Home | english  |  Impressum  |  Datenschutz  |  Sitemap  |  Intranet  |  KIT
Institut für Stochastik

Sekretariat
Kollegiengebäude Mathematik (20.30)
Zimmer 2.056 und 2.002

Adresse
Hausadresse:
Karlsruher Institut für Technologie (KIT)
Institut für Stochastik
Englerstr. 2
D-76131 Karlsruhe

Postadresse:
Karlsruher Institut für Technologie (KIT)
Institut für Stochastik
Postfach 6980
D-76049 Karlsruhe

Öffnungszeiten:
Mo-Fr 10:00 - 12:00

Tel.: 0721 608 43270/43265

Fax.: 0721 608 46066

AG Stochastische Geometrie (Wintersemester 2017/18)

Dozent: Prof. Dr. Günter Last, Prof. Dr. Daniel Hug
Veranstaltungen: Seminar (0127500)
Semesterwochenstunden: 2


Termine
Seminar: Freitag 9:45-11:15 SR 2.58
Dozenten
Seminarleitung Prof. Dr. Günter Last
Sprechstunde: Nach Vereinbarung.
Zimmer 2.001, Sekretariat 2.056 Kollegiengebäude Mathematik (20.30)
Email: guenter.last@kit.edu
Seminarleitung Prof. Dr. Daniel Hug
Sprechstunde: Nach Vereinbarung.
Zimmer 2.051 Kollegiengebäude Mathematik (20.30)
Email: daniel.hug@kit.edu

Studierende und Gäste sind jederzeit herzlich willkommen. Wenn nicht explizit anders unten angegeben, finden alle Vorträge im Seminarraum 2.58 im Mathebau (Gebäude 20.30) statt.

Freitag, 20.10.2017

9.45 Uhr Hermann Thorisson (University of Iceland)

On the modified Palm version

Abstract: The Palm version of a stationary random measure is an important tool in probability. It is however not well known that there are in fact two Palm versions, with related but different interpretations. For lack of better terms, call the well known version standard and the less known version modified. In this talk we shall focus on the modified Palm version and its interpretation using coin tosses as a transparent example. The concepts of shift-coupling and mass-stationarity will play a key role.


Montag, 23.10.2017 (Raum 2.071)

11.30 Uhr Fabian Schaller

Minkowski-functionals.org - the online tool


Freitag, 27.10.2017

9.45 Uhr Daniel Hug

Gaussian triangles and polytopes


Freitag, 3.11.2017

9.45 Uhr Simon Le Stum (Université de Lille 1)

Existence and absence of percolation for outdegree-one random graphs

Abstract: In this talk, we will discuss the existence of Poisson out degree one random graphs obtained like a stopped germs/grains dynamic. We will focus on a stopped line segment dynamic and a stopped Brownian dynamic. We obtain the existence of these two models consequently of a general result of percolation which generalize the Peter Hall famous theorem about subcritical phase in the Poisson boolean model. The second part of the talk concerns the absence of percolation results about some out degree one models built thanks to the existence result. A growing segment dynamic does not percolate if the law which distributes the velocities has a 3-th moment.

This is a joint work with David Dereudre and David Coupier.

Freitag, 10.11.2017

9.45 Uhr Michael Klatt

Hyperuniformity - A Geometric State of Matter

Abstract: Hyperuniformity describes an anomalous suppression of large-scale density fluctuations. It can be found in systems that are isotropic and locally amorphous like a liquid but at the same time macroscopically uniform like a crystal.

This rigorous mathematical characterization of unique geometric and stochastic properties allows for an exploration of new states of matter, which are endowed with unique physical properties.


Dienstag, 21.11.2017 (im Rahmen der AG Stochastik; Raum 2.59)

15.45 Uhr Felix Ballani (Technische Universität Bergakademie Freiberg)

Aspekte der Simulation von Booleschen Modellen und Gaußschen Zufallsfeldern

Freitag, 1.12.2017

9.45 Uhr Problem Session

Freitag, 15.12.2017

9.45 Uhr Vitalii Makogin (Universität Ulm)

Limit theorems for excursion sets of subordinated gaussian random fields with long memory

Dienstag, 16.1.2018 (im Rahmen der AG Stochastik; Raum 2.59)

15.45 Uhr Maria Infusino (Universität Konstanz)

The infinite dimensional moment problem as an approach to realizability

Freitag, 26.1.2018

9.45 Uhr Christoph Hofer-Temmel (NLDA, Den Helder and CWI, Amsterdam)

Disagreement percolation for marked Gibbs point processes

Abstract: Disagreement percolation is a technique to control the effect of differing boundary conditions in a Gibbs specification by a simpler percolation model. In the high temperature regime, the percolation model does not percolate and implies the uniqueness of the Gibbs measure. If the percolation has exponentially decaying connection probabilities, then exponential decay of correlations for the Gibbs measure follows, too. We extend this technique from the discrete case and bounded range interaction simple Gibbs point processes to finite range interaction marked Gibbs point process and general Boolean models. A core building block is a dependent thinning from a Poisson point process to a dominated Gibbs point process within a finite volume, where the thinning probability is related to the derivative of the free energy of the Gibbs point process.

Joint work with Pierre Houdebert (Marseille)


Freitag, 2.2.2018

11.45 Uhr Evgeny Spodarev (Universität Ulm)

Zufallsfelder mit langem Gedächtnis und schweren Tails

(gemeinsam mit R. Kulik)

Abstract: Im ersten Teil des Vortrags geben wir einen Überblick der Konzepte vom langen Gedächtnis für Zufallsprozesse und Felder. Falls sie eine endliche Varianz besitzen, dann besagt eine verbreitete Definition, dass die Zufallsfunktion ein langes Gedächtnis hat, falls ihre Kovarianzfunktion nicht integrierbar ist. Falls jedoch die Varianz unendlich wird, so hängt die Definition des langen Gedächtnisses von der Klasse der betrachteten Prozesse ab (lineare Zeitreihen mit schweren Tails, stabile Prozesse, usw.).

Wir schlagen eine neue Definition vom langen Gedächtnis vor, die für alle stationären zufälligen Funktionen X ohne das endliche 2. Moment gilt. Nämlich, diese Definition macht von der Integrierbarkeit der zentrierten bivariaten Verteilungsfunktion von X Gebrauch, was unmittelbar mit der asymptotischen Kovarianzfunktion der Volumina der Exkursionsmengen von X zu tun hat. Es wird gezeigt, dass diese Definition mit der üblichen (für quadratisch integrierbare Zufallsfunktionen) zusammenfällt. Außerdem wird untersucht, welche Bedeutung und welche Konsequenzen diese neue Definition für untergeordnete Gaußsche Zufallsfelder und für Felder mit zufälliger Volatilität mit schweren Tails haben.

Es wird ein Grenzwertsatz für Funktionale von Feldern mit zufälliger Volatilität, langem Gedächtnis und schweren Tails bewiesen, der ein gemischtes Gauß/Rosenblatt-Grenzwertverhalten aufzeigt. Als Spezialfall folgt ein Grenzwertsatz für das Volumen von Exkursionsmengen von X. Er belegt, dass das Volumen von Exkursionsmengen die richtige Statistik ist, die mit langem Gedächtnis von Feldern mit schweren Tails in Verbindung gebracht werden soll.

Literatur:
1. R. Kulik, E. Spodarev "Long range dependence of heavy tailed random functions", Preprint, arXiv:1706.00742v1, 2017.

Freitag, 23.2.2018

11.00 Uhr Bodo Wilts (Universität Fribourg, Schweiz)

A tale of white and color: complex photonics of biological photonic structures

Abstract: Nature produces structural colours with a staggeringly diverse set of complex nanostructures, most often encountered in the wings of butterflies and beetles and the feathers of birds. The arrangement of materials in these structures reach an astonishing precision and is accurately reproduced within many individuals to a level that easily surpasses lab-based structures. The biological world has optimized such photonic structures in fish scales, bird feathers and insect wings. By changing the dimensions of such nanostructures or the amount of order and disorder in these systems, these diverse nanostructures allow manipulation of incident electromagnetic radiation so to achieve colors that extend over the entire visible wavelength range and that are employed in courtship or to escape predation risk by camouflage.
Here, I will present the optical properties of different topologies of biological photonics structures, what we know about the development of these functional nanostructures, and hypothesize about the formation pathway in the case of gyroid-structured photonic crystals in a butterfly.