Höhere Mathematik I
für die Fachrichtungen Elektrotechnik und Informationstechnik

Lösungsvorschläge zum 10. Tutoriumsblatt

Aufgabe 1:

(a) Mit der aus der Vorlesung bekannten Reihenentwicklung von $\ln(1+y)$, $y \in (-1, 1)$, erhalten wir für jedes $x \in (-1, 1)$

$$f(x) = \ln((1-x)(1+x)) = \ln(1-x) + \ln(1+x) = \sum_{n=1}^{\infty} \frac{(-x)^n}{n} = \sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^n}{n}$$

$$f(x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}(1 - n)}{n} x^n = \sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^n}{n}$$

Nach der Bemerkung in 11.14 ergibt sich

$$f^{(20)}(0) = 20! a_{20} = 20! \cdot \frac{-1}{20} = -2 \cdot 19!,$$
$$f^{(31)}(0) = 31! a_{31} = 0.$$

Bemerkung: Natürlich kann man die Reihenentwicklung von $\ln(1+y)$ auch direkt auf f anwenden: Für jedes $x \in (-1,1)$ gilt wegen $x^2 \in (-1, 1)$

$$f(x) = \ln(1-x^2) = \sum_{k=1}^{\infty} \frac{(-1)^k}{k} x^{2k} = \sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^n}{n},$$

wobei

$$b_n = \begin{cases} 0 & \text{falls } n = 2k \text{ für ein } k \in \mathbb{N} \\ -\frac{1}{k} & \text{falls } n = 2k \text{ für ein } k \in \mathbb{N} \end{cases} = \begin{cases} 0 & \text{falls } n \text{ ungerade} \\ -\frac{2}{n} & \text{falls } n \text{ gerade} \end{cases} = a_n.$$

(b) Für jedes $x \in \mathbb{R} \setminus \{2,3\}$ gilt

$$f(x) = \frac{1}{2-x} + \frac{1}{3-x} = \frac{1}{1-x} + \frac{1}{2-x} = \frac{1}{1-x} + \frac{1}{2} \cdot \frac{1}{1-\frac{1}{2}(x-1)}.$$

Gilt $|x-1|<1$ und $|\frac{1}{2}(x-1)|<1$, also $0<x<2$, so ergibt sich (geometrische Reihe!)

$$f(x) = \sum_{k=0}^{\infty} (x-1)^k + \frac{1}{2} \sum_{k=0}^{\infty} \left(\frac{1}{2}(x-1)\right)^k = \sum_{k=0}^{\infty} \left(1 + \left(\frac{1}{2}\right)^{k+1}\right)(x-1)^k.$$

Damit gilt für jedes $k \in \mathbb{N}$

$$\frac{1}{k!} f^{(k)}(1) = a_k = 1 + \left(\frac{1}{2}\right)^{k+1}.$$

Insbesondere ist

$$f^{(2015)}(1) = 2015! \cdot \left(1 + \left(\frac{1}{2}\right)^{2016}\right).$$
Aufgabe 2: Setze $f(x) := \frac{10}{7} \sqrt{1 + x}$. Nach dem Satz von Taylor gibt es zu jedem $n \in \mathbb{N}$ ein $\xi_n \in [-\frac{1}{50}, 0]$ mit

$$\sqrt{2} = f\left(-\frac{1}{50}\right) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!}\left(-\frac{1}{50}\right)^k + \frac{f^{(n+1)}(\xi_n)}{(n+1)!}\left(-\frac{1}{50}\right)^{n+1}.$$

Jetzt wollen wir n so groß wählen, dass das Restglied $\frac{f^{(n+1)}(\xi_n)}{(n+1)!}\left(-\frac{1}{50}\right)^{n+1}$ betragsmäßig kleiner als 10^{-6} wird. Es zeigt sich, dass dies schon für $n = 2$ erfüllt ist; wegen

$$\left|\frac{1}{3!}\left(-\frac{1}{50}\right)^3\right| = \frac{1}{6 \cdot 50^3} = \frac{8}{6 \cdot 100^3} = \frac{4 \cdot 10^{-6}}{3}$$

müssen wir nur noch $|f^{(3)}(\xi)| < \frac{3}{4}$ zeigen. Mit $|\xi| \leq \frac{1}{50}$ ergibt sich

$$|f^{(3)}(\xi)| = \left|\frac{10}{7} \cdot \frac{1}{2} \cdot \left(-\frac{1}{2}\right) \cdot \left(-\frac{3}{2}\right) \cdot (1 + \xi)^{-5/2}\right| = \frac{15(1 + \xi)^{-5/2}}{28} \leq \frac{15 \sqrt{50}}{28 \cdot 75} \leq \frac{15 \cdot 8 \cdot 50^2}{28 \cdot 75^2} = \frac{3 \cdot 5 \cdot 8 \cdot 50^2}{76}.$$

Nun möchten wir $\frac{5 \cdot 8 \cdot 50^2}{76} < 1$ zeigen. Dies stimmt wegen

$$7^6 = 49^3 > 48^3 = (2^4 \cdot 3^3) = 2^{12} \cdot 3^3 = 4096 \cdot 27 > 4000 \cdot 25 = 100000 = 5 \cdot 8 \cdot 50^2.$$

Als Näherung für $\sqrt{2}$ erhalten wir unter Verwendung von $f'(x) = \frac{10}{7} \cdot \frac{1}{2} (1 + x)^{-\frac{1}{2}}$ und $f''(x) = \frac{10}{7} \cdot (-\frac{1}{4}) (1 + x)^{-\frac{3}{2}}$

$$f(0) + f'(0)\left(-\frac{1}{50}\right) + \frac{f''(0)}{2!}\left(-\frac{1}{50}\right)^2 = \frac{10}{7}\left(1 + \frac{1}{2} \cdot \left(-\frac{1}{50}\right) - \frac{1}{8} \cdot \left(-\frac{1}{50}\right)^2\right) = \frac{10}{7}\left(1 - \frac{1}{100} - \frac{1}{20000}\right) = \frac{19799}{14000} \approx 1,414214.$$

Aufgabe 3:

(a) Nach der Produktregel ist die Funktion f auf \mathbb{R} differenzierbar mit

$$f'(x) = -2 \cos(x) \cdot \sin(x) - 2 \cos\left(\frac{\pi}{3} + x\right) \cdot \sin\left(\frac{\pi}{3} + x\right) + \sin(x) \cos\left(\frac{\pi}{3} + x\right) + \cos(x) \cdot \sin\left(\frac{\pi}{3} + x\right)$$

$$= -2 \sin(x) \cdot \cos(x) - 2 \left(\cos\left(\frac{\pi}{3}\right) \cdot \cos(x) - \sin\left(\frac{\pi}{3}\right) \cdot \sin(x)\right) \left(\sin\left(\frac{\pi}{3}\right) \cdot \cos(x) + \cos\left(\frac{\pi}{3}\right) \cdot \sin(x)\right)$$

$$+ \sin(x) \left(\cos\left(\frac{\pi}{3}\right) \cdot \cos(x) - \sin\left(\frac{\pi}{3}\right) \cdot \sin(x)\right) + \cos(x) \left(\sin\left(\frac{\pi}{3}\right) \cdot \cos(x) + \cos\left(\frac{\pi}{3}\right) \cdot \sin(x)\right)$$

$$= -2 \sin(x) \cdot \cos(x) - 2 \left(\frac{1}{2} \cos(x) - \frac{\sqrt{3}}{2} \sin(x)\right) \left(\frac{\sqrt{3}}{2} \cos(x) + \frac{1}{2} \sin(x)\right)$$

$$+ \sin(x) \left(\frac{1}{2} \cos(x) - \frac{\sqrt{3}}{2} \sin(x)\right) + \cos(x) \left(\frac{\sqrt{3}}{2} \cos(x) + \frac{1}{2} \sin(x)\right) = 0.$$

Da die Ableitung von f auf \mathbb{R} verschwindet, ist f auf \mathbb{R} konstant. Für alle $x \in \mathbb{R}$ gilt

$$f(x) = f(0) = \cos^2(0) + \cos^2\left(\frac{\pi}{3}\right) - \cos(0) \cdot \cos\left(\frac{\pi}{3}\right) = 1^2 + \left(\frac{1}{2}\right)^2 - 1 \cdot \frac{1}{2} = \frac{3}{4}.$$
(b) (i) Es ist

\[f'(x) = \sum_{k=1}^{n} 2(x - x_k) = 2 \sum_{k=1}^{n} x - 2 \sum_{k=1}^{n} x_k = 2nx - 2\sum_{k=1}^{n} x_k. \]

Nach Abschnitt 11.13 erfüllt ein lokales Extremum die notwendige Bedingung \(f'(x) = 0 \), daher kommt nur der Punkt \(x^* = \frac{1}{n} \sum_{k=1}^{n} x_k \) als lokal Extremum in Frage.

Die zweite Ableitung von \(f \) ist

\[f''(x) = 2n > 0 \quad \text{für alle } x \in \mathbb{R}, n \in \mathbb{N}, \]

d.h. auch \(f(x^*) > 0 \). Folglich besitzt \(f \) in \(x^* \) ein Minimum. Der Funktionswert an dieser Stelle ist

\[f(x^*) = \sum_{k=1}^{n} (x^* - x_k)^2 = n(x^*)^2 - 2x^* \sum_{k=1}^{n} x_k + \sum_{k=1}^{n} x_k^2, \]

\[= n \left(\frac{1}{n} \sum_{k=1}^{n} x_k \right)^2 - 2 \cdot \frac{1}{n} \sum_{k=1}^{n} x_k \cdot \sum_{k=1}^{n} x_k + \sum_{k=1}^{n} x_k^2 = \frac{n}{n} \sum_{k=1}^{n} x_k^2 - \frac{1}{n} \left(\sum_{k=1}^{n} x_k \right)^2. \]

(ii) Für \(x > 0 \) gilt

\[f'(x) = \left(e^{x^2 \ln^2(x)} \right)' = e^{x^2 \ln^2(x)} \left(2x \cdot \ln^2(x) + 2x^2 \cdot \ln(x) \cdot \frac{1}{x} \right) \]

\[= 2x \cdot \ln(x) (\ln(x) + 1) \cdot x^{2 \ln(x)}, \]

d.h.

\[f'(x) = \begin{cases} 1, & x \leq 0, \\ 2x \cdot \ln(x) (\ln(x) + 1) \cdot x^{2 \ln(x)}, & x > 0. \end{cases} \]

Da ein lokales Extremum die notwendige Bedingung \(f'(x) = 0 \) erfüllt, kommen nur die Punkte \(x_1^* = 1 \) und \(x_2^* = e^{-1} \) als lokale Extrema in Frage.

Für \(x > 0 \) ist die zweite Ableitung von \(f \)

\[f''(x) = x^2 \ln(x) \left(4x^2 \cdot \ln^4(x) + 8x^2 \ln^3(x) + 4x^2 \ln^2(x) + 2 \ln^2(x) + 6 \ln(x) + 2 \right). \]

Wegen

\[f''(1) = 2 > 0 \quad \text{und} \quad f''(e^{-1}) = -2e^{-1} < 0, \]

besitzt \(f \) in \(x_1^* = 1 \) ein Minimum und in \(x_2^* = e^{-1} \) ein Maximum. Die Funktionswerte an diesen Stellen sind

\[f(1) = 1 \quad \text{und} \quad f(e^{-1}) = e^{\frac{1}{e^2}}. \]