Home | english  |  Impressum  |  Datenschutz  |  Sitemap  |  Intranet  |  KIT
Institut für Stochastik

Sekretariat
Kollegiengebäude Mathematik (20.30)
Zimmer 2.056 und 2.002

Adresse
Hausadresse:
Karlsruher Institut für Technologie (KIT)
Institut für Stochastik
Englerstr. 2
D-76131 Karlsruhe

Postadresse:
Karlsruher Institut für Technologie (KIT)
Institut für Stochastik
Postfach 6980
D-76049 Karlsruhe

Öffnungszeiten:
Mo-Fr 10:00 - 12:00

Tel.: 0721 608 43270/43265

Fax.: 0721 608 46066

Finanzmathematik in stetiger Zeit (Sommersemester 2019)

Dozent: Prof. Dr. Nicole Bäuerle
Veranstaltungen: Vorlesung (0159400), Übung (0159500)
Semesterwochenstunden: 4+2


Erste Vorlesung am 24.04.2019 statt den Übungen.

Termine
Vorlesung: Donnerstag 9:45-11:15 SR 0.014 Beginn: 25.4.2019, Ende: 25.7.2019
Montag 9:45-11:15 SR 2.59
Übung: Mittwoch 14:00-15:30 SR 2.59 Beginn: 24.4.2019, Ende: 24.7.2019
Dozenten
Dozentin Prof. Dr. Nicole Bäuerle
Sprechstunde: nach Vereinbarung.
Zimmer 2.016 Kollegiengebäude Mathematik (20.30)
Email: nicole.baeuerle@kit.edu
Übungsleiter Alexander Glauner , M.Sc.
Sprechstunde: nach Vereinbarung
Zimmer 2.007 Kollegiengebäude Mathematik (20.30)
Email: alexander.glauner@kit.edu

Inhalt

Die Vorlesung behandelt verschiedene zentrale Themen der Finanzmathematik in stetiger Zeit.

Der erste Teil der Vorlesung besteht aus einer Einführung in die stochastische Analysis. Dabei wird zuerst die Brownsche Bewegung eingeführt und wichtige Resultate aus der Martingaltheorie besprochen. Im Anschluss wird das stochastische Integral hergeleitet und dessen zentrale Bedeutung in der Finanzmathematik dargestellt.

Im zweiten Teil der Vorlesung wird der Schwerpunkt auf der Analyse des Black-Scholes-Finanzmarktes liegen. Hier wird der Aktienpreis durch eine geometrische Brownsche Bewegung beschrieben. Es wird gezeigt, wie in einem solchen Markt Optionen bewertet werden und gehedgt werden können. Dabei werden entsprechende Fundamentalsätze für den Black-Scholes-Markt formuliert, die Zusammenhänge zwischen Arbitragefreiheit, äquivalenten Martingalmaßen und Vollständigkeit herstellen. Abschließend werden Portfolio-Optimierungsprobleme und Zinsstrukturmodelle behandelt.

Informationen und Materialien zu Vorlesung und Übung finden Sie im ILIAS-Kurs zu dieser Veranstaltung.


Voraussetzungen

Die Vorlesung setzt Kenntnisse im Umfang der Vorlesung "Wahrscheinlichkeitstheorie" voraus. Die Vorlesung "Finanzmathematik in diskreter Zeit" ist hilfreich wird aber nicht vorausgesetzt.


Prüfung

Mündliche Prüfungen am Ende des Semesters.


Literaturhinweise

  • Bingham & Kiesel (2004). Risk-Neutral Valuation: Pricing and Hedging of Financial Derivatives. Springer.
  • Delbaen & Schachermayer (2006). The Mathematics of Arbitrage. Springer.
  • Jeanblanc, M., Yor M. & M. Chesney (2009). Mathematical Methods for Financial Markets. Springer.
  • Karatzas & Shreve (2000). Brownian Motion and Stochastic Calculus. Springer.
  • Karatzas & Shreve (1998). Methods of Mathematical Finance. Springer.
  • Klebaner, F.C. (2005). Introduction to stochastic calculus with applications. Imperial College Press.
  • Korn & Korn (2009). Optionsbewertung und Portfolio-Optimierung. Vieweg+Teubner.
  • Musiela & Rutkowski (2005). Martingale Methods in Financial Modelling. Springer.
  • Øksendal (2000). Stochastic Differential Equations. Springer.
  • Protter (2005). Stochastic Integration and Differential Equations. Springer.
  • Revuz & Yor (2005). Continuous Martingales and Brownian Motion. Springer.
  • Rogers & Williams (2000). Diffusions, Markov Processes and Martingales. (Volume 1 + 2) Cambridge University Press.
  • Schilling & Partzsch (2012). Brownian motion. An introduction to stochastic processes. De Gruyter.
  • Shreve (2004). Stochastic Calculus for Finance II. Springer.
  • Steele, M. (2001). Stochastic calculus and financial applications. Springer.