A foreshadow of principal bundles

Consider the following map \(p \) from the unit circle \(S^1 \) to itself:

\[
p : X = S^1 \rightarrow B = S^1, \ z \mapsto z^2 \text{ where } S^1 = \{ z \in \mathbb{C} | |z| = 1 \}
\]

Let \(G \) be the group \((\mathbb{Z}/2\mathbb{Z}, +) = < \varphi >\) endowed with the discrete topology.

Show that there is an action of \(G \) on \(S^1 \) from the right such that:

A) \(G \) acts effectively, i.e.: \(\forall x \in S^1, s \in G : (x \cdot s = x \Rightarrow s = \bar{0}) \).

Here \(\bar{0} \) is the identity element in \(G \).

B) \(X/G \) is isomorphic to \(B \).

C) The map

\[
\tau : X^* = \{(x, xs) | x \in X, s \in G \} \rightarrow G
\]

with the property \(x \cdot \tau(x, y) = y \) is continuous.

What is the fibre of a point on \(S^1 \)?

Let now \(F \) be the unit interval \([-1, 1]\). Consider the action from the left of \(G \) by \(\varphi : z \mapsto -z \) for the non trivial element \(\varphi \in G \). This action and the action of on \(X \) from the right from above give an action on the product \(X \times F \):

\[
G \ni s : (x, t) \mapsto (x \cdot s, s^{-1} \cdot t).
\]

Does the map \(p_F : (X \times F)/G \rightarrow B, (x, t) \cdot G \mapsto p(x) \) also satisfy the properties A), B) and C) from above? The topological space \((X \times F)/G \) is a topological space which you know very well. Which one? What is the fibre of a point on \(B \) via \(p_F \)?

Getting explicit about group homology

Let \(G \) be a group. It holds

\[
H_1(G; \mathbb{Z}) \cong \mathcal{I}/\mathcal{I}^2 \cong G/[G, G],
\]

where \(\mathcal{I} \) is the so called augmentation ideal, i.e. the kernel of the ring homomorphism

\[
\varphi : \mathbb{Z}[G] \rightarrow \mathbb{Z}, f \mapsto \sum_{x \in \text{supp}(f)} f(x).
\]

Hint:

First show \(H_1(G; \mathbb{Z}) \cong \mathcal{I}/\mathcal{I}^2 \) by using the long exact sequence induced by the short exact sequence of \(\mathbb{Z}[G] \)-modules you get from \(\varphi \). It is probably helpful to convince yourself that \(\{ g - 1 | g \in G \} \) is a basis of \(\mathcal{I} \) as a free \(\mathbb{Z} \)-module.

Again using this basis, you can show \(\mathcal{I}/\mathcal{I}^2 \cong G/[G, G] \) elementary.

A useful property of the derived functor

Prove that the zeroth derived functors are isomorphic to the original functor, i.e. \(R^0G(A) \cong G(A) \) and \(L_0F(A) \cong F(A) \) for right exact functors \(F \), left exact functors \(G \) and all modules \(A \).