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Abstract In this paper we consider Markov-modulated diffusion risk reserve processes.
Using diffusion approximation we show the relation to classical Markov-modulated risk
reserve processes. In particular we derive a representation for the adjustment coefficient
and prove some comparison results. Among others we show that increasing the volatility
of the diffusion increases the probability of ruin.
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1 Introduction

A key topic of risk theory still is the probability of ruin of a risk reserve process. This
process is a simple mathematical model for the differences of assets and liabilities of an
insurance company. Good references to such models are Asmussen (2000) and Rolski et al.
(1999). In this paper we investigate Markov-modulated diffusion risk reserve processes.
These models are given by equation (1) below. They extend Asmussen (1989) where a
classical risk process in a Markovian environment has been investigated without diffusion.
In Schmidli (1995) among others, the author considers such a Markov-modulated risk
model where a diffusion is added. In contrast to this model, in our case it is possible that
all data, including the premium rate and the volatility of the diffusion depends on the
external Markov chain. The aim of this paper is to show that by continuity properties
interesting data of the Markov-modulated diffusion risk model can be approximated by
the respective data of a classical Markov-modulated risk model.
The paper is organized as follows: After introducing the model in Section 2 we derive the
adjustment coefficient of such a risk reserve process in Section 3. Here a similar result
has been obtained by Schmidli (1995), however our model is slightly different and we also
give a different representation of the adjustment coefficient which is more convenient for
our purpose. Whereas Schmidli (1995) uses a change of measure technique we essentially
follow the paper by Björk and Grandell (1988). In Section 4 we derive a diffusion ap-
proximation for classical Markov-modulated risk reserve processes. The idea is that a
Markov-modulated diffusion risk model can be seen as an approximation of a classical
Markov-modulated risk model with small and frequent claims. Taking the appropriate
limit we are able to carry over results which are already known to the diffusion case. In
particular we show that the adjustment coefficients of a classical properly scaled sequence
of risk models converge to the adjustment coefficient computed in Section 3. The diffusion
approximation is also used in Section 5 to derive some comparison results for these models.
We show that increasing the volatility of a diffusion risk model increases the probability
of ruin and averaging the system parameters reduces the risk.



2 The Model

We consider a diffusion risk reserve process where the underlying data changes according
to a continuous-time Markov chain with finite state space. More precisely, we denote by
J = {Jt, t ≥ 0} an irreducible continuous-time Markov chain with finite state space E =
{1, . . . , d} and intensities qij . If not stated otherwise, the distribution of J0 is arbitrary.
Jt can be interpreted as the general economic conditions which are present at time t. Jt

influences the premium rate, the arrival intensity of claims, the claim size distribution
and the volatility of the diffusion process as follows: the premium income rate at time
t is cJt , i.e. as long as Jt = i we have a linear income stream at rate ci. Claim arrivals
are according to a Poisson-process with rate λJt . Thus, N = {Nt, t ≥ 0} is a Markov-
modulated Poisson-process. A claim Uk which occurs at time t has distribution QJt , where
Qi is some distribution concentrated on (0,∞) for i ∈ E. As usual claim sizes U1, U2, . . .
are assumed to be conditionally independent given J and µi is the finite expectation of
Qi, for i ∈ E. The volatility of the diffusion at time t is given by σJt . If u ≥ 0 denotes the
initial risk reserve, and W = {Wt, t ≥ 0} is a standard Brownian motion, the Markov-
modulated diffusion risk reserve process {Xt, t ≥ 0} is given by

Xt = u+
∫ t

0
cJsds−

Nt∑
k=1

Uk +
∫ t

0
σJsdWs. (1)

In what follows we will only be interested in ruin probabilities for this model, i.e. we are
only interested in the question whether the trajectories of X stay above 0 or not. By
applying the time change X̂t := XT (t) with T (t) :=

∫ t
0

1
cJs

ds the structure of the model
does not change and we can w.l.o.g. assume that c(·) ≡ 1. Thus, in our paper we suppose
that

Xt = u+ t−
Nt∑

k=1

Uk +
∫ t

0
σJsdWs. (2)

The probability of ruin in infinite time is then for u ≥ 0 defined by

ψ(u) = P

(
inf
t≥0

Xt < 0 | X0 = u

)
.

If τ := inf{t ≥ 0 | Xt < 0} is the time of ruin, then obviously ψ(u) = P (τ <∞ | X0 = u).
If we denote by π = (πi)i∈E the stationary distribution of J (which exists and is unique
since J is irreducible and has a finite state space) and define ρ := 1 −

∑
i∈E πiλiµi. ρ is

the difference between the premium income in one time unit and the expected payout in
one time unit. We obtain:

Lemma 1. Suppose ρ ≤ 0. Then for all u ≥ 0 it holds that

ψ(u) = 1.

The proof of this statement is omitted since it is standard. For the remaining sections we
assume that ρ > 0, i.e. we have a positive safety loading.

3 The Adjustment Coefficient

In this section we impose some further conditions on our data. In order to obtain the
adjustment coefficient we assume that the moment generating functions of the claim size
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distributions are finite near zero, i.e. for every i ∈ E there exists a (possibly infinite)
constant r(i)∞ ∈ (0,∞] such that for r ≥ 0

hi(r) :=
∫ ∞

0
erx dQi(x)− 1 <∞

for every r < r
(i)
∞ with hi(r) → ∞ as r → r

(i)
∞ . Thus, the tail of the distribution Qi

decreases at least exponentially fast. This case is sometimes called the small claim case
in contrast to models with heavy claim size distributions. Our aim is to find a constant
R > 0 such that for all ε > 0:

lim
u→∞

ψ(u)e(R−ε)u = 0 (3)

lim
u→∞

ψ(u)e(R+ε)u = ∞. (4)

R is then called the adjustment coefficient. There are different methods available for
obtaining the adjustment coefficient (see e.g. Rolski et al. (1999)). We use the so-called
martingale method. For the next result we denote by FX = {FX

t , t ≥ 0} the natural
filtration of the risk reserve process and by FJ = {FJ

t , t ≥ 0} the natural filtration of the
environment process. Finally we define F = {Ft, t ≥ 0} by Ft := FX

t ∨FJ
∞. This means in

particular that Jt is F0-measurable. Moreover, we define the time which the environment
process J spends in some state i ∈ E until time t ≥ 0 by ξi(t), i.e. ξi(t) :=

∫ t
0 δ{i}(Js) ds.

Lemma 2. Let u, r ≥ 0 be arbitrary but fixed. Then the process M = {Mt, t ≥ 0} defined
by

Mt :=
exp(−rXt)

exp
(∑

i∈E

[
λihi(r) + 1

2r
2σ2

i − r
]
ξi(t)

)
is an F-martingale.

Proof. By EF
J
∞ we denote the conditional expectation given FJ

∞. W 1, . . . ,W d are d in-
dependent Brownian motions and N1, . . . , Nd are independent Poisson processes with
intensities λ1, . . . , λd respectively. The random variables U i

k have distribution Qi and are
all independent. It is straightforward to compute

EF
J
∞
(

exp
(
− r

∑
i∈E

σiW
i
ξi(t)

))
=
∏
i∈E

EF
J
∞
(

exp
(
− rσiW

i
ξi(t)

))
=
∏
i∈E

exp
(r2σ2

i

2
ξi(t)

)
and

EF
J
∞
(

exp
(
r
∑
i∈E

N i
ξi(t)∑

k=1

U i
k

))
=
∏
i∈E

EF
J
∞
(

exp
(
r

N i
ξi(t)∑

k=1

U i
k

))
=
∏
i∈E

∞∑
m=0

EF
J
∞
(
er

Pm
k=1 U i

k

)
PF

J
∞
(
N i

ξi(t)
= m

)
=
∏
i∈E

∞∑
m=0

(
1 + hi(r)

)m
e−λiξi(t)

(λiξi(t))m

m!

=
∏
i∈E

eλihi(r)ξi(t) = exp
(∑

i∈E

λi hi(r) ξi(t)
)
.
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Using these results, we obtain

E
[
Mt

∣∣Fs

]
= Ms · EF

J
∞

[exp
(
− r

∑
i∈E σi(W i

ξi(t)
−W i

ξi(s)
) + r

∑
i∈E

∑N i
ξi(t)

k=N i
ξi(s)+1

U i
k

)
exp

(∑
i∈E

(
λihi(r) + 1

2r
2σ2

i

)(
ξi(t)− ξi(s)

))
∣∣∣∣∣FX

s

]

= Ms ·
EF

J
∞
(

exp
(
− r

∑
i∈E σiW

i
ξi(t)−ξi(s)

))
exp

(∑
i∈E

r2σ2
i

2

(
ξi(t)− ξi(s)

)) EF
J
∞
(

exp
(
r
∑

i∈E

∑N i
ξi(t)−ξi(s)

k=1 U i
k

))
exp

(∑
i∈E λihi(r)

(
ξi(t)− ξi(s)

)) = Ms

for 0 ≤ s ≤ t. Since EMt <∞ for all t ≥ 0 the statement follows.

Exploiting the martingale property we immediately derive the following inequality:

Lemma 3. Let r > 0 be fixed. Then

ψ(u) ≤ e−ruC(r)

for all u ≥ 0 where

C(r) := E

(
sup
t≥0

exp

(∑
i∈E

[
λihi(r) +

r2σ2
i

2
− r

]
ξi(t)

))
.

Proof. Define by M̃t := Mt∧τ the process stopped at the time of ruin. M̃ is also an
F-martingale. For r > 0 and u ≥ 0 it therefore follows that

e−ru = M̃0 = E
[
M̃t

∣∣∣F0

]
= EF

J
∞
(
M̃t

)
≥ EF

J
∞
[
Mτ

∣∣∣τ ≤ t
]
PF

J
∞(τ ≤ t)

= EF
J
∞

[
exp (−rXτ )

exp
(∑

i∈E

[
λihi(r) + r2σ2

i
2 − r

]
ξi(τ)

)∣∣∣∣∣τ ≤ t

]
· PFJ

∞(τ ≤ t)

≥ PF
J
∞(τ ≤ t)

sup0≤v≤t exp
(∑

i∈E

[
λihi(r) + r2σ2

i
2 − r

]
ξi(v)

)
and hence

PF
J
∞(τ ≤ t) ≤ e−ru sup

0≤v≤t
exp

(∑
i∈E

[
λihi(r) +

r2σ2
i

2
− r

]
ξi(v)

)
.

Letting t→∞ and taking the expectation on both sides we obtain

ψ(u) = P (τ <∞) ≤ e−ruC(r).

To get a good bound we have to choose r > 0 as large as possible while C(r) < ∞. The
way to find such a maximizing r > 0 is similar to what Björk and Grandell (1988) do for
the ordinary Cox model. Let the time epoch of the nth entry of the environment process
to state j ∈ E be denoted by τ

(j)
n where τ (j)

0 ≡ 0. We put τ (j) := τ
(j)
1 . For j, k ∈ E we

now have to consider the function θkj defined by

θkj(r) := Ek

(
exp

(∑
i∈E

[
λihi(r) +

r2σ2
i

2
− r

]
ξi(τ (j))

))
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where r ≥ 0 and Ek is the expectation, given J0 = k. Using these functions we are able
to state a necessary condition for C(r) being finite.

Lemma 4. Let r > 0 be fixed. Then C(r) <∞ implies θjj(r) < 1 for all j ∈ E.

The proof is rather technical and can be found in the appendix. Let us now define

R = sup
{
r > 0 | θjj(r) < 1 ∀j ∈ E

}
. (5)

R will be the adjustment coefficient. We can now show

Lemma 5. Suppose that R defined by (5) exists. For 0 < r < R we have C(r) <∞.

The proof can again be found in the Appendix. The so-called Lundberg inequality now
follows directly form Lemma 3:

Theorem 6 (Lundberg-inequality). Suppose that R defined by (5) exists. For any r < R
we have

ψ(u) ≤ e−ruC(r)

with C(r) <∞ for all u ≥ 0.

The Lundberg-inequality now immediately implies the convergence result (3).

Corollary 7. Suppose that R defined by (5) exists. For any ε > 0 we obtain

lim
u→∞

ψ(u)e(R−ε)u = 0.

In order to obtain the second convergence result (4) we need a little bit stronger assump-
tion.

Theorem 8. Suppose that R defined by (5) exists and that there is a δ > 0 such that
θjj(R+ δ) <∞ for all j ∈ E. For any ε > 0 we obtain

lim
u→∞

ψ(u)e(R+ε)u = ∞.

Proof. If we denote by

ψj(u) = P

(
inf
t≥0

Xt < 0 | X0 = u, J0 = j

)
then ψ(u) =

∑
j∈E P (J0 = j)ψj(u) and it suffices to show that limu→∞ ψj(u)e(R+ε)u = ∞

for some j ∈ E with P (J0 = j) > 0.
Since θjj is convex and therefore continuous on the interior of its domain it follows from
our assumption and the definition of R in (5) that θjj(R) = 1 for this j ∈ E (it can indeed
be shown that if θjj(R) = 1 for one j ∈ E, then the equation is satisfied for all j ∈ E).
Define Yt := Xt − u. It is not difficult to see that

θjj(r) = Ej

(
e−rY

τ(j)

)
.
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Moreover,
(
Y

τ
(j)
n

)
n∈IN

is a random walk under the assumption that J0 = j. The ruin
probability of this random walk is defined by

ψrw
j (u) = P

(
inf

n∈IN
Y

τ
(j)
n
< −u | J0 = j

)
.

It is obvious that ψrw
j (u) ≤ ψj(u) for all u ≥ 0. Note that the distribution of Yτ (j) , i.e. the

distribution of the generic random variable for the steps, is clearly non-lattice. Thus, it
follows from Theorem 6.5.7 and the associated remark in Rolski et al. (1999), p. 258, that

lim
u→∞

ψrw
j (u)
e−Ru

= C̃

for some constant C̃ > 0. We therefore get

lim
u→∞

ψj(u)
e−(R+ε)u

≥ lim
u→∞

ψrw
j (u)

e−(R+ε)u
= ∞

for all ε > 0.

4 Diffusion Approximation

In principle the structure of the diffusion risk model differs from the classical risk model
where trajectories are linear with jumps. However, it is well-known that a diffusion arises
as a limit from properly scaled classical risk processes. This means, the diffusion can be
approximately interpreted as a risk process with very small and frequent claims. Our hope
is to carry over results form the classical model to the diffusion model by taking limits.
This idea has also been exploited by Sarkar and Sen (2005). In order to work this idea
out we have to establish a limit result for the Markov-modulated model. Since we have
not found such a statement in the literature we give a proof below. But first let us recall
the diffusion approximation for the classical risk model (this can be found e.g. in Grandell
(1977), Grandell (1978)). Suppose N0 = {N0

t , t ≥ 0} is a Poisson process with intensity 1.
Let Ũ1, Ũ2, . . . be a sequence of independent and identically distributed random variables
with finite expectation EŨ = µ̃ and finite variance V ar(Ũ) = s̃2. Now define for n ∈ IN
the (martingale) processes

M
(n)
t :=

1√
n

µ̃nt− N0
tn∑

k=1

Ũk

 .

Then with n→∞ we obtain
M (n) ⇒ σW

where ⇒ denotes weak convergence with respect to the Skorohod topology and σ2 =(
µ̃2 + s̃2

)
. W is as in Section 2 a standard Brownian motion. Moreover, the ruin prob-

abilities of the M (n) processes converge to the ruin probability of σW . For the Markov-
modulated model we suppose that when the claim Ũk occurs at time t it has distribution
Q̃Jt . All distributions Q̃1, . . . , Q̃d have the same finite expectation µ̃ and finite variances
s̃2i =

∫
(x− µ̃)2Qi(dx), i = 1, . . . , d. We choose µ̃, s̃2i , . . . , s̃

2
d such that σ2

i = µ̃2 + s̃2i where
σi are given as in Section 2. We set

X
(n)
t := u+ t−

Nt∑
k=1

Uk +
1√
n

µ̃nt− N0
tn∑

k=1

Ũk

 . (6)
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We can think of (6) as a classical Markov-modulated Cramér-Lundberg model as follows:

X
(n)
t

d= u+ t(1 + µ̃
√
n)−

N̂t∑
k=1

Ûk

where N̂ is a Markov-modulated Poisson-process with intensities λ1+n, . . . , λd+n. If Jt = i

and the claim Ûk appears at time t, then it has the distribution Q̂
(n)
i (x) = λi

λi+nQi(x) +
n

λi+nQ̃i(
√
nx). The ruin probability for the approximating sequence is given by

ψ(n)(u) = P

(
inf
t≥0

X
(n)
t < 0 | X(n)

0 = u

)
.

In what follows, the process X is the diffusion risk reserve process given in equation (2).

Theorem 9. Suppose the processes X(n), n ∈ IN and X are given. Then

a) X(n) ⇒ X.

b) limn→∞ ψ(n)(u) = ψ(u) for all u ≥ 0.

Proof. a) It holds that

X
(n)
t = u+ t−

Nt∑
k=1

Uk +
1√
n

µ̃nt−∑
i∈E

N0
ξi(t)n∑
k=1

Ũ i
k

 .

where the random variables Ũ i
k are independent and identically distributed and have

distribution Q̃i. It follows from the d-dimensional Donsker FCLT (see e.g. Whitt
(2002) Theorem 4.3.5) that({ 1√

n

(
µ̃nt−

N0
tn∑

k=1

Ũ i
k

)
, t ≥ 0

}
, i ∈ E

)
⇒
( {
σiW

i
t , t ≥ 0

}
, i ∈ E

)
with σ2

i = µ̃2 + s̃2i and W 1, . . . ,W d are independent standard Brownian motions.
Indeed, in order to apply the Donsker FCLT to the compound Poisson process, a
number of arguments are necessary but they are standard, so we skip them here. For
details of this procedure see e.g. Bäuerle (2004). Applying the time transformation
t 7→ ξi(t) we obtain

({ 1√
n

(
µ̃nξi(t)−

N0
ξi(t)n∑
k=1

Ũ i
k

)
, t ≥ 0

}
, i ∈ E

)
⇒
({
σiW

i
ξi(t)

, t ≥ 0
}
, i ∈ E

)
Adding up these processes it follows from the continuous mapping theorem that

{ 1√
n

(
µ̃nt−

∑
i∈E

N0
ξi(t)n∑
k=1

Ũ i
k

)
, t ≥ 0

}
⇒

{∑
i∈E

σiW
i
ξi(t)

, t ≥ 0

}
d=
{∫ t

0
σJsdWs, t ≥ 0

}
and the statement follows.
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b) Note that

ψ(n)(u) = P

(
inf
t≥0

X
(n)
t + u < 0 | X(n)

0 = 0
)

= P

(
sup
t≥0

−X(n)
t − u > 0 | X(n)

0 = 0
)
.

Thus, it suffices to show that supt≥0−X
(n)
t ⇒ supt≥0−Xt. This follows from part

a) if we can show that

lim
k→∞

lim sup
n→∞

P

(
sup
t≥k

−X(n)
t > 0 | X(n)

0 = 0

)
= 0

(see e.g. Grandell (1977), Grandell (1978) or Billingsley (1999)). This statement
will now be shown in the remaining part of this proof. We start by observing the
following: From the Ergodic Theorem for Markov chains we know that

lim
t→∞

1
t
ξi(t) = lim

t→∞

1
t

∫ t

0
δ{i}(Js)ds = πi a.s.

and consequently

lim
t→∞

1
t

(
t−
∑
i∈E

λiµiξi(t)
)

= ρ a.s.

Thus, we obtain in particular for

Ak :=
{
t−
∑
i∈E

λiµiξi(t) ≥
ρ

2
t, ∀t ≥ k

}
that limk→∞ P (Ak) = 1. Next let us define

Y
(n)
t :=

Nt∑
k=1

Uk −
∫ t

0
λJsµJsds+

1√
n

( N0
tn∑

k=1

Ũk − µ̃nt
)
.

Then

P

(
sup
t≥k

−X(n)
t > 0 | X(n)

0 = 0

)
= P

(
sup
t≥k

Y
(n)
t − (t−

∑
i∈E

λiµiξi(t)) > 0

)
≤ P

({
sup
t≥k

Y
(n)
t − (t−

∑
i∈E

λiµiξi(t)) > 0
}
∩Ak

)
+ 1− P (Ak)

≤ P
({

sup
t≥k

Y
(n)
t − ρ

2
t > 0

}
∩Ak

)
+ 1− P (Ak)

= E
(
IAk

PF
J
∞
(
sup
t≥k

Y
(n)
t − ρ

2
t > 0

))
+ 1− P (Ak)

As done in Grandell (1978) we intend to use the Hájek-Rényi inequality to bound
this probability. We use the version given in Frank (1966) Theorem 2. Thus, for any
h ∈ (0, 1) we obtain:

PF
J
∞
(

sup
j≥b k

h
c+1

Y
(n)
jh − ρ

2
jh > 0

)
= PF

J
∞
(

sup
j≥b k

h
c+1

Y
(n)
jh

ρ
2jh

> 1
)

≤ PF
J
∞
(

sup
j≥b k

h
c+1

∣∣∣∣∣∣Y
(n)
jh

ρ
2jh

∣∣∣∣∣∣ > 1
)
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In order to apply the Hájek-Rényi inequality, note that the sequence Xj := Y
(n)
jh −

Y
(n)
(j−1)h satisfies

EF
J
∞(Xj | Xj−1, . . . , X1) = 0

and that a simple but lengthy calculation gives

σ2
j := EF

J
∞(X2

j ) = EF
J
∞
( Njh∑

k=N(j−1)h+1

Uk −
∫ jh

(j−1)h
λJsµJsds

)2

+EF
J
∞
( N0

jhn∑
k=N0

(j−1)hn
+1

Ũk√
n
−
√
nµ̃h

)2

=
∑
i∈E

λiE
(
(U i)2

)(
ξi(jh)− ξi((j − 1)h)

)
+
∑
i∈E

E
(
(Ũ i)2

)(
ξi(jh)− ξi((j − 1)h)

)
≤ h

(
max
i∈E

λiE
(
(U i)2

)
+ max

i∈E
E
(
(Ũ i)2

))
=: hC.

Applying the Hájek-Rényi inequality we obtain

PF
J
∞
(

sup
j≥b k

h
c+1

∣∣∣∣∣∣Y
(n)
jh

ρ
2jh

∣∣∣∣∣∣ > 1
)
≤
(⌊k
h

⌋
h
ρ

2

)−2
b k

h
c∑

j=1

Ch+
∞∑

j=b k
h
c+1

(
jh
ρ

2
)−2

Ch

=
4C
ρ2

 1
b k

hch
+

1
h

∞∑
j=b k

h
c+1

1
j2

 ≤ 4C
ρ2

2
b k

hch
≤ 8C

(k − 1)ρ2
.

Since this bound is independent of h ∈ (0, 1) and n ∈ IN it follows that

PF
J
∞
(

sup
t≥k+1

Y
(n)
t − ρ

2
t > 0

)
≤ 8C

(k − 1)ρ2
.

Hence plugging all things together, it follows that

lim
k→∞

lim sup
n→∞

P
(

sup
t≥k

−X(n)
t > 0 | X(n)

0 = 0
)

≤ lim
k→∞

lim sup
n→∞

E
(
IAk

PF
J
∞
(
sup
t≥k

−X(n)
t > 0 | X(n)

0 = 0
))

≤ lim
k→∞

8C
(k − 2)ρ2

E(IAk
) = 0

which finally implies the statement.

From Theorem 9 it should follow that the sequence of adjustment coefficients (R(n))n∈IN

belonging to the risk processes (X(n))n∈IN as defined in equation (6) converges to the
adjustment coefficient R given in equation (5). This can be seen directly by showing that
θ
(n)
jj (r) → θjj(r) for n → ∞. It follows from Björk and Grandell (1988) that for the

classical Markov-modulated risk model

θ
(n)
jj := Ej

(
exp

(∑
i∈E

[
(λi + n)ĥ(n)

i (r)− r(1 + µ̃
√
n)
]
ξi(τ (j))

))

9



where

ĥ
(n)
i (r) =

λi

λi + n
E(erU i

) +
n

λi + n
E(er

Ũi
√

n )− 1

=
λi

λi + n
hi(r) +

n

λi + n

(
E(er

Ũi
√

n )− 1
)
.

Moreover, using a Taylor series expansion we get

(λi + n)ĥ(n)
i (r)− r(1 + µ̃

√
n) = λihi(r) + n

(
E(er

Ũi
√

n )− 1
)
− r(1 + µ̃

√
n)

= λihi(r) +
√
nrµ̃+

r2

2
E
(
(Ũ i)2

)
+O

( 1√
n

)
− r − rµ̃

√
n

→ λihi(r) +
r2

2
σ2

i − r

for n→∞ which yields R(n) → R. Hence, instead of computing the adjustment coefficient
in the diffusion risk model it is possible to approximately compute it in the classical model
sufficiently close to the limit.

5 Comparison Results

We use our findings from the previous sections to obtain some comparison results between
diffusion risk models. Before we start we need a further notion form stochastic orderings
(for a survey of stochastic orderings we refer the reader to Müller and Stoyan (2002)).

Definition 10. For given random variables X and Y we define the order relation X ≤cx Y
if Ef(X) ≤ Ef(Y ) for all convex functions f : IR→ IR for which the expectations exist.

Note that X ≤cx Y implies in particular that the expectations of X and Y are the same.
For actuarial applications it is important to keep in mind that X ≤cx Y is equivalent to
E(X) = E(Y ) and E(max{X − t, 0}) ≤ E(max{Y − t, 0}) an ordering of the stopp-loss
premiums for all t ∈ IR.

5.1 Increasing the Volatility of the Diffusion

In this subsection we look at the special case d = 1, i.e. we have no Markov-modulation.
Suppose we have two diffusion risk processes X and X ′ given as in equation (2) where the
process X ′ has higher volatility. More precisely we suppose that all data for the processes
are the same except however for the diffusion volatility. I.e.

Xt = u+ t−
Nt∑

k=1

Uk + σWt.

X ′
t = u+ t−

Nt∑
k=1

Uk + σ′Wt.

We suppose that σ ≤ σ′. Thus, the expectations of Xt and X ′
t coincide but the process

X ′ has a higher variability. By ψ′(u) we denote the ruin probability of the X ′ process.
We can now prove that an increase in the volatility of the diffusion implies a higher risk
in terms of an increase in the probability of ruin.

10



Theorem 11. Suppose that two diffusion risk reserve processes X and X ′ are given as
defined with d = 1. Then for all u ≥ 0 we get

ψ(u) ≤ ψ′(u).

Proof. Let d = 1. Besides X(n) defined in equation (6) we need

X ′(n)
t := u+ t−

Nt∑
k=1

Uk +
1√
n

µ̃nt− N0
tn∑

k=1

Ũ ′k


where Ũ ′1, Ũ

′
2, . . . are independent and identically distributed with V ar(Ũ ′) = (s̃′)2, (σ′)2 =

µ̃2 + (s̃′)2 and Ũ ′ ≥cx U (thus µ̃ is both the expectation of Ũ and U). As mentioned at
the beginning of Section 4 we can think of (6) as a classical Cramér-Lundberg model. In
particular in the case d = 1 we obtain for X(n) and X ′(n):

X
(n)
t = u+ t(1 + µ̃

√
n)−

N̂t∑
k=1

1√
n
Ûk

X ′(n)
t = u+ t(1 + µ̃

√
n)−

N̂t∑
k=1

1√
n
Û ′k

where N̂ is a Poisson-process with intensity λ+ n, Û1, Û2, . . . and Û ′1, Û
′
2, . . . are indepen-

dent and identically distributed with distribution λ
λ+nQ(x)+ n

λ+nQ̃(
√
nx) and λ

λ+nQ(x)+
n

λ+nQ̃
′(
√
nx) respectively. Alternatively, if I1, I2, . . . is a sequence of independent and

identically distributed random variables with

P (I = 1) =
λ

λ+ n
= 1− P (I = 0)

then
Ûk

d= IkUk + (1− Ik)
1√
n
Ũk

and analogously for Û ′k. From this representation it follows easily that Û ≤cx Û
′. By ψ′(n)

we denote the ruin probability of the process X ′(n). Thus, it follows for example from
Theorem 6.3.5 a) in Müller and Stoyan (2002) that for all u ≥ 0:

ψ(n)(u) ≤ ψ′(n)(u).

Since

{X(n)
t , t ≥ 0} ⇒

{
u+ t−

Nt∑
k=1

Uk + σWt, t ≥ 0
}

{X ′(n)
t , t ≥ 0} ⇒

{
u+ t−

Nt∑
k=1

Uk + σ′Wt, t ≥ 0
}

the statement follows from Theorem 9.b).

11



5.2 Comparison to average diffusion risk models

Now we compare the diffusion risk process to one where the parameters depending on the
Markov chain are replaced by their average value. This is a classical question. However
to the best of our knowledge this has not been investigated so far for the diffusion risk
model. Now let the process X∗ be defined by

X∗
t = u+ t−

N∗t∑
k=1

U∗k + σ∗Wt

whereN∗ = {N∗
t , t ≥ 0} is a Poisson process with intensity λ∗ =

∑d
i=1 πiλi, the claim sizes

U∗1 , U
∗
2 , . . . are independent and identically distributed with distribution Q∗ =

∑d
i=1

πiλi
λ∗ Qi

and the diffusion volatility is (σ∗)2 =
∑d

i=1 πiσ
2
i . The ruin probability of the star-process

is given by

ψ∗(u) = P

(
inf
t≥0

X∗
t < 0 | X∗

0 = u

)
and we denote by R∗ the corresponding adjustment coefficient whenever it exists. Note
that in X∗ the claim intensity, the claim size distribution and the volatility of the diffusion
are replaced by their average values.

Theorem 12. Suppose that X and X∗ are given and the adjustment coefficients R and
R∗ exist. Then we get

R∗ ≥ R.

Remark 13. In the special case σ ≡ 0, i.e. no diffusion, Theorem 12 reduces to Theorem
3 in Asmussen and O’Cinneide (2002). Our proof shows that the result in Asmussen
and O’Cinneide (2002) can be derived in a simpler way by a direct comparison of the
adjustment coefficients.

Proof. Note that we get R∗ from the definition of R in (5) in the special case where the
data is the same for all states j ∈ E, i.e.

θ∗(r) := Ej

(
exp

([
λ∗h∗(r) +

r2(σ∗)2

2
− r

]
τ (j)

))
.

θ∗(r) < 1 if and only if λ∗h∗(r) + r2(σ∗)2

2 − r < 0. Thus,

R∗ = sup{r > 0 | λ∗h∗(r) +
r2(σ∗)2

2
− r < 0}.

Next note that

h∗(r) =
∫ ∞

0
erxdQ∗(x)− 1 =

(∑
i∈E

πiλi

λ∗

∫ ∞

0
erxdQi(x)

)
− 1

=
∑
i∈E

πiλi

λ∗
hi(r).

12



From Jensen’s inequality it follows that

θjj(r) ≥ exp

(
Ej

(∑
i∈E

[
λihi(r) +

r2σ2
i

2
− r

]
ξi(τ (j))

))

= exp

(∑
i∈E

[
λihi(r) +

r2σ2
i

2
− r

]
πiEj(τ (j))

)

= exp
([
λ∗h∗(r) +

r2(σ∗)2

2
− r

]
Ej(τ (j))

)
Thus, since Ej(τ (j)) > 0 we have that r ≥ R∗ implies θjj(r) ≥ 1 and thus R∗ ≥ R.

Next we try to compare the ruin probabilities ψ(u) and ψ∗(u) itself. In order to simplify
things we suppose that Qi ≡ Q, i.e. the claim size distribution does not depend on the
environment process J . We need the following further conditions:

1. π̃ = (π̃i, i ∈ E) with

π̃i =
σ2

i πi∑
j∈E σ

2
jπj

is the initial distribution of J .

2. Suppose w.l.o.g. that λ1 ≤ . . . ≤ λd. Then

σ2
i

σ2
j

≥ λi

λj

for i, j ∈ E with i ≤ j.

3. For all j ≤ k and l ≤ j or l > k we have

∑
i≥l

qji <
σ2

j

σ2
k

·
∑
i≥l

qki.

Theorem 14. Under assumptions (1)-(3) we obtain for the ruin probabilities of X and
X∗ respectively for all u ≥ 0:

ψ(u) ≥ ψ∗(u).

Remark 15. In Asmussen et al. (1995) one can find such a comparison result in the
classical case without diffusion, i.e. σi ≡ 0. In the case σi ≡ σ conditions (1)-(3) reduce
to the conditions given in Asmussen et al. (1995).

Proof. We approximate X by the sequence of processes

X
(n)
t := u+ t−

Nt∑
k=1

Uk +
1√
n

µ̃n∫ t

0
λ̃Jsds−

Ñt∑
k=1

Ũk


where Ñ is a Markov-modulated Poisson process with intensities nλ̃1, . . . , nλ̃d and Ũ1, Ũ2, . . .
is a sequence of independent and identically distributed random variables with distribution
Q̃. Q̃ has finite expectation µ̃ and finite variance s̃2 =

∫
(x − µ̃)2Q̃(dx). The parameters

13



are chosen such that σ2
i = λ̃i(µ̃2 + s̃2). In order to get a risk reserve process with premium

rate 1 we apply the time change T (t) =
∫ t
0 (1 +

√
nµ̃λ̃Js)−1ds as explained in Section 2.

The probability of ruin of X(n) is the same as the probability of ruin of the process

Y
(n)
t := u+ t−

N̂t∑
k=1

Ûk

where N̂ is a Markov-modulated Poisson process with intensities λ1+nλ̃1

1+
√

nµ̃λ̃1
, . . . , λd+nλ̃d

1+
√

nµ̃λ̃d

and if Ûk occurs at time t and Jt = i, then the distribution of Ûk is given by

P (Ûk ≤ x) =
λi

λi + nλ̃i

Q(x) +
nλ̃i

λi + nλ̃i

Q̃(
√
nx).

Note that the time change also changes the environment process J . The new Markov
chain Ĵ (n) has intensities q̂(n)

ij with

q̂
(n)
ij =

qij

1 +
√
nµ̃λ̃i

and new stationary distribution π̃(n) = (π̃(n)
i , i ∈ E) with

π̃
(n)
i =

(1 +
√
nµ̃λ̃i)πi∑

j∈E(1 +
√
nµ̃λ̃j)πj

.

Now we apply Theorem 1.1 in Asmussen et al. (1995). For n large enough their assumptions
are satisfied: First we have to check that Ĵ (n) is stochastically monotone, i.e. that for
0 ≤ s ≤ t, i, j, k ∈ E and i ≤ j

P (Ĵ (n)
t ≤ k | Ĵ (n)

s = j) ≤ P (Ĵ (n)
t ≤ k | Ĵ (n)

s = i).

However, this is equivalent to (see e.g. Müller and Stoyan (2002) Chapter 5)

∑
i≥l

q̂
(n)
ji ≤

∑
i≥l

q̂
(n)
ki ⇐⇒

∑
i≥l

qji ≤
1 +

√
nµ̃λ̃j

1 +
√
nµ̃λ̃k

·
∑
i≥l

qki.

Due to assumption (3) and

1 +
√
nµ̃λ̃j

1 +
√
nµ̃λ̃k

→ λ̃j

λ̃k

=
σ2

j

σ2
k

for n → ∞ this inequality is true. Now suppose λ1 ≤ . . . ≤ λd. We then have to show
that

λj

λj + nλ̃j

Q(x) +
nλ̃j

λj + nλ̃j

Q̃(
√
nx) ≤ λi

λi + nλ̃i

Q(x) +
nλ̃i

λi + nλ̃i

Q̃(
√
nx)

for i ≤ j and all x ≥ 0. Some simple algebra reveals that this is implied by (2). Finally
Ĵ (n) has to start with the stationary distribution π̃(n). An application of Theorem 1.1 in
Asmussen et al. (1995) now gives that for all u ≥ 0

ψ(n)(u) ≥ ψ(n),∗(u)
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where ψ(n),∗(u) is the probability of ruin of the process

Y
(n),∗
t := u+ t−

N̂∗t∑
k=1

Û∗k

where N̂∗ is a Poisson process with intensity
d∑

i=1

π̃
(n)
i

λi + nλ̃i

1 +
√
nµ̃λ̃i

=
λ∗ + nλ̃∗

1 +
√
nµ̃λ̃∗

where λ∗ =
∑

i∈E πiλi and λ̃∗ =
∑

i∈E πiλ̃i. Û∗1 , Û
∗
2 , . . . are independent and identically

distributed with distribution

P (Û∗1 ≤ x) =
λ∗

λ∗ + nλ̃∗
Q(x) +

nλ̃∗

λ∗ + nλ̃∗
Q̃(
√
nx).

Applying once again a time change we see that Y (n),∗ has the same probability of ruin as
X(n),∗ defined by

X
(n),∗
t := u+ t−

N∗t∑
k=1

Uk +
1√
n

µ̃nλ̃∗t− Ñ∗t∑
k=1

Ũk


where Ñ∗ is a Poisson process with intensity nλ̃∗. For n→∞ we obtain with Theorem 9
(note that π̃(n) → π̃ for n→∞ and the result also holds whenever the initial distributions
converge) that ψ(n),∗(u) → ψ∗(u) and ψ(n)(u) → ψ(u) which implies the statement.

6 Appendix

We will first prove Lemma 4.

Lemma 16. Let r > 0 be fixed. C(r) <∞ implies θjj(r) < 1 for all j ∈ E.

Proof. First note that it follows from the properties of a Markov chain that θjj(r) < 1
implies θkj(r) < ∞ for all k ∈ E. Now let r > 0 be fixed. For any given ω ∈ Ω the

function
∑

i∈E

[
λihi(r) + r2σ2

i
2 − r

]
ξi(t) is piecewise linear in t. Hence for C(r), it suffices

to examine this function at the jump times
(
τ

(j)
n

)
n∈N, j ∈ E, of the environment process

J . In order to ease notation we define for n ∈ IN and j ∈ E

Z(j)
n :=

∑
i∈E

[
λihi(r) +

r2σ2
i

2
− r

](
ξi(τ (j)

n )− ξi(τ
(j)
n−1)

)
and

W (j)
n := exp

(∑
i∈E

[
λihi(r) +

r2σ2
i

2
− r

]
ξi(τ (j)

n )

)
=

n∏
m=1

exp
(
Z(j)

m

)
.

We obtain

C(r) = E

(
sup
t≥0

exp

(∑
i∈E

[
λihi(r) +

r2σ2
i

2
− r

]
ξi(t)

))
<∞

⇔ E

(
max
j∈E

sup
n∈IN

W (j)
n

)
<∞

⇔ E

(
sup
n∈IN

W (j)
n

)
<∞ ∀j ∈ E
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where the last equivalence follows since the set E is finite. Without loss of generality
we next assume that J0 = k and consider a fixed j ∈ E. Since the Z(j)

n are mutually
independent for all n ∈ IN and also identically distributed for n ≥ 2 we get

Ek

(
W (j)

n

)
= Ek

(
eZ

(j)
1

) n∏
m=2

Ek

(
eZ

(j)
m

)
= θkj(r)

(
θjj(r)

)n−1
. (7)

Thus, θjj(r) > 1 for at least one j ∈ E would imply Ek(W
(j)
n ) → ∞ as n → ∞ and thus

C(r) = ∞ which contradicts our assumption.
Now suppose that θjj(r) = 1. Recall that the Z(j)

n are independent and identically dis-
tributed for n ≥ 2. (W (j)

n )n∈IN is therefore a martingale with respect to its natural filtra-
tion. Jensen’s inequality yields exp

(
E(Z(j)

n )
)
< E

(
eZ

(j)
n
)

= θjj(r) = 1, i.e. E
(
Z

(j)
n

)
< 0,

for n ≥ 2. From (7) it follows that θkj(r) <∞ and therefore Z(j)
1 <∞ a.s. We thus have

limn→∞
∑n

k=1 Z
(j)
k = −∞ a.s. and consequently limn→∞W

(j)
n = 0 a.s.

We have already shown that C(r) < ∞ implies E(supn∈IN W
(j)
n ) < ∞ which means that

(W (j)
n )n∈IN is uniformly integrable. By standard martingale theory the existence of a

random variable W (j)
∞ with W

(j)
∞ = limn→∞W

(j)
n a.s. and E[W (j)

∞ |W (j)
n ] = W

(j)
n for all

n ∈ IN follows. Knowing that limn→∞W
(j)
n = 0 a.s. we conclude that W (j)

∞ = 0 a.s. and
accordingly W (j)

n = 0 a.s. for all n ∈ IN in contradiction to e.g. W (j)
2 > 0 a.s. Hence, we

must have θjj(r) < 1 for all j ∈ E.

Next, Lemma 5 is shown in two parts. We define for r ≥ 0, δ ≥ 0 and j, k ∈ E

θkj(r, δ) := Ek

(
exp

(
(1 + δ)

∑
i∈E

[
λihi(r) +

r2σ2
i

2
− r

]
ξi(τ (j))

))
= Ek

(
(W (j)

1 )1+δ
)
.

Note that θkj(r, 0) = θkj(r). Using these functions we can give a sufficient condition for
C(r) <∞ .

Lemma 17. Let r > 0 be fixed. The existence of a δ > 0 such that θjj(r, δ) < 1 for all
j ∈ E is a sufficient condition for C(r) <∞.

Proof. Let r > 0 and suppose that there exists a δ > 0 such that θjj(r, δ) < 1 holds for
all j ∈ E. For this δ > 0 and a given j ∈ E, it is not difficult to see that

(
(W (j)

n )1+δ
)
n∈IN

is a positive supermartingale with respect to its natural filtration. A supermartingale
inequality yields

αP
(

sup
n∈IN

(W (j)
n )1+δ ≥ α

)
≤ E

(
(W (j)

1 )1+δ
)

=: D

for α ≥ 0 as for example shown in Lemma 3.21 in Elliott (1982), p. 23. Due to the
properties of a Markov chain one can show that θjj(r, δ) < 1 implies θkj(r, δ) <∞ for all
k ∈ E. Hence, E

(
(W (j)

1 )1+δ
)

= D is finite under our assumptions. This implies

P

(
sup
n∈IN

W (j)
n ≥ t

)
= P

((
sup
n∈IN

W (j)
n

)1+δ
≥ t1+δ

)
= P

(
sup
n∈IN

(W (j)
n )1+δ ≥ t1+δ

)
≤ D t−(1+δ)
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for all t > 0 and therefore

E

(
sup
n∈IN

W (j)
n

)
=
∫ ∞

0
P

(
sup
n∈IN

W (j)
n > t

)
dt ≤ 1 +D

∫ ∞

1
t−(1+δ) dt <∞ .

Together with the fact that C(r) < ∞ if and only if E
(
supn∈IN W

(j)
n

)
< ∞ for all j ∈ E

the result follows.

Lemma 18. Suppose that R defined by (5) exists. For 0 < r < R we have C(r) <∞.

Proof. Let us assume that R exists and consider any 0 < r < R. Next, choose some δ > 0
sufficiently small such that r′ := (1 + δ)r < R. Since θjj is convex with θjj(0) = 1 it
follows that θjj(r′) < 1, j ∈ E. We then get

θjj(r′)− θjj(r, δ)

= Ej

(
exp

(∑
i∈E

[
λihi(r′) +

r′2σ2
i

2
− r′

]
ξi(τ (j))

)

− exp

(
(1 + δ)

∑
i∈E

[
λihi(r) +

r2σ2
i

2
− r

]
ξi(τ (j))

))

= Ej

(
exp

(
−(1 + δ)rτ (j)

)
·

[
exp

(∑
i∈E

[
λihi

(
(1 + δ)r

)
+ (1 + δ)2

r2σ2
i

2

]
ξi(τ (j))

)

− exp

(∑
i∈E

[
(1 + δ)λihi(r) + (1 + δ)

r2σ2
i

2

]
ξi(τ (j))

)])
≥ 0

since (1 + δ)2 ≥ (1 + δ) and hi

(
(1 + δ)r

)
≥ (1 + δ)hi(r) for each i ∈ E. The last inequality

follows due to the fact that hi ist convex with hi(0) = 0 for all i ∈ E.
We therefore have θjj(r, δ) ≤ θjj(r′) < 1 for all j ∈ E. The statement follows now from
Lemma 17.
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