PERIODIC DIFFERENTIAL OPERATORS WITH ASYMPTOTICALLY PREASSIGNED SPECTRUM

ANDRII KHRABUSTOVSKYI

We will deal with the following operators in \mathbb{R}^n :

$$\mathcal{A} = -\frac{1}{b(x)} \sum_{k=1}^{n} \frac{\partial}{\partial x_k} \left(a(x) \frac{\partial}{\partial x_k} \right)$$

Here a, b are bounded above and bounded away from zero \mathbb{Z}^n -periodic functions. We denote by \mathcal{L}_{per} the set of such operators.

In the talk we will discuss the following result obtained in [1]: for an arbitrary L>0 and for arbitrary pairwise disjoint intervals $(\alpha_j,\beta_j)\subset [0,L]$, $j=1,\ldots,m$ $(m\in\mathbb{N})$ we construct the family of operators $\{\mathcal{A}^\varepsilon\in\mathcal{L}_{\mathrm{per}}\}_{\varepsilon>0}$ such that the spectrum of \mathcal{A}^ε has exactly m gaps in [0,L] when ε is small enough, and these gaps tend to the intervals (α_j,β_j) as $\varepsilon\to0$. The corresponding functions $a^\varepsilon,b^\varepsilon$ can be chosen in such a way that their ranges have at most m+1 values.

The idea how to construct the family $\{\mathcal{A}^{\varepsilon}\}_{{\varepsilon}>0}$ is based on methods of the homogenization theory.

Also we will discuss a similar result obtained for periodic Laplace-Beltrami operators [2].

REFERENCES

- [1] A. Khrabustovskyi, Periodic elliptic operators with asymptotically preassigned spectrum, Asymptotic Analysis (accepted). arXiv:1201.3729.
- [2] A. Khrabustovskyi, Periodic Riemannian manifold with preassigned gaps in spectrum of Laplace-Beltrami operator, Journal of Differential Equations 252 (3) (2012), 2339-2369.
- B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine

 $E ext{-}mail\ address: and ry9@ukr.net}$