The Poisson Process SS 2016
Exercise sheet 1

The exercises will be discussed in the tutorial on Thursday, April 28, 2016.

Exercise 1.1:
Let \(\eta_1, \eta_2, \ldots \) be a sequence of point processes and define
\[\eta := \eta_1 + \eta_2 + \ldots, \]
that is
\[\eta(\omega, B) := \eta_1(\omega, B) + \eta_2(\omega, B) + \ldots, \quad \omega \in \Omega, B \in \mathcal{X}. \]

(a) Prove that \(\eta \) is a s-finite measure.

(b) Show that \(\eta \) is a point process.

Exercise 1.2:
Let \(X_1, X_2 \) be uniformly distributed on \(B(0,1) := \{ x \in \mathbb{R}^2 : \|x\| < 1 \} \), \(X_3 \) be uniformly distributed on the set \(\{ (0,0), (0,1), (1,0), (1,1) \} \) and \(X_4 \) be uniformly distributed on the line segment \([-1,1] \times \{0\} \).

Let \(\eta \) be the point process defined by
\[\eta := \sum_{i=1}^{4} \delta_{X_i}. \]

(a) Determine the intensity measure \(\lambda \) of \(\eta \).

(b) Compute \(\mathbb{E} \int_{[-1,1]^2} x^2 + y^2 \eta(d(x,y)) \).

Exercise 1.3:
Let \(Q \) be a probability measure on \(Q \) and let \(X_1, X_2, \ldots \) be identically distributed random variables on \(X \) with distribution \(Q \). Further, let \(\kappa \) be a \(\mathbb{N}_0 \)-valued random variable, independent of \((X_i)_{i \in \mathbb{N}} \).

Determine the intensity measure \(\lambda \) of
\[\eta := \sum_{i=1}^{\kappa} \delta_{X_i}. \]

Exercise 1.4:
Suppose that \(X = [0,1] \).

(a) Find a \(\sigma \)-field \(\mathcal{X} \) and a measure \(\mu \) on \((X, \mathcal{X}) \) such that \(\mu(X) = 1 \) and \(\mu(B) \in \{0,1\} \) for all \(B \in \mathcal{X} \) which is not of the form \(\mu = \delta_x \) for some \(x \in X \).

\textit{Hint:} Take the system of all countably infinite subsets of \(X \) as a generator of \(\mathcal{X} \).

(b) Let \(\mathcal{X} \) be the Borel \(\sigma \)-field and \(\mu \) be a measure on \((X, \mathcal{X}) \) with the properties \(\mu(X) = 1 \) and \(\mu(B) \in \{0,1\}, B \in \mathcal{X} \). Show that there is a \(x \in X \) such that \(\mu = \delta_x \).

Exercise 1.5:
Show that Proposition 2.10 remains valid if \(B_1, \ldots, B_m \in \mathcal{X} \) in (ii) are assumed to be pairwise disjoint.