Aufgabe A7

Hinweis: \(\sin(3x) = \sin(2x+x) = \sin(2x) \cos x + \cos(2x) \sin x = 2 \sin x \cos^2 x + \sin x \cos^3 x - \sin^3 x = 3 \sin x (\lambda - \sin^2 x) = 3 \sin x - 4 \sin^3 x \)

\[\Rightarrow 4 \sin^3 x = 3 \sin x - \sin(3x) \]

Auszug: \(u(x,y) = \sum_{n=0}^{\infty} b_n(y) \sin(nx) \)

\[A u(x,y) = \sum_{n=0}^{\infty} \left[b_n(y) \cdot n^2 (-\sin(nx)) + b_n(y) \sin(nx) \right] \]

\[= \sum_{n=0}^{\infty} \left[b_n''(y) - n^2 \cdot b_n(y) \right] \sin(nx) \]

\[= \frac{3}{4} \sin^3 x = \frac{3}{4} y \sin x - \frac{1}{4} y \sin(3x) \]

\[\Rightarrow \text{Koeffizientengleichung:} \quad b_n''(y) - b_n(y) = \frac{3}{4} y \]

\[b_3''(y) - 3b_3(y) = -\frac{1}{4} y \]

\[b_n''(y) - n^2 b_n(y) = 0 \quad \text{f. } n \in \mathbb{N}_0 \setminus \{1,3\} \]

Randbedingungen:

\[u(0,y) = 0 \quad \checkmark \]

\[u(1,y) = 0 \quad \checkmark \]

\[u(x,0) = \sum_{n=0}^{\infty} b_n(0) \sin(nx) = 0 \quad \forall x, n \in \mathbb{N}_0 \setminus \{1,3\} \]

\[u(x,1) = \sum_{n=0}^{\infty} b_n(1) \sin(nx) = 0 \]

\[\Rightarrow b_n(0) = b_n(1) = 0 \quad \forall n \in \mathbb{N} \]

\[\Rightarrow b_n(y) = 0 \quad \text{f. } n \in \mathbb{N}_0 \setminus \{1,3\} \]

Löse also:

\[(\lambda) \]

\[\begin{cases} b''_n(y) - b_n(y) = \frac{3}{4} y \\ b_n(0) = b_n(1) = 0 \end{cases} \]

\[(2) \]

\[\begin{cases} b''_3(y) - 3b_3(y) = -\frac{1}{4} y \\ b_3(0) = b_3(1) = 0 \end{cases} \]

Lsg. d. homog. Probleme:

\[b''_n(y) = a e^{ny} + b e^{-ny} \]

\[b_n(0) = a + b = 0 \]

\[b_n(1) = a e^{-n} - a e^{-n} \sinh(n) = 0 \]

Lsg. d. inhomog. Probleme:

\[b'_n(y) = -\frac{3}{4} y + a e^{y} + b e^{-y} \]

\[a = -b \]

\[b_n(1) = -\frac{3}{4} + a e^{-y} = -\frac{3}{4} + 2 a \sinh(y) = 0 \]

\[\Rightarrow a = -\frac{3}{8} \frac{1}{\sinh(y)} \]
(2) Lsg. d. homog. Problems: \[b_2(y) = a e^{3y} + b e^{-3y} \]
 Lsg. d. inhom. Problems: \[b_2(y) = \frac{1}{36} \]
 allg. Lsg.: \[b_2(y) = \frac{1}{36} y + a e^{3y} + b e^{-3y} \]

RB: \[b_2(0) = a + b = 0 \Rightarrow b = -a \]
 \[b_2(0) = \frac{1}{36} y = \frac{1}{36} + a e^{3y} + b e^{-3y} = \frac{1}{36} + 2a \sinh(3) = 0 \]
 \[\Rightarrow a = -\frac{1}{72} \frac{1}{\sinh(3)} \]

Lösungsansatz: \[u(x, y) = \left[-\frac{3}{3} y + \frac{3}{8 \sinh(\lambda)} (e^y - e^{-y}) \right] \sin(x) \]
 \[+ \left[\frac{1}{36} y - \frac{1}{72 \sinh(3)} (e^{3y} - e^{-3y}) \right] \sin(3x) \]
 \[= \left[-\frac{3}{4} y + \frac{3 \sinh(y)}{4 \sinh(\lambda)} \right] \sin(x) + \left[\frac{1}{36} y - \frac{\sinh(3y)}{36 \sinh(3)} \right] \sin(3x) \]

Aufgabe 18

Berücksichtigen Sie zunächst den Fall, dass \(\lambda = 0 \in \mathbb{R} \) und der Kegel \(K \)
 mit \(K \subset \mathbb{R}^2 \), \(K \cap \mathbb{R}^2 = \{ x_0 \} \)

Nach Aufgabe 3, ist \(W\left(r, \phi \right) = r^{-\frac{1}{\pi - \kappa}} \sin \left(\frac{\pi}{2 \pi - \kappa} \phi \right) \)
 in \(K^c \) harmonisch und positiv.

\(h = w > 0 \) in \(\mathbb{R}^2 \) und \(h(x_1, x_2) = 0 \Leftrightarrow (x_1, x_2) = x_0 \)
 in \(K^c \)
 ist \(h \) harmonisch, ist \(h \) in \(\mathbb{R}^2 \) und \(h \) in \(K^c \)
 auf \(\mathbb{R}^2 \)

\(h \) ist Barriere bei \(x_0 \) und \(x_0 \) regulärer Randpunkt.
Sei nun $x_0 \neq 0$ und K Kegel mit $K \subseteq \mathbb{R}^2$, $x_0 \cap \overline{K} = \{x_0\}$.

K lässt sich durch affin-euclid. Beziehung T (Drehung, Translation) in K überführen: $T(x_1, x_2) = A(x_1, x_2) + b$ (A Drehmatrix, b Vektor)

\[
\begin{pmatrix}
\cos \beta & -\sin \beta \\
\sin \beta & \cos \beta
\end{pmatrix}
\]

Betrachte die Funktion $\tilde{w}(x_1, x_2) = w(T(x_1, x_2))$

Dann gilt (nachrechnen!): $\Delta \tilde{w}(x_1, x_2) = \Delta w(T(x_1, x_2))$

\[
= (\Delta w)(T(x_1, x_2)) = 0
\]

und da für $(x_1, x_2) \in \mathbb{K}^c$ gilt: $T(x_1, x_2) \in \mathbb{K}^c$ gilt $\tilde{w} > 0$ in \mathbb{R}^2.$\tilde{w}(x_0) = 0$

⇒ \tilde{w} Barriere bei x_0 ⇒ x_0 regulärer Randpunkt

aufgabe 13

1. $u_k(x)$ monotone wachsend
 a) S_0 ein Gebiet mit $\overline{S_0} \subseteq \mathbb{R}$ und $a \in \mathbb{R}_0$.
 Für $p \neq 1$ ist $u_{k+1} - u_k$ nicht-negativ u. harmonisch. Nach der Harnack-Ungl. gilt:
 \[
 0 \leq u_{k+1}(x) - u_k(x) \leq C \min_{\overline{S_0}} (u_{k+1}(x) - u_k(x)) \leq C (u_{k+1}(a) - u_k(a)) \leq \varepsilon \text{ f. } p \neq p_0
 \]

 ⇒ (u_k) konvergiert auf $\overline{S_0}$ gleichmäßig gegen eine harmon. Funktion (AT harmonisch folgt z.B. aus Konv. Satz u. Weierstraß)

 b) $\bar{a} = \lim u_k$ in $\overline{S_0}$ gelegenes Kugel $\overline{B} \subseteq \mathbb{R}^n_0$.
 Falls $a \in \overline{B}$, verwendet a)
Tolle auf, um den Mittelpunkt von \(S \) mit \(x_0 \) durch Weg \(f \).

Sei \(g > 0 \) mit dist \((y_1, \partial S) \geq 2g\)

\[
T_g := \{ B_g(y(t)), \ t \in [0,1] \}
\]

\(g \)-Umgebung von \(y \)

Setze \(S_0 := B_0T_g \) so dass \(\overline{S_0} \subset S \). Kita \((u_k)\) konv. glm. in \(S_0 \), also insbes. in \(\overline{S} \).

Aufgabe 20

\(s. \text{Vorb.} \)

1. \(u_0 \) subharmonisch, gilt \(u_0 = P_{B_0}u_0 \geq u_0 \) und \(u_0 \)

ist subharmonisch in \(S \), \(u_0 \) harmonisch in \(B_0 \), stetig auf \(\overline{B}_0 \).

Analog: \(u_j \) subharmonisch in \(S \), \(u_j \) harmonisch in \(B_{j-1} \), stetig auf \(\overline{B}_{j-1} \).

\(\Rightarrow \) \(u_j \) monoton wachsend und alle \(u_j \) sind subh.

\(\Rightarrow \) \(u_j \) nach oben beschränkt

\(\Rightarrow \) \((u_j) \) konv. punktweise gegen eine Flh. \(u_0 \).

Nach Konv. \(1. \) für alle \(x \in \overline{S} \) und \(j \) mit \(j \geq k \), und somit eine Teilfolge \((u^{(k)}_j) \) von \(u_j \) mit

1. \(u^{(k)}_j \in C^2(B_k) \cap C(\overline{B}_k) \)
2. \(u^{(k)}_j \) harmonisch in \(B_k \)
3. \(\lim_{j \to \infty} u^{(k)}_j(x) = u_0(x) \) f. alle \(x \in B_k \)

Nach dem Harnacksschen Konvergenzsatz gilt: \(u_0 \) harmonisch in \(B_k \).

Außerdem, da \(P_{B_j}u_{j-1} \mid_{\partial S} = u_0 \mid_{\partial S} \), folgt \(u_0 \mid_{\partial S} = u_0 \) konv.

Da \(k \) beliebig \(u \) \(S = \bigcup_{k=1}^{\infty} B_k \) : \(u_0 \) harmonisch in \(S \).

\(\therefore \) Stetigkeit von \(u_0 \) auf \(\overline{S} \) noch nicht klar!
Sei \(\bar{u} \) die Parau-Lsg. des gege. Problems. Da \(u_k \) Subharmon.
folgt mit dem Maximumprinzip

\[
u_0(x) \leq u_k(x) \leq \bar{u}(x) \quad \forall x \in \mathbb{R} \quad \text{h} \in \mathbb{N}
\]

\[
\Rightarrow u_0(x) \leq u_\infty(x) \leq \bar{u}(x) \quad \forall x \in \mathbb{R}
\]

Sei \((x_n) \subset \mathbb{R} \), \(x_n \to x_0 \in \mathbb{R} \). Da \(u_0 \) und \(\bar{u} \) stehig, folgt

\[
u_0(x_0) = \lim_{n \to \infty} u_0(x_n) \leq \liminf_{n \to \infty} u_\infty(x_n)
\]
\[
\leq \limsup_{n \to \infty} u_\infty(x_n) \leq \lim_{n \to \infty} \bar{u}(x_n) = \bar{u}(x_0) = u_0(x_0)
\]

\[
\Rightarrow \lim_{n \to \infty} u_\infty(x_n) = u_0(x_0) = u_\infty(x_0) \quad \text{d.h.} \ u_\infty \in C(\bar{\Omega})
\]