Boundary and Eigenvalue Problems:
13th problem sheet

On this exercise sheet you can use that every eigenfunction \(v \in W^{1,2}_0(\Omega) \) of \(-\Delta\) on a bounded Lipschitz domain \(\Omega \) automatically lies in \(C^\infty(\Omega) \cap C(\overline{\Omega}) \).

Exercise 1

Let
\[
E := \{(x, y) \in \mathbb{R}^2 : \left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 < 1\}, \quad a > b,
\]
be an ellipse. Find optimal enclosures \(\lambda_1(E) \in [\lambda_1(\Omega_1), \lambda_1(\Omega_2)] \) for the first Dirichlet eigenvalue \(\lambda_1(E) \) of \(-\Delta\) on \(E \) for approximating sets \(\Omega_2 \subset E \subset \Omega_1 \) such that

a) \(\Omega_1, \Omega_2 \) are balls.

b) \(\Omega_1, \Omega_2 \) are rectangles.

Exercise 2

Let \(\lambda_1 \leq \ldots \leq \lambda_n < \lambda_{n+1} \leq \ldots \) denote the Dirichlet eigenvalues of \(-\Delta\) on a bounded Lipschitz domain \(\Omega \) with a corresponding \(L^2\)-ONB of eigenfunctions \(v_1, v_2, \ldots \in W^{1,2}_0(\Omega) \). We want to show that the open set \(D := \{ x \in \Omega : v_n(x) \neq 0 \} \) has at most \(n \) open disjoint components.

a) Assume for contradiction \(D = \bigcup_{j=1}^{n+1} D_j \) for pairwise disjoint open subsets \(D_j \) of \(D \).

Set \(w_j := v_{n+1, D_j} \) for \(j = 1, \ldots, n+1 \). Show that every element of \(\text{span}\{w_1, \ldots, w_{n+1}\} \) has the same Rayleigh quotient as \(v_n \).

b) Show that \(\lambda_{n+1}(W) \leq \lambda_n \) for every subspace \(W \) of \(W^{1,2}_0(\Omega) \) with \(\text{dim}(W) = n \) and establish a contradiction.

Hint: In a) you may assume \(w_j \in W^{1,2}_0(D_j) \).
Exercise 3

Let Ω be a bounded Lipschitz domain Ω and let λ_1 be the first Dirichlet eigenvalue of $-\Delta$ with eigenfunction $\varphi_1 \in W_0^{1,2}(\Omega)$. Our aim is to prove that λ_1 is a simple eigenvalue, i.e. its eigenspace has dimension one and that its only eigenfunction φ_1 has no zeros in Ω. In the following let

$$R(u) = \frac{||\nabla u||_2^2}{||u||_2^2}, \quad u \in W_0^{1,2}(\Omega) \setminus \{0\},$$

denote the Rayleigh quotient of u.

a) Show that every minimizer $\tilde{u} \in W_0^{1,2}(\Omega)$ of the Rayleigh quotient, i.e. every $\tilde{u} \in W_0^{1,2}(\Omega)$ satisfying $R(\tilde{u}) = \lambda_1$, is an eigenfunction for $-\Delta$ with eigenvalue λ_1.

b) Conclude that if \tilde{u} is an eigenfunction of $-\Delta$ for λ_1 then so is $|\tilde{u}|$.

c) Let \tilde{u} be an eigenfunction of $-\Delta$ for λ_1. Apply the classical strong maximum principle to $|\tilde{u}|$ in order to show that \tilde{u} has no zeros in Ω.

d) Show that there cannot exist two linearly independent eigenfunctions of $-\Delta$ for λ_1.

Hint: In a) use that the function $t \mapsto R(\tilde{u} + t\phi)$ has a local minimum at $t = 0$ for every $\phi \in W_0^{1,2}(\Omega)$.