Resolution-controlled conductivity discretization in EIT

Andreas Rieder Robert Winkler
Sensitivity of CEM
Optimal conductivity meshes
Adaptive conductivity meshes
Sensitivity of CEM

Optimal conductivity meshes

Adaptive conductivity meshes

Sensitivity of CEM
Complete Electrode Model (CEM)

- conductivity σ
- electrodes E_1, \ldots, E_L
- contact impedances $z_l > 0$

\[-\nabla \cdot \sigma \nabla u = 0 \quad \text{in } \Omega,\]
\[u + z_l \, i_\nu = U_l \quad \text{on } E_l,\]
\[i_\nu = 0 \quad \text{on gaps},\]
\[
\int_{E_l} i_\nu dS = I_l, \quad l = 1, \ldots, L,
\]

where $i_\nu = \nu \cdot \sigma \nabla u$ on $\partial \Omega$ is the boundary current.

(Weak formulation, existence & uniqueness: Somersalo, Cheney & Isaacson, 1992)

$R_\sigma : I \mapsto U$ \textbf{Current-to-Voltage or Neumann-to-Dirichlet map.}
How to descretize the conductivity?

- There is a rapid decay of the achievable resolution away from the boundary. (Dobson 1992, Palamodov 2002)
- This effect has been taken into account for numerical inversion by coarsening the conductivity discretization towards the interior. Different strategies have been suggested. For example,
 - use a distinguishability criterion for the continuum model (MacMillan, Manteuffel & McCormick 2004)
 - match the number of conductivity coefficients to the degrees of freedom available in the ND map (Cheney, Isaacson, Newell, Simske & Goble 1990, Borcea, Druskin & Vasquez 2008)

An explicit resolution-based quantification of the discretization size for CEM across the domain is still an open task.
Sensitivity and distinguishability

Relative sensitivity for distinguishing conductivities $\tilde{\sigma}, \sigma$:

$$\lambda_{\sigma, \tilde{\sigma}} := \frac{\|R_{\tilde{\sigma}} - R_{\sigma}\|_2}{\|R_{\sigma}\|_2}.$$

Remark: Isaacson 1986 introduced the notion of absolute sensitivity (detectability, distinguishability) which strongly depends on the background conductivity and on the contact impedances.

The conductivities σ and $\tilde{\sigma}$ are distinguishable by the measurement setting if

$$\lambda_{\sigma, \tilde{\sigma}} \geq \frac{\|R_{\text{meas}, \sigma} - R_{\sigma}\|_2}{\|R_{\sigma}\|_2}$$

where the latter expression is the relative measurement noise.
Can we compute the sensitivity?

(I) Somersalo, Cheney and Isaacson 1992: Concentric conductivities and symmetric electrodes.

(II) Demidenko 2011: Homogeneous conductivity, arbitrary electrodes.

- Merge (I) and (II),
- Apply conformal mapping to determine R_σ for

(III) Arbitrary circular perturbation, arbitrary electrodes. (Winkler and R. 2014)
Conformally mapped CEM

Investigate.
Conformally mapped CEM

Investigate.

map conformally

Solve.

\[w \]

conclude

\[w^{-1} \]
Optimal conductivity meshes
Resolution study for constant background conductivity and circular perturbations

\[\sigma = 1, \quad \tilde{\sigma} = \tilde{\sigma}(x, r) = \sigma + \eta \chi_{B_r(x)}, \quad B_r(x) \subset B_1(0) = \Omega \]

Monotonicity: If \(r_1 \geq r_2 \) then

\[\lambda_{\sigma, \tilde{\sigma}}(x,r_1) \geq \lambda_{\sigma, \tilde{\sigma}}(x,r_2). \]

For a given numerical value \(\varepsilon \in]0, 1[\) we determine the smallest radius \(r_{\text{min}} = r_{\text{min}}(x, \varepsilon) \) such that

\[\varepsilon = \lambda_{\sigma, \tilde{\sigma}}(x,r_{\text{min}}). \]

The area of \(B_{r_{\text{min}}}(x) \) is a characteristic of the resolution in \(x \) w.r.t. the sensitivity/spectral noise level \(\varepsilon \).
Algorithm for generating optimal resolution meshes

Idea: Fill the disk with balls of roughly the same sensitivity and apply a Voronoi tessellation of Ω w.r.t. the centers.

Input: ε, η; finite set of test points $\mathcal{T} \subset \Omega$;

$\mathcal{C} := \emptyset$; $\mathcal{P} := \emptyset$;

repeat

Pick $p \in \mathcal{T}$; \hspace{1em} $\mathcal{T} := \mathcal{T} \setminus p$;

Find $r = r_{\min}(p, \varepsilon)$;

if $B_r(p) \subset \Omega \land B_r(p) \cap \mathcal{C} = \emptyset$ then

$\mathcal{P} := \mathcal{P} \cup p$; \hspace{1em} $\mathcal{C} := \mathcal{C} \cup B_r(p)$; \hspace{1em} $\mathcal{T} := \mathcal{T} \setminus B_r(p)$;

end if

until $\mathcal{T} = \emptyset$

Output: Voronoi tessellation of \mathcal{P} truncated to Ω;
Optimal resolution meshes

\[\varepsilon = 0.02, \ 182 \text{ cells} \]

\[\varepsilon = 0.01, \ 445 \text{ cells} \]

\[\varepsilon = 0.02, \ 177 \text{ cells} \]
Numerical experiments on the unit disk

- Data generation by the analytic forward solver.
- Added component-wise uniform noise to the potential vector \(\| U - U^\delta \|_2 = 0.01 \).
- Inexact Newton solver REGINN as regularization scheme where
 - the linearized problems are solved by conjugate gradients,
 - all internal parameters of REGINN are the same for all experiments,
 - stopping criterion is Morozov’s discrepancy principle,
 - forward computations by FEM with meshes of 10 to 13,000 triangles refined near to the electrodes and being independent of the conductivity mesh.
True conductivity

$n_{it} = 8, e = 21.8\%$

$n_{it} = 10, e = 22.7\%$

$n_{it} = 21, e = 24.7\%

Optimal mesh (445 cells)

$n_{it} = 10, e = 16.2\%$

$n_{it} = 16, e = 17.4\%$

$n_{it} = 42, e = 18.8\%$

Triangle mesh (452 cells)

Uniform mesh (447 cells)
Adaptive conductivity meshes
The need for speed

- The computation of the optimal meshes shown before
 - required several thousand LU decompositions with up to 30,000 unknowns and
 - took days ($\varepsilon = 0.02$) up to weeks ($\varepsilon = 0.01$) in our MATLAB implementation on a 2.2 GHz workstation with 16 CPU cores and 128 GB RAM.

- Explicit expressions of conformal maps from arbitrary simply connected domains to the unit disk are not available in general.
The need for speed

- The computation of the optimal meshes shown before
 - required several thousand LU decompositions with up to 30,000 unknowns and
 - took days ($\varepsilon = 0.02$) up to weeks ($\varepsilon = 0.01$) in our MATLAB implementation on a 2.2 GHz workstation with 16 CPU cores and 128 GB RAM.

- Explicit expressions of conformal maps from arbitrary simply connected domains to the unit disk are not available in general.

A fast and general heuristic is needed which relies on our theoretical results for the unit disk with circular inclusion.
The CEM resolution curve

\[\sigma = 1, \quad 1 + \eta \chi_{B_{r_{\text{min}}}}(\bullet) \]

for \(\varepsilon = 5\% \).
The CEM resolution curve

\[\sigma = 1, \quad \tilde{\sigma}(x, r_{\text{min}}) = 1 + \eta \chi_{B_{r_{\text{min}}}(\bullet)} \]
for \(\varepsilon = 5\% \).

area of \(B_{r_{\text{min}}}(\bullet) \)
vs. radial location of \(\bullet \).
The CEM resolution curve

\[\sigma = 1, \quad \tilde{\sigma}(x, r_{\text{min}}) = 1 + \eta \chi_{B_{r_{\text{min}}}}(\bullet) \]
for \(\varepsilon = 5\% \).

area of \(B_{r_{\text{min}}}(\bullet) \)
vs. radial location of \(\bullet \).
The CEM resolution curve

\[\sigma = 1, \quad \tilde{\sigma}(x, r_{\text{min}}) = 1 + \eta \chi_{B_{r_{\text{min}}}}(\bullet) \]

for \(\varepsilon = 5\% \).

Area of \(B_{r_{\text{min}}}(\bullet) \) vs. radial location of \(\bullet \).
The CEM resolution curve

\[
\sigma = 1, \quad \tilde{\sigma}(x, r_{\text{min}}) = 1 + \eta \chi_{B_{r_{\text{min}}}}(\bullet)
\]
for \(\varepsilon = 5\% \).

area of \(B_{r_{\text{min}}} (\bullet) \)
vs. radial location of \(\bullet \).
The CEM resolution curve

\[\sigma = 1, \quad \tilde{\sigma}(x, r_{\text{min}}) = 1 + \eta \chi B_{r_{\text{min}}}() \]

for \(\varepsilon = 5\% \).

area of \(B_{r_{\text{min}}}() \) vs. radial location of \(\bullet \).
The CEM resolution curve

\[\sigma = 1, \quad \tilde{\sigma}(x, r_{\text{min}}) = 1 + \eta \chi_{B_{r_{\text{min}}}}(\bullet) \]
for \(\varepsilon = 5\% \).

area of \(B_{r_{\text{min}}}(\bullet) \)
vs. radial location of \(\bullet \).
The CEM resolution curve

\[\sigma = 1, \quad \tilde{\sigma}(x, r_{\text{min}}) = 1 + \eta \chi_{B_{r_{\text{min}}}(\bullet)} \]

for \(\varepsilon = 5\% \).

Area of \(B_{r_{\text{min}}}(\bullet) \) vs. radial location of \(\bullet \).
The CEM resolution curve

\[\sigma = 1, \quad \tilde{\sigma}(x, r_{\text{min}}) = 1 + \eta \chi_{B_{r_{\text{min}}}}(\bullet) \]
for \(\varepsilon = 5\% \).

The function on the right is called the resolution curve \(A_{\text{CEM}} \)

\[A_{\text{CEM}} = A_{\text{CEM}}(|x|) = \pi r_{\text{min}}^2, \quad x \in \Omega. \]

It depends on \(\varepsilon, \eta \), and the electrode configuration.
Towards a heuristic on the unit disk

- \(\sigma = 1, \quad 1 + 10^6 \chi_{B_{r_{\text{min}}}}(x) \) where \(\lambda_{\sigma, \tilde{\sigma}(x, r_{\text{min}})} = 1.5\% \).
- Plots below show resolution curves \(A_{\text{CEM}}(|x|) = \pi r_{\text{min}}^2 \).
- The solid line belongs to the resolution curve \(A_{\text{cont}} \) of the continuum EIT model which can be approximated very fast.

![Graph showing resolution curves for different electrode coverages](image)

- 8 (▼), 16 (■) and 24 (●) electrodes.
- 16 electrodes covering 25% (▼), 50% (■) and 75% (●) of the boundary.
Heuristic on the unit disk

Idea: Lift A_{cont} by an affine-linear term to match A_{CEM} at both end points.

$$A_{\text{heu CEM}}(|x|) := A_{\text{cont}}(|x|) + \left(1 - \frac{|x|}{0.95}\right) (A_{\text{CEM}}(0) - A_{\text{cont}}(0))$$

$$+ \frac{|x|}{0.95} (A_{\text{CEM}}(0.95) - A_{\text{cont}}(0.95))$$

Then, work with

$$r_{\text{heu min}}(x) := \sqrt{\frac{A_{\text{heu CEM}}(|x|)}{\pi}}$$

in the algorithm for computing the meshes.

The resulting meshes are called adaptive meshes.
Optimal vs. adaptive mesh

Locations of the Voronoi cell centroids for the optimal mesh (×, 182 cells) and the adaptive mesh (●, 205 cells). Here, $\varepsilon = 2\%$.

Generating an adaptive mesh usually takes less than one second in MATLAB on an Intel i7 notebook.
True conductivity

Optimal mesh (445 cells)

Adaptive mesh (440 cells)

$\text{n_{it} = 8, e = 21.8\%}$

$\text{n_{it} = 9, e = 22.2\%}$

$\text{n_{it} = 10, e = 16.2\%}$

$\text{n_{it} = 12, e = 16.5\%}$
Heuristic for arbitrary domains

Let Ω an arbitrary, simply connected domain.

The relative distance of $z \in \Omega$ to the closest electrode is given by

$$d(z) = \frac{\min_{l=1,\ldots,L} \text{dist}(z, E_l)}{\max_{\zeta \in \Omega} \min_{l=1,\ldots,L} \text{dist}(\zeta, E_l)}.$$

Then, work with

$$r_{\min}^{\text{heu}}(x) := \sqrt{\frac{A_{\text{CEM}}^{\text{heu}} (1 - d(x))}{\pi}}$$

in the algorithm for computing the meshes.
Adaptive meshes for non-circular domains

16 electrodes, $\varepsilon = 2\%$
Numerical experiments: Simulated data 1

\[\delta = 0.25\% \]

- Generic triangle mesh
 - \(n_{\text{it}} = 26, \ e = 15.5\% \)
 - Adaptive mesh
 - (5126 cells)
 - Triangle mesh
 - \(n_{\text{it}} = 102, \ e = 18.5\% \)
 - (5126 cells)
 - Uniform mesh
 - \(n_{\text{it}} = 84, \ e = 17.1\% \)
 - (5126 cells)
Numerical experiments: Simulated data 2

\[\delta = 1\% \]

\[n_{it} = 63, \; e = 17.8\% \]

Adaptive mesh (887 cells)

\[n_{it} = 181, \; e = 20.8\% \]

Triangle mesh (888 cells)

\[n_{it} = 414, \; e = 21.1\% \]

Uniform mesh (900 cells)
Numerical experiments: Simulated data 3

\[\delta = 0.5\% \]

\[n_{\text{it}} = 60, \; e = 19.6\% \]
adaptive mesh
(2152 cells)

\[n_{\text{it}} = 198, \; e = 20.1\% \]
triangle mesh
(2152 cells)

\[n_{\text{it}} = 124, \; e = 21.3\% \]
uniform mesh
(2152 cells)
Numerical experiments: Measured data

Saline water tank with metal inclusions
Estimated measurement tolerance: $\delta \approx 0.1–0.2\%$.
To account for model imperfections we set $\delta = 0.3\%$.

Data kindly provided by Aku Seppänen (University of Eastern Finland) and Stratos Staboulis (Aalto University).

$n_{\text{it}} = 26$
adaptive mesh
(1193 cells)

$n_{\text{it}} = 30$
triangle mesh
(1194 cells)

$n_{\text{it}} = 46$
uniform mesh
(1193 cells)
Summary

- We introduced an analytic method to quantify the sensitivity of CEM measurements to circular perturbations in conductivity on a disk.

- Based on this findings we discretized the conductivity space such that each cell in the mesh has the same impact on the measurements.

- Finally, we derived a heuristic approximation of sensitivity based discretizations for general domains and verified its performance with simulated and measured data.