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1. INTRODUCTION

After the fundamental work of Veech in 1989 (|Ve|), a lot of efforts have
been done to understand Veech groups of translation surfaces of finite
area. Infinitely generated Veech groups were discovered among them

(see [HS], [Mc]).

Recently, work on translation surfaces of infinite area was done (see
[Ho|, [Val], [HW]), which motivates our study. We work with a class of
special translation surfaces that are coverings of the square torus ram-
ified over the origin. They are called square tiled surfaces or origamis.
These surfaces correspond to integer points in the moduli spaces of
abelian differentials. Their Veech groups are subgroups of SLy(Z).
There is an abundant literature on the subject (see for instance [HL2],
[Sc2], [Se3], [Sc4]). In this paper, we study Veech groups of a family of
infinite origamis that are obtained as Z-covers of finite origamis.

Theorem 1. There exists a countable family of origamis (Y, an) of
infinite area which arise as Z-covers of genus 2 origamis and whose
Veech groups are infinitely generated subgroups of SLy(Z).

Moreover, we prove that the limit set of these Fuchsian groups is P*(R)
which means that they are Fuchsian groups of the first kind. We will
see in the sequel of the paper that these families are completely explicit
and we will give a more precise statement later. A slightly more general
result is stated in Theorem 2. Our result provides a new phenomenon.
In fact, if a subgroup of SLy(Z) that contains a hyperbolic element can
be realized as the Veech group of a finite origami, then it is a lattice in

SLy(R) (see |GJ]).

Reader’s guide The strategy of the proof has commonalities with
[HS] and [Mc|. One way to prove that a Fuchsian group is not finitely
generated, is to show that it is not a lattice and that the limit set is

equal to P1(R). We check that some periodic direction is not parabolic,
1
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which immediately implies that the group is not a lattice. The difficult
part is to prove that the limit set is everything. We prove that the
parabolic directions are dense. In our situation, the key ingredient is
to check that the periodic directions with one cylinder on the finite
origami are still parabolic on its Z-cover. Then, it is clear that the or-
bits of the cusps corresponding to periodic directions with one cylinder
are dense in P*(R) which is enough to finish the proof.

In the last section of the paper, we use the embedding of the affine group
in some linear group GLg(Z) to find explicit subgroups of GLg(Z)
that are infinitely generated and intersection of two finitely generated
groups.

Acknowledgments: The first author is partially supported by project
blanc ANR: ANR-06-BLAN-0038.The second author is indebted to
the Landesstiftung Baden-Wiirttemberg for facilitating the analysis en-
tailed in this paper.

2. BACKGROUND

In this section, we recall classical facts about origamis and translation
surfaces.

Translation surfaces A surface is a compact translation surface, if it
can be obtained by edge-to-edge gluing of finitely many polygons in the
plane using translations only. A compact translation surface induces a
flat metric with singularities. It is a Riemann surface X endowed with
a holomorphic 1-form whose zeroes are the singularities of the flat met-
ric. There is a one to one correspondence between compact translation
surfaces and compact Riemann surfaces equipped with a holomorphic
1-form.

Infinite translation surfaces are obtained from glueing countably in-
finitely many polygons again by edge-to-edge gluing via translations.
The result X is in general not a surface, since the vertices of infinitely
many polygons might glue to the same point on X. Such a point is
called an infinite angle singularity. A punctured neighbourhood of an
infinite angle singularity is a Z-cover of the punctured disk. Let X be
X with all infinite angle singularities removed. Then X is an infinite
translation surface. As in the compact case X is a Riemann surface
endowed with a holomorphic 1-form, which defines a flat metric on X.
X is the completion of X with respect to this metric (see e.g. [Va2]
for a more detailed introduction to infinite translation surfaces). In
a slight abuse of notations, we will sometimes also refer to X as the
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translation surface, in order to keep notations simple.

Veech groups Given any translation surface (X,w), an affine dif-
feomorphism is an orientation preserving homeomorphism of X that
permutes the singularities of the flat metric and acts affinely on the
polygons defining X. The group of affine diffeomorphisms is denoted
by Aff(X,w). The image of the derivation

i {Aff(X,w) — GLy(R)
' fr=df

is called the Veech group. In the sequel, it is denoted by I'(X) (SL(X, w)
is an other frequently used denotation for it). If (X,w) is a finite
translation surface, then I'(X) is a Fuchsian group. If (X,w) is an
infinite translation surface as defined above and X is its completion,
we define T(X) = I'(X).

Parabolic elements A cylinder on a compact translation surface X
is a maximal connected set of homotopic simple closed geodesics. If
the genus of X is greater than one, then every cylinder is bounded by
saddle connections. A cylinder has a width (or circumference) x and a
height y. The modulus of a cylinder is u = z/y.

An affine diffeomorphism is parabolic if the absolute value of the trace
of its derivative is equal to 2. We know from Veech’s paper (see |Ve|)
that there is a canonical way to construct parabolic elements in the
affine group.

Let (X,w) be a translation surface of finite area. Assume that it has
a decomposition into metric cylinders for the horizontal direction with
commensurable moduli, then the Veech group SL(X,w) contains

pr=(o 1)

where ¢ is the least common multiple of the moduli.

A direction (slope) is parabolic if the surface is decomposed in this di-
rection into cylinders with commensurable moduli. This means that
there is a parabolic affine diffeomorphism fixing this direction. A para-
bolic direction is a one-cylinder direction, if the surface is decomposed
into one cylinder in this direction.

Origamis define special cases of translation surfaces. There are several
definitions of origamis (algebraic, geometric, combinatorial). We will
switch between the following different possible descriptions (each with
the appropriate equivalence relation):

e collection of Euclidean unit squares with gluing rules,
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e covering p : X — E of the torus E ramified over at most one
point called oo; here a (ramified) covering is a map which is
continuous, open and discrete;

e monodromy map Fy, — Sy or Fy — Sym(Z), which leads to a
transitive action,

e transitive pairs of permutations (op,0,) in Sy or in Sym(Z),
where o, describes the horizontal gluings and o, describes the
vertical gluings and

e subgroups U of F,. F, = Fy(x,y) is the free group in the 2
generators x and y. It is identified with the fundamental group
of the one-punctured torus Ej = C/(Z & Zi); x is identified
with the horizontal and y with the vertical standard generator

of m (E}).

If the origami is built from finitely many squares than it is called a finite
origamsi; otherwise it is an infinite origami. The equivalence above is
carried out for finite origamis in details in Section 1 of [Sc4|; the same
proofs work for infinite origamis.

For finite origamis, X = X is a translation surface; for infinite origamis,
we have to remove the infinite-angle singularities and obtain an infinite
translation surface X. The decomposition into Euclidean unit squares
makes it to a square-tiled surface. We call the points in p~'(c0) cusps.
They are precisely the points coming from vertices of the Euclidean
squares and all singularities are among them.

Monodromy Recall that an unramified covering p : X — Y naturally
defines an action from the right of the fundamental group m(Y) on
the fibre E of a base point y on Y. Namely for zy,2, € X with
p(x1) = p(ag) =y, ¢ € m(Y) we have:

T1-Cc= Ty < the lift of cin x; ends in 5.
This action defines the monodromy map m : m (Y) — Sym(E):
m(c) = (x1 — z7 - ¢) for ¢ € m(X)

Observe that the monodromy map defined in this way in general is
not a group homomorphism, but suffices the condition m(c; - ¢3) =
m(cz) o m(cq). However if the image of m is abelian, as it will almost
always be the case in this article, this is equivalent to being a group
homomorphism.
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Veech groups of finite origamis The Veech group of a finite origami
is a lattice in SLo(R)(see |GJ]). More precisely, the Veech group of an
origami is commensurable to SLy(Z), i.e. they share a subgroup which
is of finite index in both groups. Moreover, if (X,w) is an origami
and if we denote by X* the complement in X of the preimages of the
origin of the torus, then the Veech group of (X* w) is a subgroup of
finite index of SLy(Z). As an origami is a covering of the torus, every
direction of rational slope is a parabolic direction.

3. AN INFINITE FAMILY OF INFINITE TRANSLATION SURFACES

In this section we introduce the family Z7% of infinite square-tiled sur-
faces. They occur as limit cases of sequences (Zf;b)kez of finite ones.

Definition 1. Let Z,;, = Z;,b (a,b € No,a > 2) be the origami drawn
in Figure 1. More precisely, the corresponding covering map to the
torus is described by the two permutations

op=012 ... a), o,=(1 a a+1 ... a+b).

Let Z} , be the punctured surface obtained from Z,y by removing all the
vertices of the squares. Its fundamental group U, = 7r1(Z;b) 18:

Ua,b = <0, 92, 93, hi, lj|z'€{1,...,a—2},jE{l,...,b}>

a—1

with gy =ya=7V, gy = a7y gy =a°,
h; = xiyx™, l; = 2% Lylpy~Ig—la=b),

We have chosen the base point of 7r1(Z:;b) in the square labelled by 1.

.—AD.
a+b
a+ 1
N
a 5

Figure 1: The origami Z, . Fdges labelled by the same letter and
unlabelled opposite edges are identified.

Observe that the genus of the surface Z,; is 2, if (a,b) # (2,0). More
precisely, the genus g of Z,; and the number n of zeroes can be read
off from Figure 1 and Figure 2 differing four cases:
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e Case: a=2 b=0 = g=1landn=0 (Figure?2).
e Case ILLIIl: a=2, b>1 or a>3, b=0

= g=2andn=1 (Figure 2).
e General case: a >3, b>1

= g=2andn=2 (Figurel).

In Case IT and Case I1I we have one zero of angle 67 and in the general
case two zeroes each of angle 4.

A

o—0

2+b
BA B 3 B A
A B A B A B
Case | Case 11 Case 111

Figure 2: The three special cases for Z,:
Case I:a=2,0=0, Casell:a=2,b>1, Caselll:a>3,b=0.

Now, we build the surface Zf’b (k € N) from Z, 5, as follows: We slit Z,
along the edges A and B (compare Figure 1 and 2). We then take k
copies of the two-slit surface and label them by the elements in Z/kZ.
We glue A-edges to A-edges and B-edges to B-edges according to the
following rules.

Gluing Rules:

e Crossing the A-edge of the copy labelled by | in the direction
bottom to top leads to the copy labelled by [ + 1.

e (Crossing the B-edge in the direction bottom to top leads to the
copy labelled by | — 1.

The result is a connected translation surface without boundary (see
Figure 3). By construction Zf,b comes with a covering map p* = pf‘;b :
Z¥y, — Zay of degree k which is ramified at most over the vertices of
the squares. Its group of Deck transformations is Z/kZ.
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Definition 2. Let p* = plg’b : Z('Zb — Zap be the k-fold cover given by
the monodromy map

mk = m’évb 0 Usp — Sym(Z/kZ), defined on the generators as follows:
g = (z—z=1), g (2 z2+1),
gs, hi, l]|—>1d (’lE{l,...,CL—Q},jE{l,...,b})

Here Sym(Z/kZ) denotes the symmetric group of Z/kZ and g1, g2, gs,

the h;’s and the l;’s are the generators from Definition 1. A
Ba+3b
- Ba+2h
2a+2b B
2a+b
a+b
B
A

Figure 3. The origamsi Zk for k = 3. FEdges labelled by the same
letter and unlabelled opposite edges are identified.

Finally, we obtain a connected infinite translation surface Z35 by gluing
infinitely many copies of the two-slit surface which are labelled by the
integer numbers according to the same gluing rules from above.

Definition 3. Let p™ = pg5, © 255 — Zayp be the Z-cover given by the
monodromy map

mOO

=mgy, : Uiy — Sym(Z), defined on the generators as follows:
g1 — (z—2-1), g — (z—2+4+1),

gs, hi, ljl—>l(l (ie{l,...,a—Q},jE{l,...,b})

Sym(Z) denotes the symmetric group of Z, g%* 15 the punctured sur-

face Z35\{vertices of the squares}.
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4. MONODROMY OF THE INFINITE ORIGAMI

There is a simple way, to determine the monodromy of the map p*
from Definition 3: Let ¢ be a closed path on Z;, and let ¢ be a lift
of c on Z75". It follows immediately from the gluing rules on Page 6
that ¢ ascends one copy, whenever ¢ intersects the A-slit or the B-slit
in a positive crossing and it descends one copy, whenever it intersects
in a negative crossing. Here A and B carry the orientation indicated
in Figure 1 and positive and negative crossing is defined as shown in

Figure 4.
#c 74 c

positive crossing negative crossing

Figure 4. Oriented crossings.

From this we obtain the following Lemma.

Lemma 4. Let ¢ be a closed curve on Z;, and let w be the corre-
sponding element in 7T1(Z:;b) written as word in the generators from
Definition 1.

i) m™®(c) =t of positive crossings — § of negative crossings,
where we consider crossings of ¢ with the slits A and B.

i) m*(c) = —fg, (W) + g, (w);
here §,,(w) is the number of g;’s in w with 92'_1 counting as —1.

Recall that the cusps of Z¥,, resp. Z%, are the points in Zib\Zk *

a,b’ a,b’ a,b
resp. Zg%\Zg%* Using Lemma 4 we easily obtain their type. For this
we consider small positively oriented simple loops around the cusps.

Corollary 5. For a cusp P let lp be a small positively oriented loop
around P. We distinguish the four different cases described after Defi-
nition 1 and shown in Figure 1 and Figure 2:

General case: If P = e, the monodromy of lp is 1; if P = o, it is —1.

Thus on Z!Zb both cusps have precisely one preimage which is a zero of
angle 2km. Hence the genus of Zf’b s 2k.

On Z35, the singularities have each precisely one preimage which is an
infinite angle singularity. The genus of Z25, is infinite.

Case (I): If P = o, the monodromy of lp is 2; if P = e, it is -2.

Thus each cusp has one preimage on Zfzb, if k is odd and two preimages,
if k 1s even. The genus of Z('Zb s k, if k is odd and k — 1, if k is even.
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On Zg5, each cusp of Z,p has 2 preimages which are infinite angle
singularities. Z2 has infinite genus.

Case (I1I) and Case (I1I1): For P = e , the monodromy of l,, is 0.
Hence the maps p’;b and py, are unramified even above the cusps. In
particular the cusp ® on Z,, has k preimages on Zf’b and infinitely
many preimages on 255, each of angle 6w respectively. The genus of
Z(’Zb is k+1 and Z35, is again an infinite genus surface.

5. THE VEECH GROUPS

In the following, Z,, Z(’;b and Z7% are always endowed with the trans-
lation structure coming from the square tiling; therefore, throughout
all notations we will omit to explicitely denote the translation structure.

Observe that the Z-module spanned by the development vectors of
the saddle connection on Z29 is equal to Z?%. Hence we do not have
to distinguish between Z7 and the punctured surface Z25", since the
affine groups Aff(Z75) and Aff(Z25") coincide and we have I'(Z29) =
[(z35) = GL*(23%) = SL(Z3%). If (a,b) # (2,0) or k& > 3, the
same is true for the translation surface Z(’;b. In particular we have

F(Zf,b) = F(Zf,b*) for (a7 b) # (2, 0) or k> 3.

The surfaces ZJ (k € N, k odd) appear in [He, 4.3] as origamis N St;.
They occur as the smallest normal cover of the stair-origamis” St,
which consists of stairs of k£ squares, whose opposite edges are identified.
Hence the Veech groups T'(Z}) contain the subgroup of the respective
[(Sty) (see e.g. [Sc3, 3.1(5)]). The Veech groups I'(St;) were calculated
in [Sc3]. They are I'(2), if k is even, and

(1) r = {(CCL 2)|a+candb+dodd},

if k is odd. We will see in Remark 6 that I'(Z5,) = T for all k. Equa-
tions for curves in these infinite families have been examined in [LS].
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Figure 5. The origams ZQO for k finite and k infinite. Edges with the
same label and unlabelled opposite edges are identified.

Remark 6. Let k € N>z U {oo}. The Veech group I'(Z5,) =T, where
[ is the group defined in (1).

Proof. Observe that the surface ZQO decomposes in the horizontal and
the vertical direction in cylinders of length 2. Thus the Veech group
contains the two matrices

() e o 3)

These two matrices generate I'(2), hence we have I'(Z5) 2 T'(2). Ob-

serve furthermore that the fundamental group N := 7r1(Z§70*) Is a
normal subgroup of F5 and we have:

Ny = << 22,92, (xy)* >>, if k is finite, and N = << 22, ¢y% >>,

where << - >> denotes the normal subgroup generated by the ele-
ments between the brackets. The automorphism defined by = — y and
y — x~! stabilises Ny for all k € N>3 U {co}. Thus

0 -1
= (1 9)
is in T'(Z5,) (see e.g. [Sc2, Lemma 2.8]). Since I' is generated by I'(2)
and S, we have that I'(Z§,) contains I'. Finally, T' has index 3 in
SLy(Z). Thus it suffices to show that I'(Z5,) # SLa(Z). Consider the
automorphism v : x +— y,y — xy. Then v(y*) € N, for all n. Thus v
does not stabilise Ng. Since Ny is normal, composing by a conjugation
leads again to an element which is not in the stabiliser. Thus the image

of v under the projection Aut™(Fy) — SLy(Z) is not in the Veech group
I'(Z5,). This finishes the proof. O
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It follows from Remark 6 that in the case (a,b) = (2,0) the Veech
group of Z25 is a lattice. We will see in Theorem 1 that this is not the
case in general. We assume from now on always that (a,b) # (2,0).

Theorem 1. Let 175, = ['(Z35) be the Veech group of the infinite trans-
lation surface Z35, with (a,b) 7é (2,0). If a orb is even, then I'yy, is an
infinitely generated subgroup of SLQ(Z).

Proof. We show in Lemma 7 that '35 has infinite index in SLy(Z). It
remains to show that the limit set of the Fuchsian group I'%, is dense

on R =R U {oo}. In order to prove this, we proceed as follows.

e We show in Corollary 9 that, whenever v € R? is a one-cylinder
direction of Z,p, then Z23 decomposes in direction v into cylin-
ders isometric to the one cylinder on Z,;. It follows that the
Veech group I'7%, contains parabolic matrices with eigenvector

v. Thus z, = z—” is a cusp of I'?%, where p,, g, are the z- and
v

y-coordinates of v, i.e. v = (2’:)
e We show in Lemma 10 that v = (f) is a one-cylinder direction
2) is a one-cylinder direction, if b
is even. It follows that v(v) is a one-cylinder direction of Z,,

for all v in the Veech group I'(Z,;). By the preceding item it
follows that all the points 2, are cusps of I'55,. Since I'(Z,4)

of Zyp, if a is even and v = (1

is a lattice in SLy(R),they lie dense in R.
U

We now fill in the details of the proof of Theorem 1.

Lemma 7. For any a,b € Ny with a > 2, (a,b) # (2,0) the Veech
group 155, of the translation surface Z35 has infinite index in SLy(Z).

Proof. We proceed as follows: we consider the translation surface

(2) ob = Zap - B, where B = (_01 }) ,

This means that Y2 arises from Z7% by decomposing each chart in
the atlas with the affine map z — B-z. Then Y} and Z5 are affine
equivalent and T'(Y %) = BT'(Z35)B~'. We show that the Veech group
of Y% does not contain any power of

()

Thus I'(Y ;) and therefore also I'(Z5)  has infinite index in SLy(Z).
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By construction Y % comes with a Z-covering pl_ : Y % — Y, where
Yoo = Zap- B. The surface Y, is equivalently obtained by composing
the origami map Z,, — E = C/(Z @& Zi) with the affine (but not
holomorphic!) map E — E which is the descend of C — C,z — B - z.
Hence, Y, is again an origami with monodromy ¢’ = o o 7151, where
o is the monodromy of the origami map Z,;, — E and 7 is a lift of
B to Aut(Fy). We choose vp : Fy — Fy,x — y~ ! y — yx. Using the
permutations o, = o(x) and o, = o(y) given in Definition 1, we obtain
the monodromy of Y.

o'(x) = o(yg' (@) =olzy) =o(y)oo(x) = 0,00,
= (12 ... a—-1a+1 ... a+b)

oy) = oc(v3'(y) =c(@)=0,"=(a a—1 ... 1)

The corresponding square-tiled surface is drawn in Figure 6.

a-1
A A
B| a |B
1 2 3 4 5 6 ... a2
Al 1 - - a2 ] a a+1§ al2|--- lath|A
Y Ci Y
1 2 3 4 5 6 o.ooa2 al

Figure 6: The origami Y., = Z,p - B. Edges labelled with the same
number or letter and unlabelled opposite edges are identified.

Y, consists of two horizontal cylinders, one of length a + 0 — 1 and
one of length 1. The two oriented segments A and B on Z,; become
segments in direction B - ((1)) = (_01) and B - (_01) = (2) on Y, respec-
tively. A is the unique horizontal segment on Z,;, which is intersected
by the path starting in Square 1 induced by y~! (see Figure 1). Hence
it becomes the unique vertical segment on Y, ;, which is intersected by
the path starting in Square 1 induced by vp(y~!) = 27 'y~!. This is
the vertical edge between the square labelled with 1 and the square
labelled with a + 0. Similarly one obtains that B becomes the vertical

edge which bounds the square labelled with a from both sides.

Similarly as before (see Lemma 4), the monodromy map m’* of the
infinite cover p/_ : ab = Yab is obtained as follows: Let ¢ be a closed
curve on Y, ;. Its monodromy m’*(c) is the number of oriented inter-
sections with the segments A and B. The orientations of A and B are
indicated by the arrows in Figure 6.
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Let us suppose for the moment that b > 1. We fix in the following the
vector v; = ((1])

Let ¢ now be a closed curve on Y, with developing vector v; which
runs through the square labelled by a + 1 (see Figure 6). It does not
cross any cutting slit. Hence each lift ¢ of ¢ on Y %" is also a closed
curve with developing vector v;. Suppose now that 7" € F(Yafg) for

some n € N>; and let f be an affine diffeomorphisms of Y% with
derivative T". By passing to a power if necessary, we may assume that
n > a+b. Then ¢, = f(¢) is a closed curve with developing vector

Vy = Tn'Ul = (7{)

Its image c; = p[ (é2) on Y, is then as well a closed curve with devel-
oping vector ve. Furthermore its monodromy m’*°(¢y) is 0. Observe
from Figure 6 that first of all any closed curve with developing vec-
tor vy intersects a horizontal saddle connection. Thus we may assume
that the starting point of ¢y lies on a boundary of the two horizontal
cylinders. Then again since its developing vector is vs, co hits at most
one of the two slits and it intersects it always in the same direction.
Furthermore it intersects at least once, since n > a + b — 1. Therefore
m’ *(cq) is either positive, if ¢; lies in the bottom cylinder, or it is nega-
tive, if ¢y lies in the top cylinder. In any case it is not 0. Contradiction!

Let us finally consider the case b = 0, see Figure 7. We replace the
vector v; = ((1]) by the vector v] = (}) and the closed curve ¢ by the
closed curve with developing vector v] which starts on the lower edge
of Square 1. The claim follows by similar arguments as before.

a-1
Bl a (B
1 a-2
Al 1 S I a-1 IA
1 a-2 a-1

Figure 7. The origami Y, = Zap - B, if b= 0. Edges labelled with the
same number or letter and unlabelled opposite edges are identified.

O

Lemma 8. In the following we fiz a direction v = (i). Let k be the
number of cylinders of Z,, in direction v and let ¢y, ..., ¢, be geodesics
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in direction v which are core curves of the cylinders. We then have:

k
Z m(c;) =0,
i=1

— oo g oo . *
where m = mg5, is the monodromy of the cover py5, + 239" — Zap™

Proof. We consider the first return map for the union AUB in direction
v. In order to be more explicit we fix some r € R\Q with 0 < r < %, q
points P, ..., P, on the segment A and ¢ points Py i1, ..., Ps, on the
segment B (see Figure 8) such that
e O1P = (r+ %) - (}) fori € {1,...,q}, where O is the lower
left vertex of the square labelled by 1.
o O,P, = (r+ =L=9). ((1)) fori e {¢+1,...,2q}, where Oy is the

q
lower left vertex of the square labelled by a.

P P...F,
oo ooy
a+b
Poq... Py
O B
1 . . a
A O, B
P P.. P Pyii... Py

Figure 8 The flow in direction v acts on the points P;.

The geodesic flow in direction v defines a permutation p, of the points
Py, ..., Py, Mapping z to the permutation (p,)* gives an action of
Z on them. The orbits of this action are in one-to-one correspondence
with the geodesic cylinders on Z,; in direction v and thus as well
in one-to-one correspondence with the given geodesics c¢i,...,cx. In
particular we may choose the geodesics c;, such that they start in one
of the points P;.

Let now ¢ be a closed geodesic in direction v starting from the point
P,. Then c intersects the slits A or B precisely in the points P;. Let
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us assume for the moment, that the geodesic ¢ runs "from the bottom
to the top”, i.e. that the y-coordinate g of v is positive. Then the
monodromy m(c) increases, whenever ¢ runs through A and it decreases
whenever ¢ runs through B. We define x(P;) = 1 for j € {1,...,q}
and x(P;) = —1 for j € {¢g+1,...,2¢}. It follows that in the case
q > 0 we obtain:

(3) m(e)= Y x(P)

pje orbit(p,)

Similarly, we obtain for ¢ < 0:

(4) me)= > —x(P)

Pj (S OI“blt(PZ)

Since Y277 X(Pj) = 34, 1437 ., =1 = 0, the claim follows from
(3) and (4).
O

From Lemma 8 we immediately obtain the following corollary.

Corollary 9. Ifv = (Z) is a one-cylinder direction on Zgy and c is a
closed geodesic in direction v, then we have:
i) The monodromy m(c) is 0.
ii) Z35 decomposes in direction v into cylinders isometric to the
one cylinder on Zgp.
iii) The Veech group I'(Z33) contains a parabolic element in SLy(Z)
with eigenvector v = (2).
iv) p/q is a cusp of T'(Z33).
Observe that so far, we have not used the prerequisite that a or b is

even. We will need this now in the last step, where we find a one-
cylinder direction on Z, .

oo (1) - (3)

If b is even, then v is a one-cylinder direction on Z,,. If a is even,
then v’ is a one-cylinder direction.

Lemma 10. Let

Proof. Let us first assume that b is even. Consider the geodesic path ¢,
on the one-square translation surface £ with developing vector v = (;)
starting in the midpoint M. This actually is a closed curve on the

punctured surface E*.
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Figure 9. The closed curve c, on the once punctured torus E* with
1
v = (2)

As element of w1 (E*, M) it is equal to yxy (compare Figure 9). Hence
its monodromy with respect to the covering Z;, — E* is

m(yzy) =  PuOPhODy
= (1 a a+1 ... a—l—b)o(l 2 ... a)
o(l a a+1 ... a+b)
belen

= (laa+2a+4 ... a+b
23 ...a-1la+1a+3 ... a+b—1)

Since m(yxy) acts transitively, it follows that we have only one cylinder
in direction v.

In the case that a is even the proof works similarly: The geodesic path
¢y on E with developing vector v’ = (f) starting in M is equal to xyx
in 7y (E*, M). Its monodromy is:

m(xyx) = Pp © Py O Pi
= (1 2 ... a)o(l a a+1 ... a+b)o(1 2 ... a)

ae:VGIl(l 35 ... a—1 a—|—1 a—|—2 a+b 2 4 ... a).
]

6. GENERALIZATION

In this section, we describe a general construction producing infinite
origamis with large Veech groups.

Let O be a finite origami. Let A and B be two horizontal segments
of length 1, each of them joining preimages of the origin of the torus
(in other words, the end points of the horizontal segments A, B have
integral coordinates). We assume that A and B are not homologous.
We cut the surface along these segments. We obtain a translation
surface with boundary. We call the part of the boundary where the
vertical flow can be defined for some positive time the positive boundary.
Its complement is the negative boundary. This yields a partition of the
boundary: (A, +), (4,-), (B,+), (B, —).

We construct an infinite origami O which is a Z-cover of O. Consider
a countable number of copies of O cut along A and B. On each copy
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O;, there are slits (A;,+), (A;, —), and (B;, +), (B, —). For all i € Z,
we glue (A;, —) with (A;41,+) and (B;, +) with (B;11, —). We denote
by O the infinite origami obtained by this construction.

We note that, as A and B are not homologous, the surface O is con-
nected. In fact, O\ AUB is connected and, by construction, every level
is connected to the previous one by two segments. Assuming that A
and B are homologous is necessary to get an interesting object. Other-
wise the construction produces a non connected surface homeomorphic

to O x Z.

Theorem 2. If there is a one-cylinder direction on O, then the Veech
group of O is either a lattice or infinitely generated. Its limit set is

equal to P1(R).

The proof is omitted because it is mutatis mutandis the same as for
the family Z29.

This theorem provides many examples. We know that finite origamis
with one-cylinder directions are dense in every connected components
of every stratum of moduli spaces of holomorphic differentials (see
|[KZ|). Moreover, by results of Hubert-Leliévre (|HL1|) and McMullen
([Mc]), every origami of genus 2 with one singularity has a one-cylinder
direction.

Open questions

e There are origamis without one-cylinder decompositions. For
instance, the Veech group of Z39 has two cusps. Each of them
corresponds to directions in which the surface is decomposed
into two cylinders. We don’t know whether the limit set of the
Veech group of 759 is P*(R) or a Cantor set.

e When Theorem 2 holds, it seems difficult to give a general cri-
terion to decide whether the group is a lattice or infinitely gen-
erated.

7. THE VEECH GROUPS AS SUBGROUPS OF GLg(Z)

Let X be a closed surface, p a translation structure on X, S a finite
set which contains the singularities of y and X* = X\ S. Recall that
the natural action of the affine group Aff(X™*, 1) on its first homology
Hy(X*,Z) defines an embedding of Aff(X*, u) into Aut(H(X*,Z)).
Let k be the rank of m (X*), i.e. k = 29 +n — 1, where g is the
genus of X and n is the number of elements in S. Any choice of
an isomorphism ¢ : Hy(X*,Z) — ZF defines an isomorphism ¢, :
Aut(H(X*,Z)) =5 GL(Z). Thus we can describe the affine group as a
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subgroup of GLg(Z). If X* does not have nontrivial translations, then
the derivative map D : Afft(X*, u) — I'(X*, u) is an isomorphism.
Altogether, in this case we obtain an embedding:

(5) hy: DX ) 5 AT (X5, 1) — Aut(H, (X", Z)) = GLy(Z).
This embedding depends on ¢ only up to conjugation.

We now return to the translation surfaces Z,; and ng;) defined in Sec-
tion 3. As before we omit the notation of the translation structures.
Let S be the set of the integral points on Z, ;. The rank k of (7} ;)
is the number of squares plus 1, i.e. k& = a+ b+ 1. We assume
that (a,b) # (2,0). In Remark 13 we will see that the Veech group
['(Z35) is a subgroup of I'(Z,). The aim of this section is to describe
its isomorphic image h,(I'(Z5%)) in GL(Z) for a suitable choice of
¢ H(Z},,Z) — ZF. We follow the construction in [Scl, Section 7.1].
In particular, we show that h,(I'(Z55)) is the intersection of two finitely
generated subgroups of GLi(Z). Since I'(Z53) itself is infinitely gen-
erated by Theorem 1, this is an example for GLj(Z) not having the
Howson property. Recall that a group has the Howson property, if the
intersection of any two finitely generated subgroups is finitely generated
(see e.g. |BBJ).

Proposition 11. Let a > 2, b > 0, (a,b) # (2,0) and k = a + b+ 1.
The Veech group T'(Zg5) embeds to a subgroup of GLy(Z), which is
the intersection of two finitely generated subgroups of GL(Z). More
precisely we have for a suitable choice of ¢ : Hy(Z*,,7) = Zk:

he(D(Z33)) = ho(T(Zap)) N H,

(1171 O e 0
Q21 Q22 ... A2k

with  H = { ) ) . , € SLi(Z)| a;; € Z}
ag1 Qg2 ... Qg

and  hy, defined as in (5).

Part of Proposition 11 can be concluded from Corollary 7.3 in [Scl].
Nevertheless, we include the whole proof adapted to our present situ-
ation.

Proof. First of all, we show in Remark 12 that Z7, has no nontriv-
ial translations. Therefore we actually obtain an embedding h, :
I'(Zap) — GLk(Z) as described in the section before Proposition 11.
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We then show in Remark 13 that any affine diffeomorphism of Z7% de-
scends to an affine diffeomorphism of Z,;. Thus I'(Zg3) is a subgroup
of ['(Z,p). Finally we choose an isomorphism ¢ : Hy(X*,Z) — ZF and
show in Corollary 15 that an element A € ['(Z,;) lifts to Z35 if and
only if h,(A) stabilises the subspace U of Z* spanned by all standard
basis vectors other than the first one. This is equivalent to A being in
the group H. U

Remark 12. If (a,b) # (2,0), then Z}, has no nontrivial translations.

Proof. Recall that Z;, has a nontrivial translation if and only if the
fundamental group m(Z},, M;) and 7,(Z},, M;) define the same sub-
group of I for the midpoints M; and M, of two squares. Let M, be the
midpoint of the square labelled by 1 (see Figure 1). Then we have yx is
in m(Z;,, My). For any other midpoint M; we have yx & 7,(Z;,, M;).
Hence there are no nontrivial translations. Observe that this argument
works as well for the special cases II and III (see Figure 2). In Case I,

i.e. (a,b) = (2,0), we in fact have a translation on Z . O

Remark 13. Any affine diffeomorphism of Z3%" descends to Z;, via
the covering map p> : Z33" — Zy,. In particular we have I'(Z35) C

F(Za,b)'

Proof. Here we again use the description of the origamis by their cor-
responding subgroups of Fj:

U = Uy = m(Z;, M) CF,

where M; is the midpoint of Square 1,
U® = m(Z5%, M) C U,

ab

where M; is a preimage of M; on Z;%.
We show that Normp,(U>) = U. Since we have that
Stab g+ (g (U™)  © Staby i+, (Normp, (U™))

(see e.g. |Sc3, Remark 3.1]), the claim follows e.g. from [Sc2, Lemma
2.8(2)].

We use the same notations as in Definition 3. Since the cover p™ :

oy — Zy, is normal, U* is the kernel of m®. In particular U* is
a normal subgroup of U. Therefore Normpg, (U*) contains U. Suppose
now that there is some w € Normp, (U*) which is not in U. Then
there exists a square on Z,; labelled by 7 # 1, such that a closed path
starting in the midpoint M; lifts to Z25 if and only if its image in F3 is
in U*°. Observe from Figure 1 and Figure 2 that for each square other
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than Square 1 at least one of the paths x,y, yory~!

or 2 lyx is closed
and lifts to Z35. But they are all three not in m(Z} ,, M;) and thus in

particular not in U*. It follows that Normpg, (U>) = U. O

We now want to choose an isomorphism ¢ : H\(Z},, Z) — Zk. Instead
of this, we may choose as well an isomorphism ¢ : m(Z;,) — Fy =
F(xy,...,xy), the free group in the k£ = a + b+ 1 generators xq, ...,
. For matter of convenience we start with the somehow natural

isomorphism

o' m(Zy,) — Fe, g o= ox fori e {1,...,3},
hz‘ — X344 forz'e{l,...,a—2},
li = Ti1iqti for i € {1, .. .,b},

respectively with its descend ¢’ : Hy(Z},,Z) — ZF. Here the g;’s, h;’s
and [;’s are as in Definition 1. We will later modify ¢’ by a base change

in order to obtain a nicer subgroup in GLx(Z).

Lemma 14. Let A be in the Veech group I'(Z,;) and consider the
embedding hy : I'(Z,p) — GLi(Z) defined in (5).

(431
Aisin(Z3) < hy(A) stabilises V' ={| : | € Z"|a; —as = 0}.
Qg

Proof. Recall that Z,; has no nontrivial translations. Let f = fa be
the unique affine homeomorphism of Z,;, with derivative A. Recall
further that f defines an outer automorphism [f.] of the fundamental
group U of Z7, and that f lifts to Z39" if and only if [f.] preserves
the conjugacy class of U, i.e. for each automorphism f, in the class
of [f.] we have that f,(U>) is conjugate to U*. Since U* is normal
in U this is in this case equivalent to f,(U*) = U*. Furthermore we
have the following commutative diagram, where proj : Fj, — Z* is the
natural projection:

* ¢ proj
U = 7T1(Za,b) = F, —— 7k
f*l hv’(A)
5 roj
U = 7T1( ;,b) % F}, uzk

By Lemma 4 we have that
U™ ={w e Ul m™(w) = f4,(w) — t, (w) = 0},

where f,,(w) is the number of occurrences of g; in w; g; ' is counted
negative. It follows that U™ is the preimage of V' i.e. U>® = (proj o
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¢)"HV'). Thus f,(U®) = U* if and only if hy(A)(V') = V. This

proves the claim. L]

Observe that V' defined in in Lemma 14 is the following (k — 1) -
dimensional submodule of ZF:

1 0 0 0
1 0 0 0
0 1 0 0
V= < O[O 0] >
0 0 0 0
0 0 0 1
Let B be the matrix
1100 ...0
0100 ...0
0010 ...0
B=1oo0o01..0
0000 1

In the following lp and [g-1 are the linear maps z — B - z and z —
B! .z, respectively. Then we have Ig(V) = V', where

0 0 0 0
1 0 0 0
0 1 0 0
Vi o= < |0, [0, ]1],....]0]>.
0 0 0 0
0 0 0 1

Corollary 15. Let ¢ = lg-1 o ¢'. Let furthermore H be the group
defined in Proposition 11. Then we have for all A € T'(Z,p):

AisinI(Z,) & hy(A) € H.

Proof. Let us consider the isomorphism o, : Aut(H,(Z} ,,Z)) — GLi(Z)

induced by ¢. Then we have for any automorphism f of H(Z*,,7Z)

a,b’
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the following commutative diagram:

Hy(Z2,,2) £ g 220

a,b’
fl lw’*(f) Lw*()
’ [
Hl(ZZZ,ba 7) . gk 2 gk

Hence ¢, = lg-1 0 ¢/, olp. It follows from the Definition of h, and
hy in (5) that h, = lg-1 0 hy olp. Since [g(V) = V', we have for all
A eI'(Z,p) that h,(A)(V) =V & hy(A)(V') =V’ The claim now
follows from Lemma 14, since H is the stabiliser of V' in GLy(Z). O

Observe finally that H is finitely generated, since it is generated by the
elementary matrices contained in H together with an arbitrary matrix
in H having determinant -1. This finishes the proof of Proposition 11.

Example 16. Let us consider the surface Z35 over the basis surface
Zso (see Figure 10). The Veech group T'(Z3%) is isomorphic to

<(Ch,05,C3> N H

1 -1 0 1 10 0 0
. 1 1 00 11 -2 0
with Cv—f g 1 1|0 ©@=]o0 1 ol
0 1 00 2 0 -2 1
1 1 0 -1
20 2 1 .
Cs — L 0 -1 -1 in  SL4(Z)
01 2 0
ai 0 0 0
and H -~ {91 922 023 @40 g 7)) 0, € 7).

@31 AaAz2 33 A34
Q41 Qg2 Q43 Q44

This is obtained as follows: The fundamental group U of the basis
surface Zs g is isomorphic to Fy. More precisely, we have:

U = <g=yz % g=1% g=1° h=xyr'>
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B A
A B

Figure 10: The translation surface Zs.

One can calculate the Veech group I'(Zsp) e.g. with the algorithm de-
scribed in |Sc2| and obtains:

11 1 0 -1 -1
F(Zg,o) = <A1:(O 1),A2:<_2 1),A3:<2 1) >

This is an index 3 subgroup of SLy(Z), which consists of all elements
which are congruent to I or Ay modulo 2.

The following lifts v1, 72 and v3 of the matrices Ay, As and As to
Aut®(Fy) are all in Stab(U):

Y oT e, y — o?yz!
N we Ty Yoy,

1

Y30 xe Yyt oy eyt

Their restriction to U give the following automorphisms:

Yiiog1 e gags g2 — g3h,
g3+ g3, hy — g3g1

Yo i g1 G1G2g1h3, g2 — hi%gr !,
95— hi’97 93 gs95 9t hae

Y31 g1+ 959395 g 92— G19295 ' G2g1ha,
93— 019295 ' Ga g 3, hi = 919295 g1

These automorphisms induce the following matrices in GLy(Z):

0 00 1 2 -1 -2 0
, |1 000 , |1 0 =20
G= 10111 %= o0 1 ol
0 100 2 —2 -2 1
-1 2 2 0
2 2 2 1

!

G= 11 -1 21 4
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By the construction we have that A; acts on the homology by C!, where
we have chosen the basis of Hl(Z§7O,Z) to be the images of the four
closed curves g1, g2, g3 and hy. Using the notations in Proposition 11
and Lemma 14, we have that hy (A;) = CL. Conjugating with the matriz
B~! from the proof of Corollary 15 gives the desired matrices C; =
B™'C!B = h,(A;). Then the statement follows from Proposition 11.

BB
[
[Hel
[Ho
[HL1]|
[HL2|
S|
[HW]
K]
LS|
[Mc]
Se1]
Sc2]

[Sc3]

[Sc4]

[Val]

[Va2]
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