Exercises in Convex Geometry
Exercise Sheet No. 4 – 11/11/2008

Exercise 13
Let \(A \subset \mathbb{R}^n \) be closed and convex. A subset \(M \subset A \) is called extreme (in \(A \)), if \(M \) is convex and \(x, y \in A, (x, y) \cap M \neq \emptyset \) implies \([x, y] \subset M\). Show that:

a) Extreme sets \(M \) are closed.

b) Each support set of \(A \) is extreme.

c) If \(M, N \subset A \) are extreme, then \(M \cap N \) is extreme.

d) If \(M \) is extreme in \(A \) and \(N \subset M \) is extreme in \(M \), then \(N \) is extreme in \(A \).

Exercise 14

a) Give a detailed proof of Theorem 2.1.2.

b) Let \(f : \mathbb{R}^n \to \mathbb{R} \) be a continuous function satisfying

\[
f \left(\frac{x_1 + x_2}{2} \right) \leq \frac{1}{2} \left(f(x_1) + f(x_2) \right) \quad \text{for all } x_1, x_2 \in \mathbb{R}^n.
\]

Show that \(f \) is convex.

Exercise 15
Let \(f : \mathbb{R}^n \to \mathbb{R} \) be convex and \(\emptyset \neq A \subset \mathbb{R}^n \) compact and convex. Show that there is a point \(x_0 \in \text{ext } A \) such that

\[
f(x_0) = \max \{ f(x) : x \in A \}.
\]

Exercise 16
Let \(f : \mathbb{R}^n \to (-\infty, \infty] \) be convex. Show that the following assertions are equivalent.

(i) \(f \) is closed.

(ii) \(f \) is semi-continuous from above, i.e.

\[
f(x) \leq \lim \inf_{y \to x} f(y).
\]

(iii) All the sublevel sets \(\{ f \leq \alpha \}, \alpha \in \mathbb{R} \) are closed.

Turn in your solutions on Tuesday, 11/18/2008, after the lecture. Do not forget to indicate your name and student identity number (Matrikelnummer) on your solutions.