Literatur zu Origamis
Auf dieser Seite wollen wir Literatur zu Origamis/square tiled surfaces sammeln. Falls Ihnen weitere Referenzen einfallen, die in diese Liste passen, würden wir uns freuen, wenn Sie uns diese mitteilen (Email an Gabriela Schmithüsen, schmithuesen@mathematik.uni-karlsruhe.de).
Literatur zu Origamis/Square tiles surfaces:
- O. Bauer: Stabile Reduktion und Origamis. Diplomarbeit 2005.
- A. Eskin, A. Okounkov: Asymptotics of numbers of branched coverings of a torus and volumes of moduli spaces of holomorphic differentials Invent. Math. 145 (2001), no. 1, 59--103.
- F. Herrlich, A. Kappes, G. Schmithüsen: An origami of genus 2 with a translation. Preprint (2008)
- F. Herrlich, G. Schmithüsen: A comb of origami curves in the moduli space M_3 with three dimensional closure. Geometriae dedicata 124, 69 -- 94 (2007).
- F. Herrlich, G. Schmithüsen: An extraordinary origami curve. Mathematische Nachrichten 281, No. 2, 219 -- 237 (2008).
- P. Hubert, S. Lelievre: Noncongruence subgroups in H(2). International Mathematics Research Notices 2005:1 (2005), 47-64.
- P. Hubert, S. Lelievre: Prime arithmetic Teichmüller discs in H(2). Israel Journal of Mathematics 151 (2006), 281-321.
- A. Kappes: On the equation of an origami of genus two with two cusps. Diplomarbeit 2007.
- K. Kremer: Galoische Mumford-Origamis. Diplomarbeit 2005.
- S. Lelievre, R. Silhol: Multi-geodesic tessellations, fractional Dehn twists and uniformization. Preprint (2007).
- P. Lochak: On arithmetic curves in the moduli spaces of curves, J. Inst. Math. Jussieu 4, No. 3, 443-508 (2005).
- M. Maier: Schnittpunkte von stabilen Kurven, die als Randpunkte von Origamikurven vorkommen. Diploma thesis.
- M. Möller: Teichmueller curves, Galois actions and GT-relations Math. Nachrichten 278 No. 9 (2005).
- G. Schmithüsen: Origamis with non congruence Veech groups. In Proceedings of Symposium on Transformation Groups, Yokohama, November 2006
- G. Schmithüsen: Examples of origamis. Proceedings of the III Iberoamerican Congress on Geometry. In: The Geometry of Riemann Surfaces and Abelian Varieties. Contemp. Math. 397, 2006 (p. 193 206).
- G. Schmithüsen: Veech Groups of Origamis. Dissertation Karlsruhe 2005.
- G. Schmithüsen: An algorithm for finding the Veech group of an origami. Experimental Mathematics 13, No.4, 459-472 (2004).
Ein Wiki, in dem Beispiele für interessante Translationsflächen gesammelt werden, hat Thierry Monteil mit dem Wild Translation Surfaces Project ins Leben gerufen.