3. Krümmung und Torsion

3.1 Motivation und Definition der Krümmung

"gekrümmt ist der Gegenent von geradlinig"

1) Gerade
 nicht gekrönt

2) Kreis mit Radius R
 gekrönt

3) Kreis mit Radius $r < R$
 stärker gekrönt

Analytisch können wir das über die Tangentenvektoren oder besser seine Änderung beschreiben:

1) Für eine Gerade gilt $x(t) = $ konst. und damit $\|x'(t)\| = \|0\| = 0$

2) Ein BL-P Kreis mit Radius R ist $x_R(t) = (R \cdot \cos\left(\frac{t}{R}\right), R \cdot \sin\left(\frac{t}{R}\right), 0)$
 und damit $x'_R(t) = \left(-\sin\left(\frac{t}{R}\right), \cos\left(\frac{t}{R}\right), 0\right)$ und
 $\|x'_R(t)\| = \\|\left(-\frac{1}{R}, \frac{1}{R}, 0\right)\| = \frac{1}{R} > 0$

3) Für $r < R$ gilt $\frac{1}{r} > \frac{1}{R}$

Damit erhalten wir folgende Definition:
Definition 3.1

Sei \(x : I \to \mathbb{R}^3, t \mapsto x(t) \) eine BLP Kurve.

Dann heißt die Funktion

\[K : I \to [0, \infty), t \mapsto K(t) := \| x''(t) \| \]

die Krümmung von \(x \).

Im Allgemeinen haben Kurven keine konstante Krümmung wie die Gerade oder der Kreis.

Da die meisten Kurven ursprünglich nicht BLP sind, müssen wir die Definition noch auf diese erweitern:

Definition 3.2

Sei \(x : I \to \mathbb{R}^3 \) eine Kurve, nicht notwendigerweise BLP, und

\(\hat{x} : I \to \mathbb{R}^3, s \mapsto \hat{x}(s) \) eine Umparametrisierung nach Bogellänge. Dann

sei die Krümmung von \(x \) definiert als

\[K : I \to [0, \infty), t \mapsto \| \hat{x}''(s(t)) \| \]

Damit ist die Krümmung automatisch in der Parametrisierung unabhängig.

Da die Umparametrisierungen oft schwer zu finden sind, ist das folgende Lemma sehr hilfreich:

Lemma 3.3

Sei \(x : I \to \mathbb{R}^3 \) eine Kurve, nicht notwendigerweise BLP.

Dann gilt:

\[K(t) = \frac{\| x'(t) \times x''(t) \|}{\| x'(t) \|^3}, \quad \forall t \in I \]

Und mit \(T(t) = \frac{x'(t)}{\| x'(t) \|} \), dem Tangenten-Einheitsvektor, gilt:

\[K(t) = \frac{\| T'(t) \|}{\| x'(t) \|}, \quad \forall t \in I. \]
Beispiel 3.4

1) \(x : [0, \infty) \to \mathbb{R}^3, \ t \mapsto (0, t, t^2) \)

"Pambel"

\(x'(t) = (0, 1, 2t) \)

\(x''(t) = (0, 0, 2) \)

\(x'(t) \times x''(t) = (2, 0, 0) \)

\(\|x'(t)\| = \sqrt{1 + 4t^2} \)

\(\kappa(t) = \frac{\|x'(t) \times x''(t)\|}{\|x'(t)\|^3} = \frac{2}{(\sqrt{1 + 4t^2})^3} \)

\(\lim_{t \to \infty} \kappa(t) = 0 \)

\(\kappa(t_1) = 2, \quad t_1 = 0 \)

\(\kappa(t_2) \approx 0.48, \quad t_2 \approx 1.5 \)

\(\kappa(t_3) = \frac{2}{(\sqrt{5})^3} \approx 0.48 \)

2) \(x : [0, 2\pi] \to \mathbb{R}^3, \ t \mapsto (0, t, \sin(t)) \)

\(x'(t) = (0, 1, \cos(t)) \)

\(x''(t) = (0, 0, -\sin(t)) \)

\(x'(t) \times x''(t) = (-\sin(t), 0, 0) \)

\(\|x'(t)\| = \sqrt{1 + \cos^2(t)} \)

\(\kappa(t) = \frac{\|x'(t) \times x''(t)\|}{\|x'(t)\|^3} = \frac{|\sin(t)|}{(\sqrt{1 + \cos^2(t)})^3} \)

MP hat Nullstellen bei \(t_1 = 0, \ t_2 = \pi \) und \(t_3 = 2\pi \).
Definition 3.5
Sei \(x : I \rightarrow \mathbb{R}^3 \) eine Kurve.
Dann heißt ein Punkt \(x(t_0) \), \(t_0 \in I \), Wendepunkt von \(x \), falls \(x(t_0) = 0 \).

Nun noch eine interessante Aussage über den Fall konstanter Krümmung 0:

Satz 3.6
Parametrisierte Geraden sind genau die Kurven mit konstanter Krümmung 0.

Beweis
\[x(t) = t \mathbf{v} \quad \text{mit} \quad \mathbf{v} \in \mathbb{R}^3 \]

Der Beweis ist klar. Wir haben konstante Krümmung 0, wie wir gesehen haben.\(\square \)
Definition 3.7

Sei \(x : I \rightarrow \mathbb{R}^3 \), \(t \mapsto x(t) \) eine \(\mathbb{R}^3 \)-Kurve. Dann heißt der

Einheitsvektor

\[T(t) := x'(t) \]

Tangentialvektor an \(x \) im Punkt \(x(t) \).

ist gerade der Tangentenrichtungsvektor, der im \(\mathbb{R}^3 \)-Fall der Tangentenrichtung entspricht.

Für alle \(t \in I \) mit \(k(t) \neq 0 \) können wir

\[N(t) := \frac{x''(t)}{\|x''(t)\|} = \frac{1}{k(t)} \cdot x''(t) \]

den Hauptnormalenvektor von \(x \) im Punkt \(x(t) \) und

\[B(t) := T(t) \times N(t) \]

den Binormalenvektor von \(x \) im Punkt \(x(t) \) definieren.

Es gilt stets \(\langle T(t), N(t) \rangle = 0 \), denn aus \(\langle x'(t), x'(t) \rangle = \|x'(t)\|^2 = 1 \)

folgt

\[0 = \left(\langle x'(t), x'(t) \rangle \right)^2 = \langle x''(t), x'(t) \rangle + \langle x'(t), x''(t) \rangle = 2 \langle x''(t), x'(t) \rangle \]

Der Binormalenvektor ist als Vektorprodukt von \(T(t) \) und \(N(t) \) orthogonal zu beiden und erfüllt

\[\|B(t)\| = \|T(t)\| \cdot \|N(t)\| \cdot \sin(\varphi(T(t), N(t))) = 1 \]

\(\varphi = 1 \)

Somit ist \(\{T(t), N(t), B(t)\} \) für alle \(t \in I \) mit \(k(t) \neq 0 \)

eine ONB des \(\mathbb{R}^3 \),
daher kein Wendepunkt.
Definition 3.8

Sei \(x: I \to \mathbb{R}^3 \) eine Kurve mit \(t \in I \) und \(k(t) \neq 0 \).

Dann heißt \((T(t), N(t), B(t)) \) begleitender Frenet-3-Bogen von \(x \) bei \(x(t) \).

Die Ebene \(\{ x(t) + s_1 \cdot T(t) + s_2 \cdot N(t) \mid s_1, s_2 \in \mathbb{R} \} \)

heißt Schmiegeebene von \(x \) in \(x(t) \).

Der Punkt \(m(t) = x(t) + \frac{1}{k(t)} \cdot N(t) \) heißt Krümmungsmittelpunkt von \(x \) bei \(x(t) \) und die Krümmungskreis ist der Kreis in der Schmiegeebene mit Radius \(\frac{1}{k(t)} \) um \(m(t) \).

Bemerkung 3.9

Parametrisiert man den Krümmungskreis durch eine Kurve \(\hat{x}: I \to \mathbb{R}^3 \) mit \(\hat{x}'(t) \neq 0 \) so dass \(\hat{x}'(t) = \hat{x}(t) \) (ist immer möglich), so gilt

\[\hat{x}'(t) = \hat{x}(t) \quad \text{und} \quad k_{\hat{x}}(t) = k_{\hat{x}}(t). \]

Man sieht, dass untere Berührung als erste Ordnung, im Gegensatz zur der Berührung erste Ordnung durch die Tangente, (in der Tat stimmt sie der Frenet-3-Bogen überein.)
Wie wir uns überlegt haben, beschreibt die Kurvung die Änderung der Tangente.

Wie können wir die Änderung der Schmiegeebene beschreiben? (und die Länge der Kurvung)

Dazu nehmen wir an, dass eine Ebene im \(\mathbb{R}^3 \) durch einen Stützvektor (hier \(X(t) \)) und einen Normalenvektor (hier \(B(t) \)) beschreiben werden kann. Wir müssen also die Änderung des Normalenvektors untersuchen:

\[
B'(t) = \left(T(t) \times N(t) \right)' = T'(t) \times N(t) + T(t) \times N'(t)
\]

\[
= X''(t) \times \left(\frac{1}{k(t)} X'(t) \right) + T(t) \times N'(t)
\]

Somit steht \(B'(t) \) immer orthogonal zu \(T(t) \) und also \(\| B'(t) \| = 1 \), also konstant. \(B'(t) \) ist also orthogonal zu \(B(t) \).

Da der Frenet-Serret-Eigenvektor eine OBNB von \(\mathbb{R}^3 \) ist, muss somit \(B'(t) \) parallel zu \(N(t) \) sein. Das heßt für jeden \(t \) gibt es eine Zahl \(T(t) \in \mathbb{R} \) mit

\[
B'(t) = -T(t) \cdot N(t)
\]

Definition 3.10

Sei \(x: I \rightarrow \mathbb{R}^3 \) eine BLP Kurve, ohne Wendepunkte.

Dam heißt die Funktion

\[
T: I \rightarrow \mathbb{R}, \ t \mapsto T(t) := -\langle N(t), B'(t) \rangle
\]

die **Torsion** von \(x \).
Beispiel 3.1

\[x : \mathbb{R} \to \mathbb{R}^3, \ t \mapsto (r \cos \left(\frac{t}{c} \right), r \sin \left(\frac{t}{c} \right), c \cdot \frac{t}{c}) \]

mit \(l = \sqrt{r^2 + c^2} \)

Eine BLP Helix.

Dann sind

\[x'(t) = \left(-\frac{l}{c} \sin \left(\frac{t}{c} \right), \frac{l}{c} \cos \left(\frac{t}{c} \right), \frac{c}{c} \right) \]

\[x''(t) = \left(-\frac{l}{c^2} \cos \left(\frac{t}{c} \right), -\frac{l}{c^2} \sin \left(\frac{t}{c} \right), 0 \right) \]

und somit \(\kappa(t) = \frac{l}{c^2} = \frac{l}{r^2 + c^2} \)

Für das Frendt-3-Bem erhält man:

\[T(t) = x'(t) \]

\[\mathbf{N}(t) = \frac{1}{\kappa(t)} x'(t) = (\cos \left(\frac{t}{c} \right), -\sin \left(\frac{t}{c} \right), 0) \]

\[\mathbf{B}(t) = T(t) \times \mathbf{N}(t) = \left(-\frac{l}{c^2} \cdot \sin \left(\frac{t}{c} \right), -\frac{l}{c^2} \cdot \cos \left(\frac{t}{c} \right), \frac{l}{c} \right) \]

Also \(\mathbf{B}'(t) = \left(\frac{l}{c^2} \cos \left(\frac{t}{c} \right), \frac{l}{c^2} \sin \left(\frac{t}{c} \right), 0 \right) \)

\[= -\frac{l}{c^2} \cdot \mathbf{N}(t) \]

Somit:

\[\mathbf{\tau}(t) = \frac{l}{c^2} = \frac{l}{r^2 + c^2} = -\langle \mathbf{N}(t), \mathbf{B}'(t) \rangle \]

Bemerkung:

\(\mathbf{\tau} > 0 \) für \(c > 0 \) (außwarts)

\(\mathbf{\tau} < 0 \) für \(c < 0 \) (abwärts)

\(\mathbf{\tau} = 0 \) für \(c = 0 \) (Kreis)
Die für die Krümmung, wollen wir auch die Definition der Torsion auf beliebig parametrisierte Kurven erweitern:

Definition 3.12

Sei \(x: I \to \mathbb{R}^3 \) eine Kurve, nicht notwendigerweise nach BLP, ohne Wendepunkte, und \(\tilde{x}: \tilde{I} \to \mathbb{R}^3 \) eine BLP Umparametrisierung von \(x \) mit Frenet-3-Bein \(\hat{T}(s), \tilde{N}(s), \hat{B}(s) \) und Torsion \(\hat{\tau} \).

Dann sei:

\[
T(t) := \hat{T}(s(t)), \quad N(t) := \tilde{N}(s(t)) \quad \text{und} \quad B(t) = \hat{B}(s(t)) = T(t) \times N(t)
\]

das Frenet-3-Bein von \(x \) bei \(t \in I \) und

\[
\tau(t) := \hat{\tau}(s(t)), \quad t \in I
\]

die Torsion von \(x \).

Bemerkung 3.13

Somit sind der Frenet-3-Bein und die Torsion von \(x \) automatisch unabhängig von der Parametrisierung.

Um die Torsion konkret zu berechnen ist folgender Lemma hilfreich:

Lemma 3.14

Sei \(x: I \to \mathbb{R}^3 \) eine Kurve ohne Wendepunkte. Dann gilt

\[
T(t) = \frac{x'(t)}{\|x'(t)\|}, \quad N(t) = \frac{T'(t)}{\|T'(t)\|} \quad \text{und} \quad B(t) = T(t) \times N(t)
\]

Somit

\[
\tau(t) = \frac{\langle B(t), N(t) \rangle}{\|x'(t)\|} = \frac{\langle x(t), x''(t), x''(t) \rangle}{\|x'(t) \times x''(t)\|^2}
\]
Beweis

Die Gleichungen für $T(t)$ und $\tau(t)$ sind aus Def. 3.12 bekannt.

Für $N(t)$ betrachte man in nächster bei BLP-Umschreibung:

\[
T'(t) = \frac{d}{dt} T(t) = \frac{dx}{ds} T(s) = \frac{d}{ds} \frac{dx}{ds} T(s) = \frac{dT}{ds} T(s) = \frac{d}{ds} S(t)
\]

\[
= \|x'(t)\|
\]

Beweis im Satz 2.20

Und somit

\[
\kappa(t) = \frac{\|x'(t)\|}{\|T'(t)\|} = \frac{\frac{dT}{ds} T(s)}{\|T'(t)\|}
\]

Damit:

\[
N(t) = N(s(t)) = \frac{1}{\kappa(s(t))} \cdot x'(s(t)) = \frac{1}{\kappa(s(t))} \cdot \frac{dT}{ds} T(s(t))
\]

\[
\frac{Nu}{\kappa(t)} = \frac{1}{\kappa(t)} \cdot \frac{T'(t)}{\|x'(t)\|} = \frac{\|x'(t)\|}{\|T'(t)\|} \cdot \frac{T'(t)}{\|x'(t)\|} = \frac{T'(t)}{\|x'(t)\|}.
\]

Nun zur Torsion:

\[
\tilde{N} \perp \tilde{B}
\]

\[
T(t) = T(s(t)) = - \frac{N(s(t))}{\sqrt{\kappa(s(t))}} = \langle \frac{d}{ds} N(s(t)) , \tilde{B}(s(t)) \rangle
\]

\[
= \frac{\langle N'(t) , T(t) \times N(t) \rangle}{\|x'(t)\|} = \frac{\langle N'(t) , T(t) \times T'(t) \rangle}{\|x'(t)\| \|T'(t)\|} = \frac{\langle N'(t) , T(t) \times T'(t) \rangle}{\|x'(t)\|^2 \cdot \kappa(t)}
\]

\[
\Rightarrow (\star \star) : \quad x(t) \perp y(t), \text{ also } \quad o = \langle x(t), y(t) \rangle \quad \forall t
\]

\[
\Rightarrow o = \langle x(t), y(t) \rangle = \langle x'(t), y(t) \rangle + \langle x(t), y'(t) \rangle
\]

\[
\Rightarrow \quad \langle x'(t), y(t) \rangle = - \langle x(t), y'(t) \rangle
\]
Wir bezeichnen mit \(T' = \langle T^n, N \rangle \) und beachten dies ab:

\[
T'' = \langle T''^n, N \rangle + \left(\frac{\partial}{\partial t} \langle T^n, N \rangle \right) \cdot N = k \cdot \|x^{n} \| \cdot N + \left(\frac{\partial}{\partial t} \langle T^n, N \rangle \right) \cdot N.
\]

Also

\[
N' = \frac{T'' - \langle \frac{\partial}{\partial t} \langle T^n, N \rangle \rangle \cdot N}{k \cdot \|x^n\|}.
\]

Damit folgt, da \(0 = \langle N, T \times N \rangle = \langle N, T \times T' \rangle \):

\[
E(t) = \frac{\langle T^n, T(t) \times T'(t) \rangle}{\|x'(t)\|^3 \cdot \kappa(t)^2} = \frac{\langle B(t), N'(t) \rangle}{\|x'(t)\|}.
\]

Für die zweite Formel für die Torsion benötigen wir die Ableitungen

\[
\alpha' = \|x^n\|, \quad \alpha'' = \frac{\partial}{\partial t} \|x^n\| \quad \text{und} \quad \alpha''' = \frac{\partial^2}{\partial t^2} \|x^n\|.
\]

Damit erhalten wir

\[
x' = \alpha' \cdot T, \quad x'' = \alpha' \cdot T', \quad x''' = \alpha' \cdot T'' + 2 \alpha'' \cdot T' + \alpha''' \cdot T
\]

und mit \(T' = \langle T^n, N \rangle = k \cdot \|x^n\| \cdot N \):

\[
x' \times x'' = (\alpha' \cdot T) \times (\alpha' \cdot T') = (\alpha')^2 (T \times T') = k \cdot \|x^n\|^3 \cdot B.
\]

Es ist

\[
B(t) = \frac{T(t) \times N(t)}{\|T(t)\|} = \frac{T(t) \times T'(t)}{\|T(t)\|} - \frac{\alpha(t)}{\kappa(t) \cdot \|x(t)\|} = \left(T(t) \times T'(t) \right) - \frac{\alpha(t)}{\kappa(t) \cdot \|x(t)\|}.
\]

\[
N'(t) = T''(t) - \frac{\alpha(t)}{\kappa(t) \cdot \|x(t)\|} + \alpha(t) \cdot N = T''(t) - \frac{1}{\kappa(t) \cdot \|x(t)\|} + \alpha(t) \cdot N.
\]
Somit: \[\|x' \times x''\| = 2 \cdot \|x'\|^2 \cdot |B| = 2 \cdot \|x'\|^2 \]

Letzlich folgt:

\[
\frac{\langle x''', x' \times x'' \rangle}{\|x' \times x''\|^2} = \frac{(\alpha^3)^3}{2^2} \frac{\langle T'', T \times T' \rangle}{\|x'\|^2} = \frac{\langle T'', T \times T' \rangle}{2^2} = \varepsilon \cdot 2
\]

u \perp u \times v

Ähnlich wie für die Krümmung, wollen wir jetzt noch den Fall von konstanter Torsion 0 verstehen.

Definition 3.15

Eine Kurve \(x: I \to \mathbb{R}^3 \) heißt **eben**, wenn sie komplett in einer Ebene \(\{ p + t v + s w | t, s \in \mathbb{R} \} \) verläuft.

Satz 3.16

Eine Kurve \(x: I \to \mathbb{R}^3 \) ohne Wendepunkte ist genau dann eben, wenn sie konstante Torsion 0 hat.

Beweis

\(\Rightarrow \): Für eine ebene Kurve \(x \) muss die Schrögeebene überall die Ebene sein in der \(x \) verläuft. Insbesondere gilt \(T'(t) = \text{konst.} \), und damit \(T'(t) = 0 \) für \(t \). Also folgt \(T(0) = 0 \) für \(t \).
"⇐": Sei nun ξ eine Kurve mit $\tau(t) = 0 \, \forall t \in I$.

($\exists\, x \in BLP$)

Dann folgt wegen $B'(t) = -\tau(t) N(t)$ und $N(t) = 0 \, \forall t \in I$,
und somit $B(t) = n \in \mathbb{R}^2$ konstant.

Da nach Definition $B(t) \perp T(t)$ gilt, folgt

$\langle x'(t), n \rangle = \langle x'(t), n \rangle = 0$

und somit $\langle x(t), n \rangle = d \in \mathbb{R}$ konstant.

Somit verläuft ξ in der Ebene $\{ y \in \mathbb{R}^2 \mid \langle y, n \rangle = d \}$

(Hesse-Normalform)
3.3 Der Hauptsatz der Kurventheorie

Satz 3.17 (Lie 1892, Darboux 1887)

Krummung und Torsion bestimmen eine Kurve bis auf ihre Parameterisierung und Lage im Raum vollständig.

Genauer:

Zu gegebenen Funktionen \(k : I \to (0, \infty) \) und \(t : I \to \mathbb{R} \) gibt es immer eine Kurve \(x : I \to \mathbb{R}^3 \) die nach Bogenlänge parameterisiert ist, Krummung \(k \) und Torsion \(t \) hat.

Je zwei solche Kurven können durch eine konstante Bewegung ineinander überführt werden.

Beweisidee

Man betrachtet das Freund-3-Bein \(T, N, B \) und dessen Ableitungen \(T', N', B' \). Diese Ableitungen können als Linearkombinationen der Vektoren \(T, N, B \) geschrieben werden:

\[
T'(t) = x''(t) = k(t) N(t)
\]

\[
B'(t) = -t(t) N(t)
\]

\[
N'(t) = (B \times T)'(t) = B'(t) \times T(t) + B(t) \times T'(t)
\]

\[
= -t(t) (N(t) \times T(t)) + k(t) (B(t) \times N(t))
\]

\[
= t(t) B(t) - k(t) T(t)
\]

Hier wurden die Eigenschaften des Vektorprodukts verwendet:

\[
B = T \times N \Rightarrow T = N \times B
\]

sowie \(A \times B = -B \times A \)
Die Frenet-Gleichungen bilden für beliebige glatte Funktionen \(\kappa: I \rightarrow (0,\infty) \) und \(T: I \rightarrow \mathbb{R}^3 \) ein System von Differentialgleichungen auf \(I \times \mathbb{R}^3 \).

Für gegebene Anfangsbedingungen \(T_0 = T(t_0), N_0 = N(t_0) \) und \(B_0 = B(t_0) \) für \(t_0 \in I \) hat ein solches System eine eindeutige Lösung \((T(t), N(t), B(t)) \).

(Existenz- und Eindeutigkeitssatz in Picard-Lindelöf)

Damit erhalten wir eine Kurve

\[
x(t) = \left(\int T_1(s) \, ds, \int T_2(s) \, ds, \int T_3(s) \, ds \right)(t)
\]

Zwei solche Kurven unterscheiden sich nur um einen Vektor \(p \in \mathbb{R}^3 \)

und es gilt:

\[
x'(t) = T(t) \quad \Rightarrow \quad BLP
\]

und somit

\[
x''(t) = T'(t) = \kappa(t) \cdot N(t) \quad \Rightarrow \quad \kappa \text{ ist die Krümmung von } x
\]

und

\[
\frac{\langle x'(t) \times x'(t) \times x''(t) \rangle}{\|x'(t)\|^3} \cdot \kappa(t)^2 = \ldots = \tau(t) \quad \Rightarrow \quad \tau \text{ ist die Torsion von } x.
\]

(Folgt auch direkt, da } BLP \text{ ist.)}

Es bleibt zu zeigen, daß diese Lösungen sich jeweils durch endliche Bewegungen in einem-Bein überführen lassen.

Sei nun \(T_0, N_0, B_0 \) ein weiteres 3-Bein als Anfangsbedingung.

Dann sind

\[
(T_0, N_0, B_0, T_0, N_0, B_0) \in O(3) \quad \text{und}
\]

\[
A_1 \cdot A_2 \text{ überführt } T_0, N_0, B_0 \text{ in das 3-Bein } T_0, N_0, B_0.
\]

Der Rest erledigt nun eine Translation um einen Vektor \(p \in \mathbb{R}^3 \) wie oben.
Wir suchen eine Kurve \(x: \mathbb{R} \to \mathbb{R}^3 \) mit

\[
\begin{align*}
\text{Krummung} & \quad \kappa(t) = \kappa_0 > 0 \quad \forall t \in I \\
\text{Torsion} & \quad \tau(t) = 0 \quad \forall t \in I.
\end{align*}
\]

Als Anfangsbedingungen wählen wir \(T_0 = T(0) = e_2 \), \(N_0 = N(0) = -e_1 \)
und somit \(B_0 = B(0) = T_0 \times N_0 = e_3 \).

Wir müssen nun die Frenet-Gleichungen lösen:

\[
\begin{align*}
T'(t) &= \kappa_0 \cdot N(t) \\
N'(t) &= -\kappa_0 \cdot T(t) \\
B'(t) &= 0
\end{align*}
\]

Daraus leiten wir zuerst die erste Gleichung her und erhalten

\[
T''(t) = \kappa_0 \cdot N'(t) = -\kappa_0^2 \cdot T(t).
\]

Die allgemeine Lösung dieser Differentialgleichung ist

\[
T(t) = \cos(\kappa_0 t) \cdot p + \sin(\kappa_0 t) \cdot q \quad \text{mit } p, q \in \mathbb{R}^2.
\]

Daraus folgt mit der ursprünglichen ersten Gleichung

\[
N(t) = \frac{1}{\kappa_0} \cdot T'(t) = -\sin(\kappa_0 t) \cdot p + \cos(\kappa_0 t) \cdot q.
\]

Durch die Anfangsbedingungen erhalten wir

\[
\begin{align*}
e_2 &= T(0) = p \\
e_1 &= N(0) = q
\end{align*} \quad \implies \quad T(t) &= (-\sin(\kappa_0 t), \cos(\kappa_0 t), 0) \\
N(t) &= (-\cos(\kappa_0 t), -\sin(\kappa_0 t), 0)
\]

Somit ist

\[
x(t) = \left(\frac{1}{\kappa_0} \cdot \cos(\kappa_0 t), \frac{1}{\kappa_0} \cdot \sin(\kappa_0 t), 0 \right) + v
\]

mit \(v \in \mathbb{R}^2 \) die allgemeine Form der gesuchten Kurve.
Allgemein erhalten wir die folgende Klassifikation für Kurven mit konstanter Krümmung k und konstanter Torsion τ:

Satz 3.18

\[k = 0, \quad (\tau \text{ nicht definiert}) \quad : \quad \text{Gerade} \quad (\text{Satz 3.6}) \]
\[k > 0, \quad \tau = 0 \quad : \quad \text{Kreise mit Radius } \frac{1}{k} \quad (\text{Bsp. 3.18}) \]
\[k > 0, \quad \tau \in \mathbb{R} \setminus \{0\} \quad : \quad \text{Helix mit Ganghöhe } \frac{2\pi \tau}{k^2 + \tau^2} \quad \text{und Radius } \frac{k}{k^2 + \tau^2} \quad (\text{Bsp. 3.11}) \]