Measure-valued derivatives and applications

Georg Ch. Pflug and Philipp Thoma (PhD student)

Stochastic Models and Control
Bad Herrenalb, April 2011
Our basic problem is to solve

$$\min_{\theta \in \Theta} \mathbb{E}[\mathcal{H}(X_\theta)]$$

where

- $X_\theta(\cdot)$ is a Markovian process, with a transition law which depends on a parameter θ
- the functional $\mathcal{H}(X_\theta)$ may be
 - $\mathcal{H}(X_\theta) = h(X_\theta(T))$
 - $\mathcal{H}(X_\theta) = h(X_\theta(\infty))$
 - $\mathcal{H}(X_\theta) = \int_0^T h(X_\theta(t)) \, dt$
 - $\mathcal{H}(X_\theta) = \int_0^\tau h(X_\theta(t)) \, dt$, where τ is some stopping time.
Examples

- Markov Systems (queueing, service, manufacturing)
 Suppose that θ denotes the parameters of a Markov System (queueing, inventory, renewal). Let $X_\theta(t)$ be the state of the system at time t and $X_\theta(\infty)$ the steady state (if exists). Then
 - $\mathbb{E}[h(X_\theta(T)))]$ is the performance of the system at time T
 - $\int_0^T \mathbb{E}[h(X_\theta(t))] \, dt$ is the expected integrated transient behavior
 - $\mathbb{E}[h(X_\theta(\infty)))]$ is the expected stationary behavior.

- Finance
 Let $X_\theta(t)$ describe the evolution of an underlying asset, for a parameter vector θ. Let h be the payoff function of a contingent contract. Then $\mathbb{E}[h(X_\theta(T)))]$ is the value of the contingent contract (European type). If τ is a stopping time, then $\mathbb{E}[h(X_\theta(\tau)))]$ is the value of the American type contingent contract. We want to estimate the sensitivity of the price w.r.t. the parameter θ (the Greeks).
Finite differences: The Kiefer-Wolfowitz procedure

\[\theta_{n+1} = \theta_n + a_n \frac{h(X_{\theta_n}+c_n) - h(X_{\theta_n}-c_n)}{2c_n}. \]

Small \(c_n \) ⇒ small bias and large variance
Large \(c_n \) ⇒ large bias and small variance
Differentiability of \(h \) is required.

Left: Differences \(c_n \to 0 \), Right: No convergence \(c_n \to 0 \)
We are interested in finding the value of

$$\frac{\partial}{\partial \theta} \mathbb{E}[h(X_\theta)]$$

and - more generally -

$$\frac{\partial^k}{\partial \theta^k} \mathbb{E}[h(X_\theta)],$$

as well as a way to estimate it based on sampling. We formulate the problem in terms of the distribution μ_θ of X_θ.
The two paradigms for derivatives

Let \(F_\theta(x) \) be the distribution function of \(\mu_\theta \)

<table>
<thead>
<tr>
<th>Measure derivatives</th>
<th>Pathwise derivatives</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\theta \mapsto F_\theta(\cdot))</td>
<td>(\theta \mapsto F_\theta^{-1}(\cdot))</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Measure-valued derivatives</th>
<th>Finite differences (FD)</th>
<th>Infinitesimal perturb. (IPA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Score-function method</td>
<td></td>
<td>Malliavin calculus (part. int.)</td>
</tr>
</tbody>
</table>
Let \((R, d)\) be a metric space. To the family of Borel probabilities on \((R, d)\), we associate a "dual function space" \(F\) such as

- the space of all bounded, continuous functions
- the space of all continuous functions \(h\), such that \(|h(u)| \leq K_1 + K_2 d^p(u, u_0)\)

Definition. The family of probability measures \((\mu_\theta)_{\theta \in \Theta \subseteq \mathbb{R}}\) on \(R\) is **weakly differentiable w.r.t. the dual space** \(F\), if there is a finite signed measure \(\mu'_\theta\) such that for all \(h \in F\)

\[
\frac{1}{s} \left[\int h(w) \, d\mu_{\theta+s}(w) - \int h(w) \, d\mu_\theta(w) \right] \to \int h(w) \, d\mu'_\theta(w)
\]
as \(s \to 0\). (Heidergott, Vasquez-Abad, Leahu, Xi-Ren Cao, G.P., ...)

Georg Ch. Pflug and Philipp Thoma (PhD student)
Measure-valued derivatives and applications
Any finite signed measure may be decomposed into its positive and negative part (Jordan decomposition). Since $\int 1\,d\mu_\theta = 1$, we have that $\int 1\,d\mu'_\theta = 0$, i.e. the positive and the negative part have the same mass. Thus we may decompose the derivative object μ'_θ

$$\mu'_\theta = c_\theta (\dot{\mu}_\theta^+ - \dot{\mu}_\theta^-)$$

where $\dot{\mu}_\theta^+$ and $\dot{\mu}_\theta^-$ are probability measures. The representation as a multiple of the difference of two probability measures $\mu'_\theta = c(\mu_1 - \mu_2)$ is not unique, however the constant c is minimal if the two parts μ_1 and μ_2 are orthogonal, i.e. if the decomposition is the Jordan decomposition.
Any triplet \((c_\theta, \dot{\mu}_\theta^+, \dot{\mu}_\theta^-)\), such that for \(h \in \mathbb{F}\)

\[
\frac{1}{s} \left[\int h(w) \, d\mu_{\theta+s}(w) - \int h(w) \, d\mu_\theta(w) \right] \rightarrow c_\theta \left[\int h(w) \, d\dot{\mu}_\theta^+(w) - \int h(w) \, d\dot{\mu}_\theta^-(w) \right],
\]

for \(s \to 0\), is called a measure valued derivative triplet.
The Gamma(a, b) distribution has density

$$
\frac{1}{b^a \Gamma(a)} x^{a-1} \exp\left(-\frac{x}{b}\right)
$$

- If $X \sim Gamma(1/2, 2\sigma^2)$ (i.e. $\chi^2(1)$), then \sqrt{X} is distributed according to the positive part of a $N(0, \sigma^2)$ distribution.
- If $X \sim Gamma(1, 2\sigma^2)$, (i.e. $\chi^2(2)$), then \sqrt{X} is distributed according to a Raleigh distribution, which is a Weibull distribution with exponent 2.
- If $X \sim Gamma(3/2, 2\sigma^2)$, (i.e. $\chi^2(3)$), then \sqrt{X} is distributed according to a Maxwell distribution.
Example: Gradient w.r.t. the variance parameter

The family $N(0, \theta^2)$

The derivative w.r.t. θ as a signed measure
The Jordan–Hahn decomposition of the signed measure representing the derivative

The decomposition of the derivative in a Maxwell part and a normal part
Examples for measure valued derivatives

<table>
<thead>
<tr>
<th>Distribution μ_θ ((\theta) varies)</th>
<th>Constant c_θ</th>
<th>Positive part of the derivative: $\dot{\mu}_\theta^+$</th>
<th>Negative part of the derivative: $\dot{\mu}_\theta^-$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poisson((\theta))</td>
<td>1</td>
<td>Poisson((\theta)) + 1</td>
<td>Poisson((\theta))</td>
</tr>
<tr>
<td>Normal((\theta, \sigma^2))</td>
<td>1/(\sigma\sqrt{2\pi})</td>
<td>(\theta + \text{Raleigh}(\frac{1}{2\sigma^2}))</td>
<td>(\theta - \text{Raleigh}(\frac{1}{2\sigma^2}))</td>
</tr>
<tr>
<td>Normal((m, \theta^2))</td>
<td>1/(\theta)</td>
<td>ds-Maxwell((m, \theta^2))</td>
<td>Normal((m, \theta^2))</td>
</tr>
<tr>
<td>Exponential((\theta))</td>
<td>1/(\theta)</td>
<td>Exponential((\theta))</td>
<td>(\theta^{-1}) Erlang(2)</td>
</tr>
<tr>
<td>Gamma((a, \theta))</td>
<td>a/(\theta)</td>
<td>Gamma((a, \theta))</td>
<td>Gamma((a + 1, \theta))</td>
</tr>
<tr>
<td>Weibull((\alpha, \theta))</td>
<td>1/(\theta)</td>
<td>Weibull((\alpha, \theta))</td>
<td>[Gamma(2, (\theta))]^{1/(\alpha)}</td>
</tr>
</tbody>
</table>
Higher derivatives

The Normal family $N(\theta, \sigma^2)$ has first derivative

$$\left[\frac{1}{\sigma \sqrt{2\pi}}, \theta + \text{Raleigh}(\frac{1}{2\sigma^2}), \theta - \text{Raleigh}(\frac{1}{2\sigma^2}) \right]$$

and second derivative

$$\left[\frac{1}{\sigma^2}, \text{ds-Maxwell}(\theta, \sigma^2), \text{Normal}(\theta, \sigma^2) \right].$$
Use of weak derivatives in sensitivity estimation

If \dot{X}_θ^+ resp. \dot{X}_θ^- are distributed according to $\dot{\mu}_\theta^+$ resp. $\dot{\mu}_\theta^-$, then

$$c_\theta [h(\dot{X}_\theta^+) - h(\dot{X}_\theta^-)]$$

is a consistent estimate of $\frac{\partial}{\partial \theta} \mathbb{E}[h(X_\theta)]$.

(Academic) Example. Let $H(\theta) = \mathbb{E}[\cos(X_\theta)]$, where X_θ is a Normal($0, \theta^2$) variable. Then

$$\frac{1}{\theta} [\cos(\dot{X}_\theta^+) - \cos(\dot{X}_\theta^-)]$$

where

$$\dot{X}_\theta^+ \sim \text{double-sided-Maxwell}(0, \theta^2) \text{ and } \dot{X}_\theta^- \sim \text{Normal}(0, \theta^2)$$

is an unbiased estimate for $\frac{\partial}{\partial \theta} H(\theta)$.

Notice that no infinitesimal quantities appear and that we do not have to know the derivative of \cos.
A *coupling* of two probability measures μ_1 and μ_2 w.r.t. h is a probability measure $\bar{\mu}$ on $R \times R$ with given marginals μ_i, which minimizes the expectation of the criterion function $d(u, v)$:

Minimize $\int d(u, v) \bar{\mu}(du, dv)$

subject to

$\text{proj}_1 \bar{\mu} = \mu_1$,

$\text{proj}_2 \bar{\mu} = \mu_2$,

$\bar{\mu}$ is a probability on $R \times R$

The solution may not be unique. We denote the solution (or the set of solutions) by

$\mu_1 \overset{d}{\circlearrowright} \mu_2$

and call it ”μ_1 and μ_2 coupled over d”.
<table>
<thead>
<tr>
<th>Distribution μ_θ (θ varies)</th>
<th>Constant c_θ</th>
<th>Positive part of the derivative: $\dot{\mu}_\theta^+$</th>
<th>Negative part of the derivative: $\dot{\mu}_\theta^-$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poisson(θ)</td>
<td>1</td>
<td>Poisson(θ) + 1</td>
<td>Poisson(θ)</td>
</tr>
</tbody>
</table>

Coupling over the Euclidean distance $d(u, v) = |u - v|$ leads to taking $\dot{X}^+ = X_\theta + 1$, $\dot{X}^- = X_\theta$, i.e.: For any integrable (summable) cost function h and any Poisson variable $X_\theta \sim \text{Poisson}(\theta)$ we have

$$\frac{\partial}{\partial \theta} \mathbb{E}[h(X_\theta)] = \mathbb{E}[h(X_\theta + 1)] - \mathbb{E}[h(X_\theta)]$$

with very low variance.
If X_θ has density $f_\theta(x)$, then under appropriate conditions

$$\frac{\partial}{\partial \theta} \mathbb{E}[h(X_\theta)] = \mathbb{E} \left[h(X_\theta) \frac{\dot{f}_\theta(X_\theta)}{f_\theta(X_\theta)} \right]$$

where

$$\frac{\dot{f}_\theta(x)}{f_\theta(X_\theta)} = \frac{\partial}{\partial \theta} \log f_\theta(x)$$

is the score function.

- The score function methods requires stronger assumptions than the MVD-method.
- When using an appropriate coupling, the MVD-method leads to smaller variances. In a stochastic process situation, the score function martingale has typically large variance.
A comparison

Estimation of sensitivity of $\theta \mapsto \mathbb{E}[\sqrt{X_\theta}]$, where $X_\theta \sim \text{Exponential}(\theta)$. Then the variances are

<table>
<thead>
<tr>
<th>Method</th>
<th>Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerical differences</td>
<td>1069.9</td>
</tr>
<tr>
<td>Score function method</td>
<td>2.81</td>
</tr>
<tr>
<td>MVD with coupling</td>
<td>0.022</td>
</tr>
</tbody>
</table>
Let \((P_\theta)_{\theta \in \Theta}\) be a family of Markov transitions on the metric state space \((R, r)\).

Definition. A (regular) finite signed transition operator \(T(w, A)\) is a mapping \(R \times \mathcal{B} \to \mathbb{R}\) with the property

- \(w \mapsto T(w, A)\) is measurable for each Borel set \(A\),
- \(A \mapsto T(w, A)\) is a finite signed measure for each \(w\).

We introduce the following notations

- \(1_\mu\) is the transition \(T(w, A) = \mu(A)\)
- \(\mu T\) is the measure \((\mu T)(A) = \int T(w, A) \, d\mu(w)\).
- \(T h\) is the function \((T h)(u) = \int h(w) T(u, dw)\).
Definition. The Markov transition $\mathbb{P}_\theta(\cdot, \cdot)$ is called (uniformly) weakly differentiable, if there is a signed transition \mathbb{P}_θ' such that for all continuous functions h satisfying $|h(u)| \leq K(1 + \|u\|^p)$ for all u and some constant K and every point mass δ_w (i.e. the probability distribution concentrated on the point w)

$$\frac{1}{s} |\delta_w \mathbb{P}_{\theta+s} h - \delta_w \mathbb{P}_\theta h - s \cdot \delta_w \mathbb{P}_\theta' h| \to 0$$

as $s \to 0$, uniformly in w.
Every finite signed transition may be decomposed as

\[T(w, A) = c(w)[P_1(w, A) - P_2(w, A)], \]

where \(P_1 \) and \(P_2 \) are regular Markov transitions. Again, we may select convenient decompositions: We choose two Markov transitions \(\dot{P}^+ \) and \(\dot{P}^- \) and a measurable function \(c_\theta(w) \) such that

\[P'_\theta(w, A) = c_\theta(w)[\dot{P}^+\theta(w, A) - \dot{P}^-\theta(w, A)]. \]
The Leibniz formula and its sampling counterpart

\[(P^n_{\theta})' = \sum_{i=1}^{n} P_{\theta}^{i-1}P'_{\theta}P_{\theta}^{n-i}.\]

Estimation of \(\gamma(P^n_{\theta})'h:\)

1. Sample a random uniform time \(\tau\) in \(\{1, \ldots, n\}\).
2. Sample \(X_\theta(0)\) from the starting distribution \(\gamma\).
3. Sample \(\tau - 1\) steps with transition \(P_{\theta}\), giving \(X_\theta(1), \ldots, X_\theta(\tau - 1)\)
4. Sample one transition step from \(X_\theta(\tau - 1)\) with transition \(P^+_{\theta}\) and one with transition \(P^-_{\theta}\), giving \(\dot{X}^+_{\theta}(\tau)\) resp. \(\dot{X}^-_{\theta}(\tau)\).
5. Continue the processes \(\dot{X}^+_{\theta}(t)\) resp. \(\dot{X}^-_{\theta}(t)\), \(t = \tau + 1, \ldots, n\) using transition \(P_{\theta}\) and a coupling technique.
6. The final estimate is

\[nc(X_\theta(\tau - 1))[h(\dot{X}^+_{\theta}(t)) - h(\dot{X}^-_{\theta}(t))].\]
Alternatively, instead of sampling the stopping time \(\tau \), one may take the sum over all \(i \) without further sampling. We call this method exact measure valued derivation.
Gradients of stationary distributions

Let

\[\pi_\theta P_\theta = \pi_\theta \]

for all \(\theta \) be the (unique) stationary distribution of \(P_\theta \). Then \(\theta \mapsto \pi_\theta \) is weakly differentiable and

\[\pi'_\theta = \pi_\theta \cdot P'_\theta \cdot S_\theta \]

where \(S_\theta \) is the inverse Poisson operator, satisfying

\[S_\theta (I - P_\theta + 1 \cdot \pi_\theta) = I, \]

with \(I \) being the identity operator. The von Neumann series for \(S_\theta \) is

\[S_\theta = \sum_{m=0}^{\infty} (P_\theta^m - 1 \cdot \pi_\theta). \]
1. Start with an arbitrary starting distribution
2. Do m steps with transition \mathbb{P}_θ to get $X^{(m)}_\theta$
3. Make one transition with \mathbb{P}^+_θ and one transition with \mathbb{P}^-_θ to get $\dot{X}^+_\theta(0)$ resp. $\dot{X}^-_\theta(0)$
4. Starting with $\dot{X}^+_\theta(0)$ resp. $\dot{X}^-_\theta(0)$ do n steps with transition \mathbb{P}_θ to get sample $\dot{X}^+_\theta(n)$ resp. $\dot{X}^-_\theta(n)$. These two processes should be coupled.
5. The final estimate is
 \[c(X^{(m)}_\theta)[h(\dot{X}^+_\theta(n)) - h(\dot{X}^-_\theta(n))]. \]
Consider two Markov transition operators \(P \) and \(Q \) and set
\[
P_\theta = (1 - \theta)P + \theta Q.
\]
Let \(\pi_\theta \) be the stationary distribution of \(P_\theta \), i.e. \(\pi_\theta P_\theta = \pi_\theta \).

Introduce the deviation matrix
\[
D = \sum_{j=0}^{\infty} (P - 1 \pi_0)^j.
\]

Then - at least for small \(\theta \) -
\[
\pi_\theta = \pi_0 \sum_{j=0}^{\infty} \theta^j [(Q - P)D]^j
\]

and therefore the expected costs for a cost function \(h \) (not depending on \(\theta \)) are
\[
E_{\pi_\theta}[h(X(\infty))] = \langle \pi_\theta, h \rangle = \pi_0 \sum_{j=0}^{\infty} \theta^j [(Q - P)D]^j h.
\]
Example: the MM1 queue

One queue with arrival intensity λ

One server with service intensity θ, which is the decision variable

Intensity matrix:

$$
\begin{pmatrix}
-\lambda & \lambda & 0 & 0 & \cdots \\
\theta & -(\lambda + \theta) & \lambda & 0 & \cdots \\
0 & \theta & -(\lambda + \theta) & \lambda & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{pmatrix}
$$

Costs: Probability that more than 3 customers are in the waiting queue.
Taylor expansion up to first order
Left: The stationary distribution π_θ. Right: The probability that more than 3 customers wait

Taylor expansion up to fifth order
Lévy Processes and the estimation of Greeks

$X(t)$ is a Lévy Process, if it has independent, stationary increments. The pertaining price process is

$$S(t) = S_0 \exp(X(t)).$$

We typically make an Esscher transform to find a measure Q under which

$$\exp(-rt)S(t)$$

is a martingale. We consider especially the following Lévy processes

- The Brownian motion
- The Poisson process
- The Compound Poisson process
- The Gamma process
- The Variance Gamma process
Measure-valued Differentiation at Random Point

Georg Ch. Pflug and Philipp Thoma (PhD student)

Measure-valued derivatives and applications
Brownian motion

Left: Poisson process
Right: Compound Poisson process
Left: Gamma process
Right: Variance Gamma process
The geometric Brownian Motion (GBM)

Under the martingale measure, the GBM motion is

$$d\log S(t) = (r - \frac{1}{2}\sigma^2)dt + \sigma dW(t)$$

We aim at calculating the ρ, i.e. the sensitivity w.r.t. r for the two types of options

- The plain vanilla call option with payoff function

 $$g(S(T)) = e^{-rT}[S(T) - K]^+.$$

- The digital option with payoff function

 $$g(S(T)) = e^{-rT}1_{\{S(T) > K\}}.$$
Pathwise derivative

\[dS_{t_i}^r = f_r(S_{t_i}^r)dt + \sigma_r(S_{t_i}^r)dW_{t_i} \]

\[D_{t_{i+1}}^r = D_{t_i}^r + \left[\dot{f}_r(S_{t_i}^r) + f'_r(S_{t_i}^r)D_{t_i}^r \right] h + \left[\dot{\sigma}_r(S_{t_i}^r) + \sigma'_r(S_{t_i}^r)D_{t_i}^r \right] \sqrt{hZ} \]

\[\dot{f}_r(S_t^r) = S_t^r, \quad f'_r(S_t^r) = \left(r - \frac{1}{2} \sigma^2 \right), \quad \dot{\sigma}_r(S_{t_i}^r) = 0, \quad \sigma'_r(S_{t_i}^r) = \sigma \]

and therefore

\[D_{t_{i+1}}^r = D_{t_i}^r + \left[S_{t_i}^r + \left(r - \frac{1}{2} \sigma^2 \right)D_{t_i}^r \right] \frac{1}{n} + \left[\sigma D_{t_i}^r \right] \sqrt{\frac{1}{n}Z} \]

\[\frac{\partial \mathbb{E}(g(S_T))}{\partial r} = \mathbb{E}(g'(S_T)D_T^r) \]
We consider the payoff function $g(S_T) = e^{-rT}[S(T) - K]^+$. For the derivative we have to simulate

$$\frac{\partial \mathbb{E}[g(S_T)]}{\partial r} = c_r \left(\mathbb{E}[g(S_T^+)] - \mathbb{E}[g(S_T^-)] \right).$$
GBM: Plain vanilla call option

<table>
<thead>
<tr>
<th></th>
<th>ρ</th>
<th>Variance</th>
<th>Computational time in sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPA</td>
<td>92.9442</td>
<td>7.3883e+002</td>
<td>0.3112</td>
</tr>
<tr>
<td>FD</td>
<td>96.9025</td>
<td>1.8287e+006</td>
<td>0.0035</td>
</tr>
<tr>
<td>MVD</td>
<td>93.0916</td>
<td>2.0330e+003</td>
<td>0.1693</td>
</tr>
<tr>
<td>MVD e</td>
<td>93.0983</td>
<td>6.9878e+002</td>
<td>0.6116</td>
</tr>
<tr>
<td></td>
<td>ρ</td>
<td>variance</td>
<td>computational time in sec</td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>-----------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>FD</td>
<td>0.8867</td>
<td>9.4862e+002</td>
<td>0.0037</td>
</tr>
<tr>
<td>MVD</td>
<td>1.3934</td>
<td>48.4024</td>
<td>0.1683</td>
</tr>
<tr>
<td>MVDe</td>
<td>1.3979</td>
<td>23.7785</td>
<td>0.6089</td>
</tr>
</tbody>
</table>
Poisson: Plain vanilla option

<table>
<thead>
<tr>
<th></th>
<th>Sensitivity w.r.t. λ</th>
<th>variance</th>
<th>comp. time in sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>FD</td>
<td>6.2473</td>
<td>8.9401×10^4</td>
<td>0.0362</td>
</tr>
<tr>
<td>MVD</td>
<td>0.5768</td>
<td>5.7689</td>
<td>2.0508</td>
</tr>
<tr>
<td>MVDe</td>
<td>0.6044</td>
<td>1.6241</td>
<td>63.1382</td>
</tr>
</tbody>
</table>
Poisson: Digital option

<table>
<thead>
<tr>
<th>Method</th>
<th>Sensitivity w.r.t. λ</th>
<th>Variance</th>
<th>Comp. time in sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>FD</td>
<td>-1.0496</td>
<td>4.0443e+003</td>
<td>0.0382</td>
</tr>
<tr>
<td>MVD</td>
<td>0.1109</td>
<td>0.2505</td>
<td>2.0537</td>
</tr>
<tr>
<td>MVDe</td>
<td>0.1106</td>
<td>0.1115</td>
<td>63.0970</td>
</tr>
</tbody>
</table>

Georg Ch. Pflug and Philipp Thoma (PhD student)
Measure-valued derivatives and applications
Gamma: Plain vanilla

<table>
<thead>
<tr>
<th></th>
<th>Sensitivity w.r.t b</th>
<th>variance</th>
<th>comp. time in sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>FD</td>
<td>2.4686</td>
<td>1.9599e+044</td>
<td>0.0193</td>
</tr>
<tr>
<td>MVD</td>
<td>-0.0512</td>
<td>3.7718</td>
<td>1.6280</td>
</tr>
<tr>
<td>MVDe</td>
<td>-0.0308</td>
<td>1.3068</td>
<td>48.6192</td>
</tr>
</tbody>
</table>
Gamma: Digital

<table>
<thead>
<tr>
<th></th>
<th>Sensitivity w.r.t b</th>
<th>Variance</th>
<th>Computational time in sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>FD</td>
<td>1.7554</td>
<td>4.0315e003</td>
<td>0.0197</td>
</tr>
<tr>
<td>MVD</td>
<td>0.0116</td>
<td>0.9859</td>
<td>1.6098</td>
</tr>
<tr>
<td>MVD_e</td>
<td>0.0117</td>
<td>0.3630</td>
<td>48.8281</td>
</tr>
</tbody>
</table>

Georg Ch. Pflug and Philipp Thoma (PhD student)
Measure-valued derivatives and applications