
Exercise Sheet No. 8
– with solutions –

Exercise 36:
Test the following series for convergence. Determine the value of the series in part (a).

(a)

( ∞∑
k=0

(
3 + 4i

6

)k
)
, (b)

( ∞∑
k=1

1
k
√
k + 1

)
, (c)

( ∞∑
k=1

1

k(k + 1)

)
.

Solution 36:
(a) We have a geometric series. Since ∣∣∣∣3 + 4i

6

∣∣∣∣ =

√
9 + 16

6
=

5

6
< 1,

it converges. The value of the series is

∞∑
k=0

(
3 + 4i

6

)k

=
1

1− 3+4i
6

=
6

3− 4i
=

6(3 + 4i)

25
.

(b) We show that the sequence
(

1
k√k+1

)
converges to 1, i.e. it does not converge to 0. The series

(∑∞
k=1

1
k√k+1

)
is hence divergent.

The claims follows by the sandwich theorem for limits of sequences, since

1
k
√
k + 1

≥ 1
k
√

2k
=

1
k
√

2

1
k
√
k
−→ 1 and

1
k
√
k + 1

≤ 1
k
√
k
−→ 1 (k →∞).

(c) We have

k

√
1

k(k + 1)
=

1
k
√
k k
√
k + 1

−→ 1 and

1
(k+1)(k+2)

1
k(k+1)

=
k

k + 2
−→ 1

for k →∞. Thus, we cannot use the ratio or the root test, to discuss convergence of this series.

But since we have
1

k(k + 1)
=

1

k2 + k
≤ 1

k2

and the series (
∑

1
k2 ) converges, by the comparison test the given series also converges.

Exercise 37:
Test the following series for convergence using the ratio test:

(a)

( ∞∑
k=0

2k · 3k

k! · (2k + 1)

)
, (b)

( ∞∑
k=1

k!

2k + 1

)
, (c)

( ∞∑
k=0

kk

k! · tk

)
for fixed t ∈ N.

Solution 37:

(a) With ak = 2k·3k
k!·(2k+1) we have∣∣∣∣ak+1

ak

∣∣∣∣ =
2k+1 · 3k+1

(k + 1)! · (2k + 3)
· k! · (2k + 1)

2k · 3k
=

2 · 3 · (2k + 1)

(k + 1) · (2k + 3)
−→ 0.

By the ratio test the series converges.



(b) With ak = k!
2k+1

we have

|ak+1|
|ak|

=

(k + 1)!

2k+1 + 1
k!

2k + 1

=

k!(k + 1)

2k+1 + 1
k!

2k + 1

=
(k + 1)(2k + 1)

2k+1 + 1
=

k2k + k + 2k + 1

2k+1 + 1
=

k +
k

2k
+ 1 +

1

2k

2 +
1

2k

−→∞ > 1

By the ratio test the series diverges.

(c) With ak = kk

k!·tk we have∣∣∣∣ak+1

ak

∣∣∣∣ =
(k + 1)

k+1

(k + 1)! · tk+1
· k! · tk

kk
=

(k + 1)
k+1

kk · (k + 1) · t
=

1

t

(
k + 1

k

)k

=
1

t

(
1 +

1

k

)k

−→ e

t
.

Here e ≈ 2.72 denotes Eulers’s constant. Thus, the series converges if t > e (i.e. t ≥ 3) and diverges for
t < e, i.e. t = 1 and t = 2.

Exercise 38:
Test the following series for convergence using the root test:

(a)

( ∞∑
k=1

(
3

4
+

1

k
i

)k
)
, (b)

( ∞∑
k=1

(
1 +

1

k

)k2

1

2k

)
, (c)

( ∞∑
k=1

(−1)k
k3

3k

)
.

Solution 38:

(a) k

√√√√∣∣∣∣∣
(

3

4
+

1

k
i

)k
∣∣∣∣∣ =

∣∣∣∣34 +
1

k
i

∣∣∣∣ =

√
9

16
+

1

k2
−→ 3

4
< 1. By the root test, the series converges (absolutely).

(b) k

√√√√∣∣∣∣∣
(

1 +
1

k

)k2

1

2k

∣∣∣∣∣ =

(
1 +

1

k

)k
1

2
−→ e

2
> 1. As in Problem 37c), e ≈ 2.72 is Euler’s constant. By the

root test, the series diverges.

(c) k

√∣∣∣∣(−1)k
k3

3k

∣∣∣∣ =

(
k
√
k
)3

3
−→ 1

3
< 1. By the root test, the series converges (absolutely).

Exercise 39:
Use Leibniz’ test to show that the following series converge. Moreover find an index N such that for all n ≥ N
the nth partial sum differs from the value of the series by at most 1

100 .

(a)

( ∞∑
k=1

(−1)k+1 k + 1

k2 + 3k + 2

)
, (b)

( ∞∑
k=1

(−1)k+1
(√

2k + 2−
√

2k
))

.

Solution 39:

(a) Let ak = k+1
k2+3k+2 = k+1

(k+1)(k+2) = 1
k+2 . Then we have ak > 0 for all k ∈ N and ak → 0 for k →∞. Further

the sequence (ak) is monotonically decreasing, since

ak+1 − ak =
1

k + 3
− 1

k + 2
=

k + 2− k − 3

(k + 3)(k + 2)
=

−1

(k + 3)(k + 2)
< 0.

Thus, by Leibniz’ test the series converges.

Further for every n ∈ N, for the nth partial sum sn =
∑n

k=1(−1)k+1ak and the value A =
∞∑
k=1

ak we have

|sn −A| ≤ an+1 =
1

n + 3
.

Thus, for all n ≥ N = 97, sn differs from A by at most 1
100 .



(b) Since
√

2k −
√

2k + 2 is negative, we cannot use Leibniz’ test. Consider

bk = −
(√

2k −
√

2k + 2
)

= −
(√

2k −
√

2k + 2
) √2k +

√
2k + 2√

2k +
√

2k + 2
=

2√
2k +

√
2k + 2

.

One can see that bk > 0 for all k ∈ N and that (bk) is monotonically decreasing and converges to 0. The
monotonicity follows from

bk+1 − bk =
2√

2k + 2 +
√

2k + 4
− 2√

2k +
√

2k + 2
= 2

[ √
2k +

√
2k + 2−

√
2k + 2−

√
2k + 4

(
√

2k + 2 +
√

2k + 4)(
√

2k +
√

2k + 2)

]

= 2

[ √
2k −

√
2k + 4

(
√

2k + 2 +
√

2k + 4)(
√

2k +
√

2k + 2)

]
< 0.

Thus, the series
∞∑
k=1

(−1)k+1bk converges by Leibniz’ test and we have

∞∑
k=1

(−1)k+1
(√

2k −
√

2k + 2
)

= −
∞∑
k=1

(−1)k+1bk.

We further have for all n ∈ N for the nth partial sum sn =
∑n

k=1(−1)k+1bk and the value B =
∞∑
k=1

(−1)k+1bk:

|sn −B| ≤ bn+1 =
2√

2k + 2 +
√

2k + 4
.

Thus, for n ≥ N = 5000 we have

|sn −B| ≤ bn+1 ≤ bN =
2√

10002 +
√

10004
≤ 2√

10000 +
√

10000
=

2

200
=

1

100
.

This estimate also holds for the series under consideration.

Exercise 40:

(a) Show that the series ( ∞∑
k=0

(
x− 1

x + 1

)k
)
, for fixed x ∈ R>0

converges and determine the value.

(b) For which q ∈ R does the series
∞∑

n=0
(n + 1)qn converge?

Solution 40:

(a) We have a geometric series with q = x−1
1+x . For x > 0 we have −2x < 2x, which is equivalent to 1−2x+x2 <

1 + 2x + x2, i.e. (x − 1)2 < (1 + x)2 and thus,
(

x−1
1+x

)2
< 1 and

∣∣∣x−11+x

∣∣∣ < 1. Thus, this geometric series

converges and the value is
1

1− q
=

1

1− x−1
x+1

=
x + 1

2
.

(b) Root test: n
√
|(n + 1)qn| = n

√
n + 1|q| n→∞−→ |q|. Absolute convergence for |q| < 1,

divergence for |q| > 1. For |q| = 1 the sequence (n+ 1)qn does not converge to 0, so the series is divergent.


