Beispiele

1. \[\mu(x) = e^{-x^2} \quad \in C_0^\infty(\mathbb{R}^n) \]
2. \[\xi \in C_0^\infty(\mathbb{R}^n) \]
3. \[\mu(x) = e^{-\text{Re}(x)} \quad \in C_0^\infty(\mathbb{R}^n) \]
 \(\mu \in C_0^\infty(\mathbb{R}^n) \), obwohl \(\mu \) nicht polynomialbeschränkt ist und \(\mu \in C_0^\infty(\mathbb{R}^n) \).

6.5 Die Fouriertransformation in \(\mathcal{S}' \)

1. Die \(T \in \mathcal{S}' \) wird definiert durch \(\hat{T}(\phi) = \mathcal{F}(T\phi) \) für \(\phi \in \mathcal{S} \):

2. \(T \in \mathcal{S}' \)

Es gilt \(T \in \mathcal{S}' \). Also: \(\mathcal{F} : \mathcal{S} \rightarrow \mathcal{S}' \).

Es gilt für \(T = \mathcal{F} \quad g \in L^1(\mathbb{R}^n) \):

3. \[\mathcal{F}(g \cdot \phi) = g(\hat{\phi}) \quad \text{für} \quad \phi \in \mathcal{S} \quad \text{(Satz 7/1, Bew. Skript)} \]

Daraus folgt die oben definierte Fouriertransformation auf \(\mathcal{S}' \) die Fortsetzung der in 6.1 eingeführten Fouriertransformation auf \(L^1 \).

Satz 13. \(\mathcal{F} : \mathcal{S} \rightarrow \mathcal{S}' \) ist linear, stetig, bijektiv.

\(\mathcal{F}^{-1} \) ist stetig. Es gilt für \(T \in \mathcal{S}' \) die Umkehrformel

\[T = \mathcal{F}^{-1} \]
Beispiele 1: \(u_{n+1} = 1 \in \mathbb{R}^1 \). Es gilt
\[
\mathbf{1} = (2\pi)^n \mathbf{1} \quad \in \mathbb{R}^n
\]
\[
\mathbf{0} = 1 \quad \in \mathbb{R}^n
\]

Satz 14: \(T \in \mathbb{R}^n, \quad \text{Re} \in \mathbb{R}, \qquad \text{je} \in \{1, 2, \ldots, n\} \).

In \(\mathbb{R}^n \) gelten (vgl. Sätze 2 und 5):
\[
\begin{align*}
1. \quad \mathbf{e}_{\text{Re}'} & = e^{-\mathbf{1}} \\
2. \quad \mathbf{e}_{\text{Re}'} & = \mathbf{e}^{-\mathbf{1}} \\
3. \quad \mathbf{1} & = M_{\text{Re}'} \\
4. \quad \mathbf{1} & = -M_{\text{Re}'} \\
\end{align*}
\]

zum Beweis: definition chasing

6.6. Beispiele
\[
\begin{align*}
1. \quad \delta_x' & = \frac{1}{2\pi} \chi_x \\
2. \quad \xi_x' & = \frac{1}{2\pi} (2\pi)^n \delta_x \\
3. \quad \delta_{x_0} = \delta_{x_0} \quad \text{für} \quad \delta_{x_0} = e^{-x_0} \\
4. \quad \xi_{x_0} = (2\pi)^n \delta_{x_0} \\
5. \quad \text{signe sei die durch } \text{signe } x, \quad x \in \mathbb{R}, \quad \text{erzeugte distribution} \\
\text{Ferner } \mathbf{1} = \text{signe gilt}
\end{align*}
\]
\[
\mathbf{1} = \frac{2}{2} = \mathbf{1}
\]

\(\Rightarrow \) (vgl. Satz 12, 3. Kepkel, 3.12 und mit Abschn. 3.8, 2. Beispiel)
\[T = c_0 S + \rho V \left(\frac{2}{i} \frac{1}{i} \right) \]

Eine Drehung \(S = 0 \) heißt gerade, falls \(S = 5 \), heißt ungerade, falls \(S = -5 \). (vgl. Abschnitt 3.6)

Es gelte (nachweisen):

1) \(\text{sign} \) und \(\rho V \left(\frac{2}{i} \right) \) sind ungerade Distributoren
2) Ist \(T \in S \) ungerade, so ist \(\text{Te} \in S \) ungerade.

Daraus folgt aus \(\text{sign} = 0 \), und man hat:

\[\text{sign} = -2i \rho V \left(\frac{1}{i} \right) \]

\(\text{Folgerungen:} \)

1) \(T + T \rightarrow T \chi_1 = \frac{1}{2} (1 + \text{sign} \chi_1) \)

folgt

\[T = -i \rho V \left(\frac{1}{i} \right) \]

2) \(\rho V \left(\frac{1}{i} \right) = -i \text{sign} \)

zu übungsbezogene \(\tilde{T} \) wie folgt:

Betrachte für \(a > 0 \) \(T \chi_1 = \tilde{T} \chi_1 \)

Zeige \(T \rightarrow \tilde{T} \rightarrow a \rightarrow 0 \) in \(S \).

Berechne \(\tilde{T} \chi_1 \) und leide hin \(\tilde{T} \chi_1 \) in \(S \).

Bringe das Ergebnis mit obiger Folgerung 0 in Einklang.

6.7 der Fundamentallösung von \(-\Delta_x = -\ell_1^2 + \ell_2^2 + \ell_3^2\)

(vgl. Abschnitt 3.13)

\(1 \) \((\text{Erinnerung}) \quad P(1) = \sum_{1 \leq i \leq n} a_i \chi_i \)

Gesucht ist \(w \in \mathbb{R}^n - \text{eventuell nicht gesucht.} \)
Zusatzeigenschaften von Regelstrecken, d.h. bekannte
im klassischen Sinne, komplexe Transformatoren, ... und
\[\mathcal{P}(D) = \mathcal{D} \]

2. \[\mathcal{P}(D) = \mathcal{D} \Rightarrow \mathcal{D} u = [i^{\frac{1}{2}} e^{\frac{i \pi}{2}} u] \]
\[\mathcal{P}(i^{\frac{1}{2}} e^{\frac{i \pi}{2}} u) = \mathcal{D} u \]

Vorgesehen: Löst diese Gleichung und Transforme zurück.

3. \[\mathcal{P}(D) = -4 \quad \Rightarrow \quad \mathcal{P}(i^{\frac{1}{2}} e^{\frac{i \pi}{2}} u) = 11^{\frac{1}{2}} u \]

Es liegt also die Gleichung
\[11^{\frac{1}{2}} u = 1 \]
vor.

Wir berechnen \[\frac{1}{11^{\frac{1}{2}}} \int_{D} e^{-s s^{-1} x} dx \quad \text{für} \quad s = \frac{1}{11^{\frac{1}{2}}} \quad \text{mit} \quad x \in R^{2} \]

\[s^{-\frac{1}{2}} e^{-s^{\frac{1}{2}} x} \int_{0}^{s} \frac{e^{-t} dt}{t^{\frac{1}{2}}} = \text{erf}(s^{\frac{1}{2}}) \int_{0}^{s} \frac{e^{-t} dt}{t^{\frac{1}{2}}} \]

\[11^{\frac{1}{2}} = \frac{1}{\sqrt{\pi}} \int_{0}^{\infty} s^{-\frac{1}{2}} e^{-s x^{2}} ds \]

3. Schritt

Wir berechnen \[\int_{R^{2}} e^{-s x^{2}} (11^{\frac{1}{2}} x) dx \]

wobei wir \(11^{\frac{1}{2}} \) aus \(\text{erf} \) hier einsetzen und
die Integration über \(s \) und \(x \) zurückführen.
Dies kann mit dem Satz von Fubini nicht geschafft
2. Satz

\[f(\mu \mu^{-1}) = \frac{4\pi \mu^2}{11 \sigma^2} \]

Bemerkungen:

1. Da oben formal gerechnet wurde, ist die Probe zu machen: es gilt

\[f(\mu \mu^{-1}) = \delta \]

2. Hinsichtlich Evidenzordnung beachte die Diskussion bei Stücke 5.61, 62.
Abschlussbemerkung

Ein anderes Vorgehen zur Berechnung von \(f \) für \(\psi = \frac{1}{11xu} \).

Lässt man die orthogonale \((3,3)\)-Matrix, so gilt

\[F(\psi \cdot A) = F(\psi) \cdot A \]

(ist \(\psi \) rotationssymmetrisch, so auch \(\psi \)).

Daher \(F \cdot \psi = \frac{1}{11xu} \) \(\Rightarrow \) \(g(\psi) = \frac{1}{2} g(\psi) = \frac{1}{2} g(\psi) \).

Man rechnet nach, dass \(g \) Homogen vom Grade \(-2\) ist: \(g(t \cdot \psi) = t^{-2} g(\psi) \) \((t > 0) \).

Aus \(g(\psi) = \frac{1}{11xu} \) und \(g(\psi) = t^{-2} g(\psi) \) \((t > 0) \) folgt unter Voraussetzung der Eulersehen Gleichung für homogene Funktionen \(\frac{\partial g(\psi)}{\partial \psi} = -2 \psi g(\psi) \),

\[F(\psi) = \frac{c}{11xu^2} = \left(11xu^{-1}
ight)^2 \]

Es kann man mittels der Partiellehre gleiche Gleichung

(Satz 10, b) formal aus

\[\int_{\mathbb{R}^3} \nabla F(\psi \cdot \mathbf{x}) \cdot \mathbf{e} \, \mathrm{d} \mathbf{x} = \frac{1}{2c \pi} \int_{\mathbb{R}^3} F(\mathbf{x}) \cdot \mathbf{e} \, \mathrm{d} \mathbf{x} \]

bestimmen, wenn man \(F \psi = \frac{1}{11xu} \) und

\[\psi(\phi, x, y) = c \psi \]

wählt.

Es folgt leicht \(c = 4\pi \). Also wieder einiges Ergebnis, was nachträglich durch Probe gerechtfertigt werden muss.