Funktionentheorie

Übungsblatt 10

Aufgabe 1 (C) (10 Punkte)

(a) Sei \(f \neq \text{konst} \), holomorph mit \(|f(z)| \leq 1 \) für \(|z| < 1 \). Zeigen Sie: Dann hat man die Abschätzung
\[
\frac{|f(0)| - |z|}{1 - |f(0)||z|} \leq |f(z)| \leq \frac{|f(0)| + |z|}{1 + |f(0)||z|}
\]
für alle \(|z| < 1 \).

Hinweise:

(1) Betrachten Sie die Funktion \(g(z) = \frac{f(z) - a}{1 - af(z)} \) mit \(a = f(0) \).

(2) Sie dürfen ohne Begründung verwenden
\[
\frac{|b - d|}{1 - |b||d|} \leq \frac{|b + d|}{1 + |b||d|} \quad \text{für } |b| < 1, |d| < 1.
\]

(b) Sei \(D := \{ z \in \mathbb{C} : |z| < 1 \} \). Gibt es eine holomorphe Funktion \(f : D \to D \), für die \(f(\frac{1}{2}) = \frac{3}{4} \) und \(f'(\frac{1}{2}) = \frac{2}{3} \) gelten? Begründen Sie Ihre Antwort.

Aufgabe 2 Sei \(f \) eine ganze Funktion mit
\[
|f(z)| \leq \frac{1}{|\text{Im} z|}
\]
für alle \(z \in \mathbb{C} \).

Zeigen Sie, dass \(f \equiv 0 \).

Aufgabe 3 (Schwarzesches Spiegelungsprinzip) Sei \(G \neq \emptyset \) ein zur reellen Achse symmetrisches Gebiet, d.h. \(z \in G \Leftrightarrow \overline{z} \in G \).

Wir setzen \(G_+ := \{ z \in G : \text{Im} z > 0 \} \), \(G_- := \{ z \in G : \text{Im} z < 0 \} \) und \(G_0 := \{ z \in G : \text{Im} z = 0 \} \). Weiter sei \(f : G_+ \cup G_0 \to \mathbb{C} \) stetig, \(f|_{G_+} \) holomorph und \(f(G_0) \subset \mathbb{R} \).

Beweisen Sie, dass dann die durch \(\tilde{f}(z) := \begin{cases} f(z) & \text{falls } z \in G_+ \cup G_0 \\ \overline{f(\overline{z})} & \text{falls } z \in G_- \end{cases} \) definierte Fortsetzung von \(f \) auf \(G \) holomorph ist.

Aufgabe 4 (C) (10 Punkte) Berechnen Sie jeweils das Wegintegral \(\int_{\gamma} \frac{1}{z} dz \) für den skizzierten Rundweg \(\gamma \).