(2) Studierende, die den ordnungsgemäßen Ablauf einer Erfolgskontrolle stören, können von der/dem Prüfenden oder der Aufsicht führenden Person von der Fortsetzung der Erfolgskontrolle ausgeschlossen werden. In diesem Fall gilt die betreffende Erfolgskontrolle als mit „nicht ausreichend“ (5,0) bewertet. In schwerwiegenden Fällen kann der Prüfungsausschuss diese Studierenden von der Erbringung weiterer Erfolgskontrollen ausschließen.

(3) Näheres regelt die Allgemeine Satzung des KIT zur Redlichkeit bei Prüfungen und Praktika in der jeweils gültigen Fassung.
§ 12 Mutterschutz, Elternzeit, Wahrnehmung von Familienpflichten

(2) Gleichfalls sind die Fristen der Elternzeit nach Maßgabe des jeweils gültigen Gesetzes (Bundeselternschaftenrecht - ELSTG) auf Antrag zu berücksichtigen. Der/die Studierende muss bis spätestens vier Wochen vor dem Zeitpunkt, von dem an die Elternzeit angetreten werden soll, den Prüfungsausschuss schriftlich benachrichtigen. Der/die Studierende hat die entsprechenden Nachweise vorzulegen.

(3) Der Prüfungsausschuss entscheidet auf Antrag über die flexible Handhabung von Prüfungsfristen entsprechend den Bestimmungen des Landeshochschulgesetzes, wenn Studierende Familienpflichten wahrzunehmen haben. Absatz 2 Satz 4 bis 6 gelten entsprechend.

§ 13 Studierende mit Behinderung oder chronischer Erkrankung

(2) Weisen Studierende eine Behinderung oder chronische Erkrankung nach und folgt daraus, dass sie nicht in der Lage sind, Erfolgskontrollen ganz oder teilweise in der vorgeschriebenen Zeit oder Form abzulegen, kann der Prüfungsausschuss gestatten, die Erfolgskontrollen in einem anderen Zeitraum oder einer anderen Form zu erbringen.

(3) Weisen Studierende eine Behinderung oder chronische Erkrankung nach und folgt daraus, dass sie nicht in der Lage sind, die Lehrveranstaltungen regelmäßig zu besuchen oder die gemäß § 19 erforderlichen Studien- und Prüfungsleistungen zu erbringen, kann der Prüfungsausschuss auf Antrag gestatten, dass einzelne Studien- und Prüfungsleistungen nach Ablauf der in dieser Studien- und Prüfungsordnung vorgesehenen Fristen absolviert werden können.

§ 14 Modul Masterarbeit

(1) Voraussetzung für die Zulassung zum Modul Masterarbeit ist, dass die/der Studierende Modulprüfungen im Umfang von 70 LP erfolgreich abgelegt hat. Über Ausnahmen entscheidet der Prüfungsausschuss auf Antrag der/des Studierenden.

Thema, Aufgabenstellung und Umfang der Masterarbeit sind von dem Betreuer bzw. der Betreuerin so zu begrenzen, dass sie mit dem in Absatz 4 festgelegten Arbeitsaufwand bearbeitet werden kann.

Bei der Abgabe der Masterarbeit haben die Studierenden schriftlich zu versichern, dass sie die Arbeit selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt haben, die wörtlich oder inhaltlich übernommenen Stellen als solche kenntlich gemacht und die Satzung des KIT zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet haben. Wenn diese Erklärung nicht enthalten ist, wird die Arbeit nicht angenommen. Die Erklärung kann wie folgt lauten: „Ich versichere wahrheitsgemäß, die Arbeit selbstständig verfasst, alle benutzten Hilfsmittel vollständig und genau angegeben und alles kenntlich gemacht zu haben, was aus Arbeiten anderer unverändert oder mit Abänderungen entnommen wurde sowie die Satzung des KIT zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet zu haben." Bei Abgabe einer unwahren Versicherung wird die Masterarbeit mit „nicht ausreichend“ (5,0) bewertet.

Der Zeitpunkt der Ausgabe des Themas der Masterarbeit ist durch die Betreuerin/den Betreuer und die/den Studierenden festzuhalten und dies beim Prüfungsausschuss aktenkundig zu machen. Der Zeitpunkt der Abgabe der Masterarbeit ist durch den/die Prüfende/n beim Prüfungsausschuss aktenkundig zu machen. Das Thema kann nur einmal und nur innerhalb des ersten Monats der Bearbeitungszeit zurückgegeben werden. Macht der oder die Studierende einen triftigen Grund geltend, kann der Prüfungsausschuss die in Absatz 4 festgelegte Bearbeitungszeit auf Antrag der oder des Studierenden um höchstens drei Monate verlängern. Wird die Masterarbeit nicht fristgerecht abgeliefert, gilt sie als mit „nicht ausreichend“ (5,0) bewertet, es sei denn, dass die Studierenden dieses Versäumnis nicht zu vertreten haben.

§ 15 Zusatzleistungen

(2) Die Studierenden haben bereits bei der Anmeldung zu einer Prüfung in einem Modul diese als Zusatzleistung zu deklarieren.

§ 16 Prüfungsausschuss

(1) Für den Masterstudiengang Wirtschaftsmathematik wird ein Prüfungsausschuss gebildet. Er besteht aus sechs stimmberechtigten Mitgliedern, die jeweils zur Hälfte von der Fakultät für Mathematik und der Fakultät für Wirtschaftswissenschaften bestellt werden: vier Hochschullehrer/innen / leitenden Wissenschaftler/innen gemäß § 14 Abs. 3 Ziff. 1 KITG / Privatdozentinnen bzw. -dozenten, zwei akademischen Mitarbeiterinnen und Mitarbeitern nach § 52 LHG / wissenschaftlichen Mitarbeiter/innen gemäß § 14 Abs. 3 Ziff. 2 KITG und einer bzw. einem Studierenden mit beratender Stimme. Die Amtszeit der nichtstudentischen Mitglieder beträgt zwei Jahre, die des studentischen Mitglieds ein Jahr.

(4) Der Prüfungsausschuss kann die Erledigung seiner Aufgaben für alle Regelfälle auf die/den Vorsitzende/n des Prüfungsausschusses übertragen. In dringenden Angelegenheiten, deren Erledigung nicht bis zu der nächsten Sitzung des Prüfungsausschusses warten kann, entscheidet die/den Vorsitzende/n des Prüfungsausschusses.

(6) In Angelegenheiten des Prüfungsausschusses, die eine an einer anderen KIT-Fakultät zu absolvierende Prüfungsleistung betreffen, ist auf Antrag eines Mitgliedes des Prüfungsausschusses eine fachlich zuständige und von der betroffenen KIT-Fakultät zu nennende prüfungsberechtigte Person hinzuzuziehen.

§ 17 Prüfende und Beisitzende

(1) Der Prüfungsausschuss bestellt die Prüfenden. Er kann die Bestellung der/dem Vorsitzenden übertragen.

(2) Prüfende sind Hochschullehrer/innen sowie leitende Wissenschaftler/innen gemäß § 14 Abs. 3 Ziff. 1 KITG, habilitierte Mitglieder und akademische Mitarbeiter/innen gemäß § 52 LHG, welche der KIT-Fakultät für Mathematik oder der KIT-Fakultät für Wirtschaftswissenschaften angehören und denen die Prüfungsbefugnis übertragen wurde; desgleichen kann wissenschaftlichen Mitarbeitern gemäß § 14 Abs. 3 Ziff. 2 KITG die Prüfungsbefugnis übertragen werden. Bestellt werden darf nur, wer mindestens die dem jeweiligen Prüfungsgegenstand entsprechende fachwissenschaftliche Qualifikation erworben hat.

(3) Soweit Lehrveranstaltungen von anderen als den unter Absatz 2 genannten Personen durchgeführt werden, sollen diese zu Prüfenden bestellt werden, sofern die KIT-Fakultät für Mathematik oder die KIT-Fakultät für Wirtschaftswissenschaften eine Prüfungsbefugnis erteilt hat und sie die gemäß Absatz 2 Satz 2 vorausgesetzte Qualifikation nachweisen können.

(4) Die Beisitzenden werden durch die Prüfenden benannt. Zu Beisitzenden darf nur bestellt werden, wer einen akademischen Abschluss in einem Masterstudiengang der Wirtschaftsmathematik oder einem gleichwertigen akademischen Abschluss erworben hat.

§ 18 Anerkennung von Studien- und Prüfungsleistungen, Studienzeiten

(1) Studien- und Prüfungsleistungen sowie Studienzeiten, die in Studiengängen an staatlichen oder staatlich anerkannten Hochschulen und Berufsakademien der Bundesrepublik Deutschland oder an ausländischen staatlichen oder staatlich anerkannten Hochschulen erbracht wurden, werden auf Antrag der Studierenden anerkannt, sofern hinsichtlich der erworbenen Kompetenzen kein wesentlicher Unterschied zu den Leistungen oder Abschlüssen besteht, die ersetzt werden sollen. Dabei ist kein schematischer Vergleich, sondern eine Gesamtbetrachtung vorzunehmen. Bezüglich des Umfangs einer zu Anerkennung vorgelegten Studienleistung (Anrechnung) werden die Grundsätze des ECTS herangezogen.

(2) Die Studierenden haben die für die Anerkennung erforderlichen Unterlagen vorzulegen. Studierende, die neu in den Masterstudiengang Wirtschaftsmathematik immatrikuliert wurden, haben den Antrag mit den für die Anerkennung erforderlichen Unterlagen innerhalb eines Semesters nach Immatrikulation zu stellen. Bei Unterlagen, die nicht in deutscher oder englischer Sprache vorliegen, kann eine amtlich beglaubigte Übersetzung verlangt werden. Die Beweislast dafür, dass der Antrag die Voraussetzungen für die Anerkennung nicht erfüllt, liegt beim Prüfungsausschuss.

(3) Werden Leistungen angerechnet, die nicht am KIT erbracht wurden, werden sie im Zeugnis als „anerkannt“ ausgewiesen. Liegen Noten vor, werden die Noten, soweit die Notensysteme vergleichbar sind, übernommen und in die Berechnung der Modulnoten und der Gesamtnote einbezogen. Sind die Notensysteme nicht vergleichbar, können die Noten umgerechnet werden. Liegen keine Noten vor, wird der Vermerk „bestanden“ aufgenommen.

(4) Bei der Anerkennung von Studien- und Prüfungsleistungen, die außerhalb der Bundesrepublik Deutschland erbracht wurden, sind die von der Kultusministerkonferenz und der Hochschulrektorenkonferenz gebilligten Äquivalenzvereinbarungen sowie Absprachen im Rahmen der Hochschulpartnerschaften zu beachten.

(5) Außerhalb des Hochschulsystems ererbte Kenntnisse und Fähigkeiten werden angerechnet, wenn sie nach Inhalt und Niveau den Studien- und Prüfungsleistungen gleichwertig sind, die
ersetzt werden sollen und die Institution, in der die Kenntnisse und Fähigkeiten erworben wurden, ein genormtes Qualitätssicherungssystem hat. Die Anrechnung kann in Teilen versagt werden, wenn mehr als 50 Prozent des Hochschulstudiums ersetzt werden soll.

II. Masterprüfung

§ 19 Umfang und Art der Masterprüfung
(1) Die Masterprüfung besteht aus den Modulprüfungen nach Absatz 2 und 3 sowie dem Modul Masterarbeit (§ 14).
(2) Es sind Modulprüfungen in folgenden Pflichtfächern abzulegen:
 1. Fach: "Mathematische Methoden": Modul(e) im Umfang von 36 LP, wovon mindestens 8 LP aus Modulen der Stochastik und weitere 8 LP aus Modulen der Analysis oder Angewandter und Numerischer Mathematik, Optimierung stammen müssen.
 2. Fach: "Finance - Risk Management - Managerial Economics": Modul(e) im Umfang von 18 LP.
 3. Fach: "Operations Management - Datenanalyse - Informatik": Modul(e) im Umfang von 18 LP.
 4. Fach: „Wirtschaftswissenschaftliches Seminar“: Modul(e) im Umfang von 3 LP.
 5. Fach: „Mathematisches Seminar“: Modul(e) im Umfang von 3 LP.

Die Festlegung der zur Auswahl stehenden Module und deren Fachzuordnung werden im Modulhandbuch getroffen.
(3) Im Wahlpflichtfach sind Modulprüfungen im Umfang von 12 LP abzulegen. Die Festlegung der zur Auswahl stehenden Module wird im Modulhandbuch getroffen.

§ 20 Bestehen der Masterprüfung, Bildung der Gesamtnote
(1) Die Masterprüfung ist bestanden, wenn alle in § 19 genannten Modulprüfungen mindestens mit „ausreichend“ bewertet wurden.
(2) Die Gesamtnote der Masterprüfung errechnet sich als ein mit Leistungspunkten gewichteter Notendurchschnitt der Fachnoten der Fächer 1 – 4 gemäß § 19 Abs. 2, dem Wahlpflichtfach gemäß § 19 Abs. 3 und dem Modul Masterarbeit.
(3) Haben Studierende die Masterarbeit mit der Note 1,0 und die Masterprüfung mit einem Durchschnitt von 1,2 oder besser abgeschlossen, so wird das Prädikat „mit Auszeichnung“ (with distinction) verliehen.

§ 21 Masterzeugnis, Masterurkunde, Diploma Supplement und Transcript of Records

(3) Mit dem Zeugnis erhalten die Studierenden ein Diploma Supplement in deutscher und englischer Sprache, das den Vorgaben des jeweils gültigen ECTS Users’ Guide entspricht, sowie ein Transcript of Records in deutscher und englischer Sprache.

III. Schlussbestimmungen

§ 22 Bescheinigung von Prüfungsleistungen

Haben Studierende die Masterprüfung endgültig nicht bestanden, wird ihnen auf Antrag und gegen Vorlage der Exmatrikulationsbescheinigung eine schriftliche Bescheinigung ausgestellt, die die erbrachten Studien- und Prüfungsleistungen und deren Noten enthält und erkennen lässt, dass die Prüfung insgesamt nicht bestanden ist. Dasselbe gilt, wenn der Prüfungsanspruch erloschen ist.

§ 23 Aberkennung des Mastergrades

(1) Haben Studierende bei einer Prüfungsleistung getäuscht und wird diese Tatsache nach der Aushändigung des Zeugnisses bekannt, so können die Noten der Modulprüfungen, bei denen getäuscht wurde, berichtigt werden. Gegebenenfalls kann die Modulprüfung für „nicht ausreichend“ (5,0) und die Masterprüfung für „nicht bestanden“ erklärt werden.

(2) Waren die Voraussetzungen für die Zulassung zu einer Prüfung nicht erfüllt, ohne dass die/der Studierende darüber täuschen wollte, und wird diese Tatsache erst nach Aushändigung des Zeugnisses bekannt, wird dieser Mangel durch das Bestehen der Prüfung geheilt. Hat die/der Studierende die Zulassung vorsätzlich zu Unrecht erwirkt, so kann die Modulprüfung für „nicht ausreichend“ (5,0) und die Masterprüfung für „nicht bestanden“ erklärt werden.

(3) Vor einer Entscheidung des Prüfungsausschusses ist Gelegenheit zur Äußerung zu geben.

(4) Das unrichtige Zeugnis ist zu entziehen und gegebenenfalls ein neues zu erteilen. Mit dem unrichtigen Zeugnis ist auch die Masterurkunde einzuziehen, wenn die Masterprüfung aufgrund einer Täuschung für „nicht bestanden“ erklärt wurde.

§ 24 Einsicht in die Prüfungsakten

(1) Nach Abschluss der Masterprüfung wird den Studierenden auf Antrag innerhalb eines Jahres Einsicht in das Prüfungsexemplar ihrer Masterarbeit, die darauf bezogenen Gutachten und in die Prüfungsprotokolle gewährt.

(2) Für die Einsichtnahme in die schriftlichen Modulprüfungen, schriftlichen Modulteilprüfungen bzw. Prüfungsprotokolle gilt eine Frist von einem Monat nach Bekanntgabe des Prüfungsergebnisses.

(3) Der/die Prüfende bestimmt Ort und Zeit der Einsichtnahme.

(4) Prüfungsunterlagen sind mindestens fünf Jahre aufzubewahren.

§ 25 Inkrafttreten, Übergangsvorschriften

(1) Diese Studien- und Prüfungsordnung tritt am 01. April 2016 in Kraft und gilt
 1. für Studierende, die ihr Studium im Masterstudiengang Wirtschaftsmathematik am KIT im ersten Fachsemester aufnehmen, sowie
 2. für Studierende, die ihr Studium im Masterstudiengang Wirtschaftsmathematik am KIT in einem höheren Fachsemester aufnehmen, sofern dieses Fachsemester nicht über dem Fachsemester liegt, das der erste Jahrgang nach Ziff. 1 erreicht.

 1. Studierende, die ihr Studium im Masterstudiengang Wirtschaftsmathematik am KIT zuletzt im Wintersemester 2015/16 aufgenommen haben, sowie
 2. für Studierende, die ihr Studium im Masterstudiengang Wirtschaftsmathematik am KIT ab dem Sommersemester 2016 in einem höheren Fachsemester aufnehmen, sofern das Fachsemester über dem liegt, das der erste Jahrgang nach Absatz 1 Ziff. 1 erreicht hat. Im Übrigen tritt sie außer Kraft.

Karlsruhe, den 17. Dezember 2015

Professor Dr.-Ing. Holger Hanselka
(Präsident)
Stichwortverzeichnis

Adaptive Finite Elemente Methoden (M), 105, 248, 399, 614
Adaptive Finite Elemente Methoden (T), 823
Advanced Game Theory (T), 824
Advanced Inverse Problems: Nonlinearity and Banach Spaces (M), 107, 250, 401, 616
Advanced Inverse Problems: Nonlinearity and Banach Spaces (T), 825
Advanced Topics in Economic Theory (T), 826
Algebra (M), 169, 403, 618
Algebra (T), 827
Algebraische Geometrie (M), 171, 405, 620
Algebraische Geometrie (T), 828
Algebraische Topologie (M), 173, 407, 622
Algebraische Topologie (T), 829
Algebraische Topologie II (M), 175, 409, 624
Algebraische Topologie II (T), 830
Algebraische Zahlentheorie (M), 177, 411, 626
Algebraische Zahlentheorie (T), 831
Algorithms for Internet Applications (T), 832
Analytics und Statistik (M), 351, 412, 627
Anforderungsanalyse und -management (T), 834
Angewandte Informatik II - Informatiksysteme für eCommerce (T), 835
Angewandte Ökonometrie (T), 836
Anwendungen des Operations Research (M), 374, 414, 629
Asset Pricing (T), 837
Asymptotische Stochastik (M), 27, 312, 416, 631
Asymptotische Stochastik (T), 838
Auktionstheorie (T), 839
Bildgebende Verfahren in der Medizintechnik (M), 109, 252, 418, 633
Bildgebende Verfahren in der Medizintechnik (T), 840
Börsen (T), 841
Brownische Bewegung (M), 29, 314, 420, 635
Brownische Bewegung (T), 842
Business Plan Workshop (T), 843
Challenges in Supply Chain Management (T), 845
Collective Decision Making (M), 353, 422, 637
Compressive Sensing (M), 111, 254, 423, 638
Compressive Sensing (T), 846
Computational Economics (T), 848
Computerunterstützte analytische Methoden für Rand- und Eigenwertprobleme (M), 66, 209, 425, 640
Computerunterstützte analytische Methoden für Rand- und Eigenwertprobleme (T), 850
Corporate Financial Policy (T), 851
Current Issues in the Insurance Industry (T), 852
Data Mining and Applications (T), 853
Datenbanksysteme und XML (T), 854
Der Poisson-Prozess (M), 31, 316, 427, 642
Der Poisson-Prozess (T), 856
Derivate (T), 857
Die Riemannsche Zeta-Funktion (M), 178, 429, 644
Die Riemannsche Zeta-Funktion (T), 858
Differentialgeometrie (M), 179, 430, 645
Differentialgeometrie (T), 859
Dokumentenmanagement und Groupwaresysteme (T), 860
Dynamische Systeme (M), 68, 211, 432, 647
Dynamische Systeme (T), 861
Efficient Energy Systems and Electric Mobility (T), 862
Effiziente Algorithmen (T), 864
eFinance: Informationswirtschaft für den Wertpapierhandel (T), 866
Einführung in das Wissenschaftliche Rechnen (M), 113, 256, 434, 649
Einführung in das Wissenschaftliche Rechnen (T), 868
Einführung in die geometrische Maßtheorie (M), 181, 436, 651
Einführung in die geometrische Maßtheorie (T), 869
Einführung in Matlab und numerische Algorithmen (M), 115, 258, 438, 653
Einführung in Matlab und numerische Algorithmen (T), 870
Einführung in Partikuläre Strömungen (M), 117, 260, 440, 655
Einführung in Partikuläre Strömungen (T), 871
Endogene Wachstumstheorie (T), 872
Energie und Umwelt (T), 874
Energiewirtschaft und Technologie (M), 376, 442, 657
Energy Systems Analysis (T), 875
Enterprise Architecture Management (T), 876
Entscheidungs- und Spieltheorie (M), 354, 444, 659
Entscheidungs- und Spieltheorie (T), 877
Ereignisdiskrete Simulation in Produktion und Logistik (T), 877
Evolutionsgleichungen (M), 70, 213, 445, 660
Evolutionsgleichungen (T), 878
Experimentelle Wirtschaftsforschung (M), 355, 447, 662
Experimentelle Wirtschaftsforschung (T), 879
Extremale Graphentheorie (M), 183, 449, 664
Extremale Graphentheorie (T), 881
Extremwerttheorie (M), 33, 318, 451, 666
Extremwerttheorie (T), 882
Festverzinsliche Titel (T), 883
Finance 1 (M), 357, 453, 668
Finance 2 (M), 358, 454, 669
Finance 3 (M), 360, 456, 671
Financial Analysis (T), 884
Financial Econometrics (T), 885
Finanzintermediation (T), 886
Finanzmathematik in diskreter Zeit (M), 35, 320, 458, 673
Finanzmathematik in diskreter Zeit (T), 887
Finanzmathematik in stetiger Zeit (M), 37, 322, 460, 675
Finanzmathematik in stetiger Zeit (T), 888
Finite Elemente Methoden (M), 119, 262, 462, 677
Finite Elemente Methoden (T), 889
Fourieranalyse (M), 72, 215, 464, 679
Fourieranalyse (T), 890

Wirtschaftsmathematik (M.Sc.)
Modulhandbuch mit Stand 04.08.2016 für Wintersemester 16/17

1105
Funktionalanalysis (M), 74, 217, 466, 681
Funktionalanalysis (T), 891

Gemischt-ganzzahlige Optimierung I (T), 892
Gemischt-ganzzahlige Optimierung I und II (T), 893
Gemischt-ganzzahlige Optimierung II (T), 894
Generalisierte Regressionsmodelle (M), 39, 324, 468, 683
Generalisierte Regressionsmodelle (T), 895
Geometrie der Schemata (M), 185, 470, 685
Geometrie der Schemata (T), 896
Geometrische Gruppentheorie (M), 187, 472, 687
Geometrische Gruppentheorie (T), 897
Geometrische numerische Integration (M), 121, 264, 474, 689
Geometrische numerische Integration (T), 898
Geschäftspolitik der Kreditinstitute (T), 899
Globale Differentialgeometrie (M), 189, 476, 691
Globale Differentialgeometrie (T), 900
Globale Optimierung I (T), 901
Globale Optimierung I und II (T), 902
Globale Optimierung II (T), 903
Graph Theory and Advanced Location Models (T), 904
Graphentheorie (M), 190, 477, 692
Graphentheorie (T), 905
Gruppenwirkungen in der Riemannschen Geometrie (M), 192, 479, 694
Gruppenwirkungen in der Riemannschen Geometrie (T), 906

Homotopietheorie (M), 194, 481, 696
Homotopietheorie (T), 907

Incentives in Organizations (T), 908
Informatik (M), 378, 482, 697
Innovation und Wachstum (M), 362, 484, 699
Innovationstheorie und -politik (T), 909
Insurance Management I (M), 364, 486, 701
Insurance Marketing (T), 911
Insurance Production (T), 912
Insurance Risk Management (T), 913
Integralgleichungen (M), 76, 123, 219, 266, 488, 703
Integralgleichungen (T), 914
Internationale Finanzierung (T), 915
Internationale Wirtschaftspolitik (T), 916
Inverse Probleme (M), 78, 125, 221, 268, 490, 705
Inverse Probleme (T), 917

Klassische Methoden für partielle Differentialgleichungen (M), 80, 223, 492, 707
Klassische Methoden für partielle Differentialgleichungen (T), 918
Knowledge Discovery (T), 919
Kombinatorik (M), 195, 494, 709
Kombinatorik (T), 920
Kombinatorik in der Ebene (M), 197, 496, 711
Kombinatorik in der Ebene (T), 921
Komplexe Analysis (M), 82, 225, 498, 713
Komplexe Analysis (T), 922
Konvexe Analysis (T), 923
Konvexe Geometrie (M), 199, 500, 715
Konvexe Geometrie (T), 924
Krankenhausmanagement (T), 925
Kreditrisiken (T), 926

L2-Invarianten (M), 84, 201, 227, 502, 717
L2-Invarianten (T), 927
Management von Informatik-Projekten (T), 928
Marketing Management (M), 380, 504, 719
Marketing Strategy Planspiel (T), 930
Marketingkommunikation (T), 932
Markovsche Entscheidungsprozesse (M), 41, 326, 506, 721
Markovsche Entscheidungsprozesse (T), 933
Marktforschung (T), 934
Masterarbeit (T), 936
Mathematische Methoden in Signal- und Bildverarbeitung (M), 127, 270, 508, 723
Mathematische Methoden in Signal- und Bildverarbeitung (T), 937
Mathematische Modellierung und Simulation in der Praxis (M), 129, 272, 510, 725
Mathematische Modellierung und Simulation in der Praxis (T), 938
Mathematische Optimierung (M), 382, 512, 727
Mathematische Statistik (M), 43, 328, 514, 729
Mathematische Statistik (T), 939
Mathematische Theorie der Demokratie (T), 940
Matrixfunktionen (M), 131, 274, 516, 731
Matrixfunktionen (T), 941
Maxwellgleichungen (M), 86, 132, 229, 275, 517, 732
Maxwellgleichungen (T), 942
Methodische Grundlagen des OR (M), 384, 519, 734
Microeconomic Theory (M), 366, 521, 736
Modellierung von Geschäftsprozessen (T), 943
Modelling, Measuring and Managing of Extreme Risks (T), 944

Modul Masterarbeit (M), 25
Multivariate Verfahren (T), 946

Naturinspirierte Optimierungsverfahren (T), 947
Nicht- und Semiparametrik (T), 948
Nichtlineare Optimierung I (T), 949
Nichtlineare Optimierung I und II (T), 950
Nichtlineare Optimierung II (T), 951
Nichtparametrische Statistik (M), 45, 330, 522, 737
Nichtparametrische Statistik (T), 952
Numerische Fortsetzungsmethoden (M), 134, 277, 524, 739
Numerische Fortsetzungsmethoden (T), 953
Numerische Methoden für Differentialgleichungen (M), 136, 279, 526, 741
Numerische Methoden für Differentialgleichungen (T), 954
Numerische Methoden für hyperbolische Gleichungen (M), 138, 281, 528, 743
Numerische Methoden für hyperbolische Gleichungen (T), 955
Numerische Methoden für Integralgleichungen (M), 140, 283, 530, 745
Numerische Methoden für Integralgleichungen (T), 956
Numerische Methoden für zeitabhängige partielle Differenzialgleichungen (M), 142, 285, 532, 747
Numerische Methoden für zeitabhängige partielle Differenzialgleichungen (T), 957
Numerische Methoden in der Elektrodynamik (M), 144, 287, 534, 749
Numerische Methoden in der Elektrodynamik (T), 957
Numerische Methoden in der Finanzmathematik (M), 146, 289, 536, 751
Numerische Methoden in der Finanzmathematik (T), 958
Numerische Methoden in der Finanzmathematik II (M), 148, 291, 538, 753
Numerische Methoden in der Finanzmathematik II (T), 960
Numerische Methoden in der Strömungsmechanik (M), 150, 293, 540, 755
Numerische Methoden in der Strömungsmechanik (T), 961
Numerische Optimierungsmethoden (M), 152, 295, 542, 757
Numerische Optimierungsmethoden (T), 962
Numerische Verfahren für die Maxwellgleichungen (M), 154, 297, 544, 759
Numerische Verfahren für die Maxwellgleichungen (T), 963
Ökonometrie und Statistik I (M), 367, 546, 761
Ökonometrie und Statistik II (M), 369, 548, 763
Ökonomische Theorie und ihre Anwendung in Finance (M), 371, 550, 765
Open Innovation - Konzepte, Methoden und Best Practices (T), 964
Operations Research im Supply Chain Management (M), 386, 552, 767
Operations Research in Health Care Management (T), 966
Operations Research im Supply Chain Management (T), 968
Operatorfunktionen (M), 156, 299, 554, 769
Optimierung in Banachräumen (M), 88, 157, 231, 300, 555, 770
Optimierung in Banachräumen (T), 970
Optimierung in einer zufälligen Umwelt (T), 971
Optimierung und optimale Kontrolle bei Differentialgleichungen (M), 159, 302, 557, 772
Optimierung und optimale Kontrolle bei Differentialgleichungen (T), 972
OR-nahe Modellierung und Analyse realer Probleme (Projekt) (T), 975
Organic Computing (T), 973
P&C Insurance Simulation Game (T), 976
Paneldaten (T), 977
Parametrische Optimierung (T), 978
Perkolation (M), 47, 332, 559, 774
Perkolation (T), 979
Portfolio and Asset Liability Management (T), 980
Potentialtheorie (M), 90, 161, 233, 304, 561, 776
Potentialtheorie (T), 981
Praktikum Informatik (T), 982
Praxis-Seminar: Health Care Management (mit Fallstudien) (T), 984
Predictive Mechanism and Market Design (T), 986
Principles of Insurance Management (T), 987
Produkt- und Innovationsmanagement (T), 988
Projektorientiertes Softwarepraktikum (M), 162, 305, 562, 777
Projektorientiertes Softwarepraktikum (T), 990
Public Management (T), 991
Qualitätssicherung I (T), 993
Qualitätssicherung II (T), 994
Rand- und Eigenwertprobleme (M), 91, 234, 564, 779
Rand- und Eigenwertprobleme (T), 995
Räumliche Stochastik (M), 49, 334, 566, 781
Räumliche Stochastik (T), 996
Risk Communication (T), 997
Semantic Web Technologien (T), 998
Seminar (M), 394, 396, 398, 568, 570, 572, 574
Seminar Betriebswirtschaftslehre A (Master) (T), 1000
Seminar Betriebswirtschaftslehre B (Master) (T), 1002
Seminar Informatik A (Master) (T), 1004
Seminar Informatik B (Master) (T), 1008
Seminar Mathematik (T), 1012
Seminar Operations Research A (Master) (T), 1013
Seminar Operations Research B (Master) (T), 1014
Seminar Statistik A (Master) (T), 1015
Seminar Statistik B (Master) (T), 1016
Seminar Volkswirtschaftslehre A (Master) (T), 1017
Seminar Volkswirtschaftslehre B (Master) (T), 1018
Service Operations (M), 388, 783
Service Oriented Computing (T), 1019
Simulation I (T), 1020
Simulation II (T), 1022
Smart Energy Distribution (T), 1023
Sobolevräume (M), 93, 164, 236, 307, 576, 785
Sobolevräume (T), 1024
Social Choice Theory (T), 1025
Software-Praktikum: OR-Modelle I (T), 1026
Software-Praktikum: OR-Modelle II (T), 1027
Software-Qualitätsmanagement (T), 1028
Spatial Economics (T), 1030
Spectraltheorie (M), 94, 237, 577, 786
Spectraltheorie - Prüfung (T), 1031
Spezialvorlesung Betriebliche Informationssysteme (T), 1032
Spezialvorlesung Effiziente Algorithmen (T), 1033
Spezialvorlesung Software- und Systemsengineering (T), 1034
Spezialvorlesung Wissensmanagement (T), 1035
Spezialvorlesung zur Optimierung I (T), 1036
Spezialvorlesung zur Optimierung II (T), 1037
Spezielle Themen der numerischen linearen Algebra (M), 165, 308, 579, 788
Spezielle Themen der numerischen linearen Algebra (T), 1038
Spin-Mannigfaltigkeiten, alpha-Invariante und positive Skalarkrümmung (M), 203, 581, 790
Spin-Mannigfaltigkeiten, alpha-Invariante und positive Skalarkrümmung (T), 1039
Standortplanung und strategisches Supply Chain Management (T), 1040
Statistik für Fortgeschrittene (T), 1042
Statistische Modellierung von allgemeinen Regressionsmodellen (T), 1043
Steinsche Methode (M), 51, 336, 583, 792
Steinsche Methode (T), 1044
Steuerung stochastischer Prozesse (M), 52, 337, 584, 793
Steuerung stochastischer Prozesse (T), 1045
Steuerungstheorie (M), 96, 239, 586, 795
Steuerungstheorie (T), 1046
Stochastic Calculus and Finance (T), 1047
Stochastische Differentialgleichungen (M), 97, 240, 587, 796
Stochastische Differentialgleichungen (T), 1049
Stochastische Entscheidungsmodelle I (T), 1050
Stochastische Entscheidungsmodelle II (T), 1051
Stochastische Evolutionsgleichungen (M), 54, 99, 242, 339, 589, 798
Stochastische Evolutionsgleichungen (T), 1053
Stochastische Geometrie (M), 56, 205, 341, 591, 800
Stochastische Geometrie (T), 1054
Stochastische Methoden und Simulation (M), 390, 593, 802
Stochastische Modellierung und Optimierung (M), 392, 595, 804
Strategic Brand Management (T), 1055
Strategische Aspekte der Energiewirtschaft (T), 1057
Strategische und innovative Marketingentscheidungen (T), 1059
Strategisches Management der betrieblichen Informationsverarbeitung (T), 1061
Supply Chain Management in der Prozessindustrie (T), 1062
Taktisches und operatives Supply Chain Management (T), 1064
Technologischer Wandel in der Energiewirtschaft (T), 1065
Topics in Experimental Economics (T), 1067
Valuation (T), 1068
Variationsrechnung (M), 101, 244, 597, 806
Variationsrechnung (T), 1069
Vergleichsgeometrie (M), 207, 599, 808
Vergleichsgeometrie (T), 1070
Verhaltenswissenschaftliches Marketing (T), 1071
Vorhersagen: Theorie und Praxis (M), 58, 343, 601, 810
Vorhersagen: Theorie und Praxis (T), 1074
Vorleistung zu Nichtlineare Optimierung I (Bachelor) (T), 1075
Vorleistung zu Nichtlineare Optimierung I (Master) (T), 1076
Vorleistung zu Nichtlineare Optimierung II (Bachelor) (T), 1077
Vorleistung zu Nichtlineare Optimierung II (Master) (T), 1078
Vorleistung zu Standortplanung und strategisches Supply Chain Management (T), 1079
Vorleistung zu Taktisches und operatives Supply Chain Management (T), 1080
Wachstum und Agglomeration (M), 373, 603, 812
Wahrscheinlichkeitstheorie und kombinatorische Optimierung (M), 60, 345, 604, 813
Wahrscheinlichkeitstheorie und kombinatorische Optimierung (T), 1081
Wandernde Wellen (M), 103, 246, 606, 815
Wandernde Wellen (T), 1082
Wärmewirtschaft (T), 1083
Wavelets (M), 167, 310, 608, 817
Wavelets (T), 1084
Web Science (T), 1085
Workflow-Management (T), 1086
Zeitreihenanalyse (M), 62, 347, 610, 819
Zeitreihenanalyse (T), 1088
Zufällige Graphen (M), 64, 349, 612, 821
Zufällige Graphen (T), 1089