Lineare Algebra II für Informatiker - Übung 4

Aufgabe 1
Sei V ein endlichdimensionaler Vektorraum. Zeige: $\Phi \in \text{End}(V,V)$ ist genau dann trigonalisierbar (d.h. es gibt eine Basis B von V, so dass in $M_B^V(\Phi)$ unterhalb der Diagonalen nur Nullen stehen), wenn das Chalacteristisches Polynom p_Φ in Linearfaktoren zerfällt.

Lösung
Siehe Skript LA I, Beweis zum Satz 15.2.

Aufgabe 2
Gegeben seien die folgenden Matrizen aus Aufgabe 2

$A = \begin{pmatrix} -1 & 0 & 1 & -2 \\ 0 & 1 & 0 & 1 \\ -4 & 0 & 3 & -4 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ und $B = \begin{pmatrix} -9 & 1 & 5 & -1 \\ 2 & 1 & -1 & -3 \\ -20 & 2 & 11 & -1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$

(a) Zeige, dass A und B unipotent sind (d.h. $E - A$ und $E - B$ sind nilpotent).

(b) Wie lauten die Minimalpolynome m_A und m_B von A und B?

(c) Sind A und B ähnlich?

(d) Bestimme die charakteristischen Polynome p_A und p_B.

(e) Hat jede unipotente $n \times n$-Matrix über \mathbb{C} als charakteristisches Polynom $(1 - X)^n$?

Lösung

(a) Es gilt $\tilde{A} := E - A = \begin{pmatrix} 2 & 0 & -1 & 2 \\ 0 & 0 & 0 & -1 \\ 4 & 0 & -2 & 4 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ und $\tilde{A}^2 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$.

Also ist \tilde{A} nilpotent der Stufe 2.

$\tilde{B} := E - B = \begin{pmatrix} 10 & -1 & -5 & 1 \\ -2 & 0 & 1 & 3 \\ 20 & -2 & -10 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$, $\tilde{B}^2 = \begin{pmatrix} 2 & 0 & -1 & 2 \\ 0 & 0 & 0 & -1 \\ 4 & 0 & -2 & 4 \\ 0 & 0 & 0 & 0 \end{pmatrix}$, $\tilde{B}^3 = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$.

\tilde{B}^4 ist die Nullmatrix. Damit ist \tilde{B} nilpotent der Stufe 4.

(b) m_A ist der normierte Erzeuger des Hauptideals $\mathfrak{a} := \{ f \in \mathbb{C}[X] \mid f(A) = 0 \}$. In (a) haben wir gesehen, dass $(E - A)^2 = 0$. Damit gilt $(1 - X)^2 \in \mathfrak{a}$, das bedeutet, dass \mathfrak{a} von $(1 - X)^2$ erzeugt wird für $k \leq 2$. Wegen $E - A \not\in \mathfrak{a}$ gilt $E - A \notin 3$, also gilt $k = 2$ und $m_A = (1 - X)^2$. Genauso zeigt man, dass $m_B = (1 - X)^4$.

(c) A und B sind nicht ähnlich. Sonst gäbe es ein $S \in \text{GL}_4(\mathbb{C})$ mit $SAS^{-1} = B$ und damit $(E - B)^2 = (SES^{-1} - SAS^{-1})^2 = (E - A)^2S^{-1} = 0$ im Widerspruch zu $m_B = (1 - X)^4$.

(d) $p_B = m_B = (1 - X)^4$, da $m_B | p_B$ gelten muss und da $\deg(p_B) = 4$.

$P_A = \begin{vmatrix} -1 & X & 0 & 1 \\ 0 & 1 & X & 0 \\ -4 & 0 & 3 & -4 \\ 0 & 0 & 0 & 1 - X \end{vmatrix} = (1 - X)^2 \begin{vmatrix} -1 & X & 1 \\ -4 & 3 & -4 \\ 0 & 0 & 0 \end{vmatrix} = (1 - X)^4$

(e) Ja, denn: p_A zerfällt in Linearfaktoren, da wir im Körper \mathbb{C} sind. Nach Aufgabe 1 ist A ähnlich zu einer oberen Dreiecksmatrix $A' = SAS^{-1}$ für $S \in \text{GL}_n(\mathbb{C})$. A' ist auch unipotent, denn $(E - A')^k = (SES^{-1} - SAS^{-1})^k = S(E - A)^kS^{-1} \forall k \in \mathbb{N}$. Also ist $E - A'$ nilpotent (hat also charakteristisches Polynom X^n) und außerdem auch eine obere Dreiecksmatrix. Also

$E - A' = \begin{pmatrix} 0 & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ 0 & \cdots & 0 \end{pmatrix}$ $\Rightarrow A' = \begin{pmatrix} 1 & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ 0 & \cdots & 1 \end{pmatrix}$ $\Rightarrow p_A = p_{A'} = (1 - X)^n$.

1