Höhere Mathematik II für die Fachrichtung Physik

Lösungsvorschläge zur Bachelor-Modulprüfung

Aufgabe 1:

(a) Für das charakteristische Polynom \(\chi_A \) gilt für jedes \(\lambda \in \mathbb{C} \):

\[
\chi_A(\lambda) = \begin{vmatrix}
3 - \lambda & -1 & -1 \\
-1 & 3 - \lambda & -1 \\
-1 & -1 & 3 - \lambda \\
\end{vmatrix} = (4 - \lambda) \begin{vmatrix}
3 - \lambda & -1 & -1 \\
-1 & 3 - \lambda & -1 \\
0 & 1 & 1 \\
\end{vmatrix} = (4 - \lambda) \begin{vmatrix}
1 - \lambda & -2 & -1 \\
0 & 0 & 0 \\
\end{vmatrix}
\]

Entw. nach 1-ten Spalte

\[
\begin{vmatrix}
3 - \lambda & -1 & -1 \\
-1 & 3 - \lambda & -1 \\
0 & 1 & 1 \\
\end{vmatrix} = (4 - \lambda) \begin{vmatrix}
1 - \lambda & -2 & -1 \\
0 & 0 & 0 \\
\end{vmatrix} = (4 - \lambda)^2 (1 - \lambda).
\]

Daher ist \(\text{spec}(A) = \{1, 4\} \). Die algebraischen Vielfachheiten sind \(m_a(1) = 1 \) und \(m_a(4) = 2 \).

(b) Für jedes \(\lambda \in \text{spec}(A) \) gilt \(E_A(\lambda) = \ker(A - \lambda I_3) \). Wir berechnen zunächst eine Basis von \(E_A(\lambda) \) mit Hilfe des Gauß’schen Eliminationsverfahrens und des \((-1)\)-Ergänzungstricks. Anschließend werden diese mit dem Gram-Schmidt’schen Orthogonalisierungsverfahren zu einer Orthonormalbasis von \(E_A(\lambda) \) transformiert:

- \(E_A(1) \):

\[
A - I_3 = \begin{pmatrix}
2 & -1 & -1 \\
-1 & 2 & -1 \\
-1 & -1 & 2 \\
\end{pmatrix} \xrightarrow{\text{(-1)}} \begin{pmatrix}
0 & 3 & -3 \\
-1 & 3 & -1 \\
0 & -3 & 3 \\
\end{pmatrix} \xrightarrow{\text{(-1)}} \begin{pmatrix}
1 & 0 & -1 \\
0 & 1 & -1 \\
0 & 0 & 0 \\
\end{pmatrix}
\]

\[
\Rightarrow \quad E_A(1) = \text{span} \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\}
\]
• $E_A(4)$:
\[
A - 4I_3 = \begin{pmatrix}
-1 & -1 & -1 \\
-1 & -1 & -1 \\
-1 & -1 & -1
\end{pmatrix}
\]
\[
\sim \begin{pmatrix}
-1 & -1 & -1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
\]
\[
\Rightarrow E_A(4) = \text{span}\left\{\begin{pmatrix}1 \\ -1 \\ 0 \end{pmatrix} \, , \, \begin{pmatrix}1 \\ 0 \\ -1 \end{pmatrix}\right\}
\]

Orthogonalisieren und Normieren liefert
\[
\vec{w}_1 = \frac{\vec{v}_1}{\|\vec{v}_1\|} = \frac{1}{\sqrt{3}} \begin{pmatrix}1 \\ 1 \end{pmatrix}, \quad \vec{w}_2 = \frac{\vec{v}_2}{\|\vec{v}_2\|} = \frac{1}{\sqrt{2}} \begin{pmatrix}1 \\ -1 \end{pmatrix}, \quad \vec{w}_3 = \vec{v}_3 - (\vec{v}_3|\vec{w}_2) \vec{w}_2 = \frac{1}{\sqrt{3}} \begin{pmatrix}1 \\ -1 \end{pmatrix},
\]
\[
\vec{w}_3 = \frac{\vec{v}_3}{\|\vec{v}_3\|} = \frac{1}{\sqrt{6}} \begin{pmatrix}1 \\ 1 \end{pmatrix}.
\]

(c) Wir setzen
\[
S = (\vec{w}_1 \, \vec{w}_2 \, \vec{w}_3), \quad D = \begin{pmatrix}1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4\end{pmatrix} \quad \text{und} \quad D' = \begin{pmatrix}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{pmatrix}.
\]

Dann ist $A = SDS^{-1}$ und $D'^2 = D$. Für $W := SD'S^{(-1)}$ folgt $W^2 = (SD'S^{(-1)})(SD'S^{(-1)}) = SD'^2S^{(-1)} = A$.

Da A symmetrisch ist und die Vektoren \vec{v}_2, \vec{v}_3 orthogonalisiert wurden, ist S orthogonal. Also ist $S^{(-1)} = S^T$. Es folgt
\[
W = \begin{pmatrix}
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{3}} & \frac{2}{\sqrt{3}} \\
-\frac{1}{\sqrt{3}} & 0 & -\frac{2}{\sqrt{3}}
\end{pmatrix}
\begin{pmatrix}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{pmatrix}
\begin{pmatrix}
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{3}} & \frac{2}{\sqrt{3}} \\
-\frac{1}{\sqrt{3}} & 0 & -\frac{2}{\sqrt{3}}
\end{pmatrix}
= \frac{1}{3} \begin{pmatrix}5 & -1 & -1 \\ -1 & 5 & -1 \\ -1 & -1 & 5\end{pmatrix}.
\]

Aufgabe 2:

(a) Es gilt
\[
\partial S = \left\{(x, y, 0) \in \mathbb{R}^3 : x^2 + y^2 + \frac{1}{4} = 1\right\} = \left\{(x, y, 0) \in \mathbb{R}^3 : x^2 + y^2 = \frac{3}{4}\right\}.
\]

Wähle $\gamma : [0, 2\pi] \rightarrow \mathbb{R}^3$ mit
\[
\gamma(t) = \frac{\sqrt{3}}{2} \begin{pmatrix}\cos(t) \\ \sin(t) \\ 0\end{pmatrix} \quad (t \in [0, 2\pi])
\]

als Parameterisierung von ∂S. Der Tangenteneinheitsvektor $\vec{T} = \frac{\dot{\gamma}}{\|\dot{\gamma}\|}$ zeigt, von oben betrachtet, entgegen des Uhrzeigersinns. Da für die stetige Fortsetzung von \vec{n} auf ∂S der
Vektor $\vec{n} \times \vec{T}$ stets ins Innere von S zeigt, ist γ positiv orientiert. Nach dem Stokes’schen Rotationssatz gilt

$$\int_S (\nabla \times f) \cdot \vec{n} \, d\sigma = \int_{\partial S} f(\vec{x}) \cdot \vec{T} \, ds = \int_{\partial S} f(\vec{x}) \cdot d\vec{s}$$

$$= \int_0^{2\pi} f(\gamma(t)) \cdot \gamma'(t) \, dt = \frac{\sqrt{3}}{2} \int_0^{2\pi} \left(\sqrt{\frac{1}{2}} \cos(t) \right) \cdot \left(\begin{array}{c} -\sin(t) \\ 0 \end{array} \right) \, dt$$

$$= -\frac{\sqrt{3}}{2} \int_0^{2\pi} \sin(t) \, dt + \frac{3}{4} \int_0^{2\pi} \cos^2(t) \, dt .$$

Ferner ist

$$I_1 = \int_0^\pi \sin(t) \, dt + \int_\pi^{2\pi} \frac{\sin(t)}{1 + \frac{1}{4} \cos^2(t)} \, dt$$

$$= \int_0^\pi \sin(t) \, dt + \int_\pi^{2\pi} \frac{\sin(s + 2\pi)}{1 + \frac{1}{4} \cos^2(s + 2\pi)} \, ds$$

$$= \int_0^\pi \sin(t) \, dt + \int_\pi^0 \frac{\sin(s)}{1 + \frac{1}{4} \cos^2(s)} \, ds$$

$$= \int_{-\pi}^\pi \frac{\sin(t)}{1 + \frac{1}{4} \cos^2(t)} \, dt \quad \text{Symmetrie} = 0,$$

sowie

$$I_2 = \int_0^{2\pi} \cos^2(t) \, dt = \int_0^{2\pi} \cos(t) \cos(t) \, dt = \int_0^{2\pi} \sin(t) \cos(t) \, dt = 0$$

$$\Rightarrow I_2 = 0 \int_0^{2\pi} \cos^2(t) \, dt = \pi.$$

Damit ist schließlich $\int_S (\nabla \times f) \cdot \vec{n} \, d\sigma = 3\pi \frac{\pi}{4}.$

(b) (i) Für jedes $(x, y, z) \in \mathbb{R}^3$ gilt

$$(\nabla \times g_\alpha)(x, y, z) = \begin{pmatrix} 6xyz^2 - 6xyz^2 \\ 3yz^2 - 3y^2z^2 + 2 \\ \alpha^2 + 2yz^3 - 2 - \alpha - 2y^3z \end{pmatrix} = \begin{pmatrix} 0 \\ 2 - \alpha \\ \alpha^2 - \alpha - 2 \end{pmatrix} = \vec{0}$$

$$\iff \alpha = 2 \land \alpha^2 - \alpha - 2 = 0 \implies \alpha = 2.$$

(ii) Für jedes $\alpha \in M$ erfüllt g_α die Verträglichkeitsbedingung auf dem einfach zusammenhängenden Gebiet \mathbb{R}^3. Damit ist g_α ein Potentialfeld und das Integral

$$\int_{\gamma} g_\alpha(\vec{x}) \cdot d\vec{x}$$

ist wegenabhängig (hängt nur von $\gamma(0) = 0$ und $\gamma(1) = (1, 1, -1)^T$ ab). Wähle etwa $\tilde{\gamma} : [0, 1] \rightarrow \mathbb{R}^3$ mit

$$\tilde{\gamma}(t) = \begin{pmatrix} t \\ t \\ -t \end{pmatrix}$$ für alle $t \in [0, 1].$
Dann ist $\tilde{g}'(t) = (1, 1, -1)^T$ für alle $t \in [0, 1]$. Nach Obigem folgt
\[
\int_\gamma g_\alpha(x) \cdot d\tilde{x} = \int_\gamma g_\alpha(x) \cdot d\tilde{x} = \int_0^1 t(\alpha - t^4) + t(\alpha^2 - 2t^4 - 2) - t(\alpha + 3t^4 - 2) dt \\
= \int_0^1 -6t^5 + \alpha^2 t dt = \left[-t^6 + \frac{\alpha^2}{2} t^2 \right]_{t=0}^{t=1} = \frac{\alpha^2}{2} - 1 = -1.
\]

Aufgabe 3:

(a) (i) Klar: $f \in C^\infty$ und damit stetig und Q kompakt. Nach dem Satz über das Maximum nimmt f auf Q sein Maximum und Minimum an.

(ii) Hat f ein Extremum in Q bei \bar{x}_0, so gilt dort $(\nabla f)(\bar{x}_0) = 0$. Wir bestimmen zunächst solche kritischen Punkte. Es gilt
\[
(\nabla f)(x, y) = \begin{pmatrix} 2x + 2y \\ -2y + 2x \end{pmatrix} = 0 \iff (x + y = 0) \land (x - y = 0) \iff x = y = 0
\]
für alle $(x, y) \in Q$. Also ist $\bar{x}_0 = \bar{0}$ der einzige kritische Punkt von f in Q.

Für die Hesse-Matrix H_f von f gilt
\[
H_f(x, y) = \begin{pmatrix} 2 & 2 \\ 2 & -2 \end{pmatrix}
\]
für alle $(x, y) \in \mathbb{R}^2$. Damit gilt für das charakteristische Polynom $\chi_{H_f(\bar{x}_0)}$ von $H_f(\bar{x}_0)$
\[
\chi_{H_f(\bar{x}_0)}(\lambda) = \begin{vmatrix} 2 - \lambda & 2 \\ 2 & -2 - \lambda \end{vmatrix} = -(2-\lambda)(2+\lambda) - 4 = \lambda^2 - 8 = 0 \iff \lambda \in \{ -2\sqrt{2}, 2\sqrt{2} \}
\]
für alle $\lambda \in \mathbb{C}$. Also ist $\text{spec}(H_f(\bar{0})) = \{ -2\sqrt{2}, 2\sqrt{2} \}$ und $H_f(\bar{x}_0)$ indefinit. Insbesondere hat f bei \bar{x}_0 kein Extremum, sondern einen Sattelpunkt.

Damit müssen alle Extremstellen von f auf ∂Q liegen. Ist $\bar{x}_1 = (1, y_1) \in \partial Q$ mit $y_1 \in I_1 = (-1, 1)$ eine Extremstelle von f, so ist die Funktion $y \mapsto f(1, y)$ eine Extremstelle bei y_1. Da I_1 offen ist, muss dort $\frac{\partial f}{\partial y}(1, y_1) = 0$ gelten. Es gilt aber
\[
\frac{\partial f}{\partial y}(1, y) = 2(1 - y) = 0 \iff y = 1 \notin I_1.
\]
Also kann es eine solche Extremstelle nicht geben. Wegen
\[
\frac{\partial f}{\partial y}(-1, y) = -2(1 + y) = 0 \iff y = -1,
\]
\[
\frac{\partial f}{\partial x}(x, 1) = 2(1 + x) = 0 \iff x = -1,
\]
\[
\frac{\partial f}{\partial x}(x, -1) = 2(x - 1) = 0 \iff x = 1
\]
müssen alle Extremstellen (x_1, y_1) von f in Q die Form $|x_1| = |y_1| = 1$ haben. Wegen
\[
f(1, 1) = 2 = f(-1, -1) \quad \text{und} \quad f(-1, 1) = f(1, -1) = -2,
\]
ist $m = f(-1, 1) = -2$ und $M = f(1, 1) = 2$, sowie $S_m = \{(-1, 1), (1, -1)\}$ und $S_M = \{(-1, -1), (1, 1)\}$.
(b) (i) Klar: $g \in C^1$. Ferner gilt
\[
g'(x, y) = \begin{pmatrix} \frac{\partial g_1}{\partial x} & \frac{\partial g_1}{\partial y} \\ \frac{\partial g_2}{\partial x} & \frac{\partial g_2}{\partial y} \end{pmatrix} = \begin{pmatrix} \frac{x \cos(x)}{1 + x^2} & -\frac{\log(1 + x^2) \sin(y)}{2} \\ e^x \sin(y) & e^x \cos(y) \end{pmatrix}
\]
für alle $x > 0$, $y \in \mathbb{R}$. Da für alle solche (x, y)
\[
\det(g'(x, y)) = e^x \begin{pmatrix} \cos^2(x) & 0 \\ 1 + x^2 & \sin^2(x) \end{pmatrix} = e^x \begin{pmatrix} 1 & 0 \\ 0 & \log(1 + x^2) \end{pmatrix} = 0
\]
\[
\iff \cos^2(x) = 0 \land \sin^2(x) = 0
\]
gilt und sin und cos keine gemeinsamen Nullstellen haben, ist $g'(x, y)$ für alle $(x, y) \in \mathbb{R}^+ \times \mathbb{R}$ invertierbar. Nach dem Satz über die lokale Umkehrbarkeit ist g in der Tat lokal invertierbar.

Wegen
\[
g(x, y + 2\pi) = \left(\frac{1}{2} \log(1 + x^2) \cos(y + 2\pi)\right) = g(x, y)
\]
für alle $(x, y) \in \mathbb{R}^+ \times \mathbb{R}$, ist g nicht injektiv.

(ii) Es gilt
\[
g'(x, y) = \begin{pmatrix} \frac{x \cos(y)}{1 + x^2} & -\frac{\sin(y)}{2} \log(1 + x^2) \\ e^x \sin(y) & e^x \cos(y) \end{pmatrix}
\]
für alle $(x, y) \in \mathbb{R}^2$. Nach dem Satz über die lokale Umkehrbarkeit ist $g^{(-1)}$ differenzierbar mit
\[
\left[g^{(-1)}\right]'(x, y) = \left[g' \left(g^{(-1)}(x, y)\right)\right]^{-1}
\]
für alle $(x, y) \in U$. Insbesondere gilt
\[
g^{(-1)}(g(1, \pi)) = \left[g' \left(g^{(-1)}(g(1, \pi))\right)\right]^{-1} = g'(1, \pi)^{-1}
\]
\[
= \begin{pmatrix} \frac{1 - \cos(\pi)}{e^1 \sin(\pi)} & -\frac{\sin(\pi)}{e^1 \cos(\pi)} \\ 0 & e \end{pmatrix}^{-1}
\]
\[
= \begin{pmatrix} -\frac{1}{2} & 0 \\ 0 & -e \end{pmatrix}^{-1} = \begin{pmatrix} -2 & 0 \\ 0 & -\frac{1}{e} \end{pmatrix}.
\]

Aufgabe 4:

(a) (i) Es gilt
\[
f(z) = \frac{e^{iz}}{1 + z^2} = \frac{e^{iz}}{(z + 1)(z - i)} \quad (z \in \mathbb{C} \setminus S).
\]
Folglich hat f in $z_0 = -i$ und $z_1 = i$ jeweils einen Pol erster Ordnung. Für das Residuum von f bei z_1 gilt folglich
\[
\text{Res}(f, z_1) = \lim_{z \to z_1} (z - z_0)f(z) = \lim_{z \to z_1} \frac{e^{iz}}{z + 1} = \frac{1}{2ie}.
\]
Der positiv orientierte, einfach geschlossener Weg γ umläuft die Polstelle z_1 genau ein Mal, z_0 wird nicht umlaufen. Nach dem Residuensatz gilt also

$$\int_{\gamma} f(z) dz = 2\pi i \text{Res}(f, z_1) = \frac{\pi}{e}.$$

(ii) Für $z \in \text{Bild}(\gamma_2)$ gilt

$$|f(z)| = \left| \frac{e^{iz}}{1 + z^2} \right| = \frac{e^{-\text{Im}(z)}}{|z^2 + 1|} \leq \frac{1}{|z^2 + 1|} \leq \frac{1}{|z|^2 - 1} = \frac{1}{R^2 - 1}.$$

□

(iii) Es gilt

$$\int_{-\infty}^{\infty} \frac{\cos(x)}{1 + x^2} dx = \lim_{R \to \infty} \int_{-R}^{R} \frac{\cos(x)}{1 + x^2} dx = \lim_{R \to \infty} \text{Re} \left(\int_{\gamma_1} f(z) dz \right)$$

$$= \text{Re} \left(\lim_{R \to \infty} \left[\int_{\gamma_1} f(z) dz - \int_{\gamma_2} f(z) dz \right] \right).$$

(a) (i) Es gilt ferner:

$$\int_{\gamma_2} f(z) dz = \frac{\pi R}{R^2 - 1} \quad \text{für alle } R.$$

ist der obere Limes Null und es gilt $\int_{-\infty}^{\infty} \frac{\cos(x)}{1 + x^2} dx = \frac{\pi}{e}$.

(b) (i) Da g eine gerade Funktion ist, ist $\beta_k(g) = 0$ für alle $k \in \mathbb{N}$. Für $k \in \mathbb{N}_0$ gilt ferner:

$$\alpha_k(g) = \frac{1}{\pi} \int_{-\pi}^{\pi} g(t) \cos(kt) dt = \frac{1}{\pi} \int_{-\pi}^{\pi} \cos(\alpha t) \cos(kt) dt = \frac{2}{\pi} \int_{0}^{\pi} \cos(\alpha t) \cos(kt) dt$$

$$\text{Part. Int.} = \frac{2}{\pi} \left(\frac{1}{\alpha} \left[\sin(\alpha t) \cos(kt) \right]_{t=0}^{\pi} + \frac{k}{\alpha^2} \int_{0}^{\pi} \sin(\alpha t) \sin(kt) dt \right)_{u'(t) = \nu(t)}$$

$$\text{Part. Int.} = \frac{2}{\pi} \left(\frac{1}{\alpha} \sin(\alpha \pi) (-1)^k - \frac{k}{\alpha^2} \left[\cos(\alpha t) \sin(kt) \right]_{t=0}^{\pi} + \frac{k^2}{\alpha^2} \int_{0}^{\pi} \cos(\alpha t) \cos(kt) dt \right)$$

$$= \frac{2(-1)^k}{\pi \alpha} \sin(\alpha \pi) + \frac{k^2}{\pi \alpha^2} \int_{-\pi}^{\pi} \cos(\alpha t) \cos(kt) dt$$

„Phönix aus der Asche“ liefert

$$\alpha_k(g) = \frac{2(-1)^k}{\pi \alpha} \frac{1}{1 - \frac{k^2}{\alpha^2}} \sin(\alpha \pi) = (-1)^k \frac{2\alpha}{\pi(\alpha^2 - k^2)} \sin(\alpha \pi)$$

für alle $k \in \mathbb{N}_0$.

(ii) Die Grenzwerte

$$\lim_{t \to \pi^-} g(t) = \cos(\alpha \pi) =: g(\pi)^-, \quad \lim_{t \to \pi^+} g(t) = \cos(-\alpha \pi) = \cos(\alpha \pi) =: g(\pi)^+,$$

$$\lim_{h \to 0^+} \frac{g(-\pi + h) - g(-\pi)^+}{h} = \alpha \sin(\alpha \pi),$$

$$\lim_{h \to 0^-} \frac{g(\pi + h) - g(\pi)^-}{h} = -\alpha \sin(\alpha \pi).$$
existieren. Nach dem Satz über die punktweise Konvergenz der Fourier-Reihe konvergiert daher die Fourier-Reihe von g bei $t_0 = \pi$ gegen $\frac{(g(\pi)+)+(g(\pi)-)}{2}$. Es gilt daher

$$
\cos(\alpha \pi) = \frac{(g(t_0)+) + (g(t_0)-)}{2} = \frac{\alpha_0(g)}{2} + \sum_{k=1}^{\infty} \left[\alpha_k(g) \cos(k \pi) + \beta_k(g) \sin(k \pi) \right]
$$

$$
\equiv \left(\frac{\sin(\alpha \pi)}{\pi} \right) \left(\frac{1}{\alpha} + \sum_{k=1}^{\infty} \frac{2\alpha}{\alpha^2 - k^2} (-1)^k (-1)^k \right)
$$

$$
= \frac{\sin(\alpha \pi)}{\pi} \left(\frac{1}{\alpha} + \sum_{k=1}^{\infty} \frac{2\alpha}{\alpha^2 - k^2} \right)
$$

für alle $\alpha \in \mathbb{R} \setminus \mathbb{Z}$. Da $\sin(\alpha \pi) = 0 \iff \alpha \in \mathbb{Z}$ gilt, darf man durch $\sin(\alpha \pi)$ dividieren und erhält die zu zeigende Identität.

□