Problem 1 Additive subgroups of \mathbb{C}
Recall that a subgroup H of a topological group G is discrete if the subspace topology on $H \subseteq G$ is the discrete topology on H, that is, if each subset $U \subseteq H$ is open with respect to this topology.

Let $A \subseteq \mathbb{C}$ be a subgroup of the additive group $(\mathbb{C}, +)$. Show that A is discrete if and only if A is generated by at most two elements that are linearly independent over \mathbb{R}.

Problem 2 Moebius transformations
(a) Let $A, B \in \text{SL}_2(\mathbb{C})$ and denote by γ_A and γ_B their associated Moebius transformations $\mathbb{P}^1 \mathbb{C} \to \mathbb{P}^1 \mathbb{C}$.
Show that γ_A and γ_B commute if and only if they have the same fixed points.

(b) Now let $A, B \in \text{SL}_2(\mathbb{R})$ and let γ_A and γ_B denote their associated Moebius transformations $\mathbb{H} \to \mathbb{H}$.
Suppose that γ_A and γ_B have either one or two fixed points in common. Prove that A and B generate a discrete subgroup if and only if they have a common power.

Problem 3 Rigidity of surface groups
Let X and Y denote two connected surfaces, such that $\pi_1(X) \cong \pi_1(Y)$. Are X and Y homeomorphic? If not, give criteria for when you can conclude that they are.

Problem 4 Teichmüller space and the representation variety of $\pi_1(S_g)$
In the lectures we made use of a map

$$\iota: T(S_g) \to \text{Rep}^*(\pi_1(S_g), \text{PSL}_2(\mathbb{R}))$$

$$[X, f] \mapsto [\rho_{X,f}],$$

where $\rho_{X,f}$ was given as the composition

$$\pi_1(S_g, *) \xrightarrow{f_*} \pi_1(X, *) \cong \text{Deck}(\mathbb{H}/X) \hookrightarrow \text{PSL}_2(\mathbb{R}).$$

Prove that ι is indeed well-defined and injective.