
Dr. Florian Kranhold
-
By appointment
-
Kollegiengebäude Mathematik (20.30)
1.019
+49 721 608-42385
-
kranhold@kit.edu
-
Karlsruher Institut für Technologie
Fakultät für Mathematik
Institut für Algebra und Geometrie
Englerstr. 2
76131 Karlsruhe
Germany
I am a postdoctoral researcher in the working group of Manuel Krannich. Before that, I was a doctoral and a postdoctoral researcher at the University of Bonn, in the working group of Carl-Friedrich Bödigheimer. Further information can be found on my private website.
Semester | Titel | Typ |
---|---|---|
Winter Semester 2023/24 | Elementare Geometrie | Lecture |
AG Algebraische und Geometrische Topologie | Seminar | |
Summer Semester 2023 | Seminar (Cohomology and Characteristic Classes) | Seminar |
AG Algebraic and Geometric Topology | Seminar | |
Winter Semester 2022/23 | Algebraic Topology | Lecture |
AG Algebraische und Geometrische Topologie | Seminar |
My research interests lie in the area of Algebraic and Geometric Topology: more specifically, I am interested in configuration spaces and topological moduli spaces, topological operads and their algebras, factorisation homology, automorphisms of manifolds and manifold bundles, as well as cobordism categories.
Publications
- F. Kranhold. A stable splitting of factorisation homology of generalised surfaces. arXiv:2310.07688.
- C.-F. Bödigheimer, F. Boes, and F. Kranhold. Computations in the unstable homology of moduli spaces of Riemann surfaces. arXiv:2209.08148.
- A. Bianchi, F. Kranhold, and Jens Reinhold. Parametrised moduli spaces of surfaces as infinite loop spaces. Forum of Mathematics, Sigma 10, e39 (2022). (2022, DOI), arXiv:2105.05772.
- F. Kranhold. Configuration spaces of clusters as Ed-algebras. To appear in Homotopy, Homology and Applications, arXiv:2104.02729.
- A. Bianchi and F. Kranhold. Vertical configuration spaces and their homology. Quarterly Journal of Mathematics 73 (4 2022), pp. 1279–1306, arXiv:2103.12137
Theses
- Coloured topological operads and moduli spaces of Riemann surfaces with multiple boundary curves. Doctoral thesis, University of Bonn, 2022.
- Moduli spaces of Riemann surfaces and symmetric products: a combinatorial description of the Mumford–Morita–Miller classes. Master’s thesis, University of Bonn, 2018.