Riemannian Geometry (Sommersemester 2011)
- Dozent*in: HDoz. Dr. Oliver Baues
- Veranstaltungen: Vorlesung (0152200), Übung (0152300)
- Semesterwochenstunden: 4+2
Ankündigung und Inhalt hier: PDF
Termine | ||
---|---|---|
Vorlesung: | Dienstag 9:45-11:15 | AOC 101 Gebäude 30.45 |
Mittwoch 11:30-13:00 | 1C-03 Gebäude 05.20 | |
Übung: | Donnerstag 15:45-17:15 | 1C-04 |
Lehrende | ||
---|---|---|
Dozent | HDoz. Dr. Oliver Baues | |
Sprechstunde: | ||
Zimmer Allianz-Gebäude (05.20) | ||
Email: | Übungsleiter | Dr. Johannes Riesterer |
Sprechstunde: | ||
Zimmer Allianz-Gebäude (05.20) | ||
Email: |
The course gives an introduction into the study of smooth manifolds and Riemannian metrics. Riemannian metrics are a fundamental tool in the geometry and topology of manifolds, and they are also of equal importance in mathematical physics and relativity.
We will cover the basic concepts of differentiable manifolds and the properties of Riemannian and Pseudo-Riemannian metrics, the Levi-Civita connection, geodesics and Riemannian curvature. We will also study the geometry of basic examples, such as constant curvature space forms, submanifolds, and Lie groups.
Analytic continuation of holonomy around a path
Literaturhinweise
B. O'Neill, Semi-Riemannian Geometry
S. Gallot - D. Hulot - J. Lafontaine, Riemannian Geometry
I. Chavel, Riemannian Geometry: A modern Introduction
weitere Hinweise in der Vorlesung.
Materialien
Grundbegriffe der Topologie