
INFINITE TRANSLATION SURFACES WITHINFINITELY GENERATED VEECH GROUPSPASCAL HUBERT, GABRIELA SCHMITHÜSEN1. IntrodutionAfter the fundamental work of Veeh in 1989 ([Ve℄), a lot of e�orts havebeen done to understand Veeh groups of translation surfaes of �nitearea. In�nitely generated Veeh groups were disovered among them(see [HS℄, [M℄).Reently, work on translation surfaes of in�nite area was done (see[Ho℄, [Va1℄, [HW℄), whih motivates our study. We work with a lass ofspeial translation surfaes that are overings of the square torus ram-i�ed over the origin. They are alled square tiled surfaes or origamis.These surfaes orrespond to integer points in the moduli spaes ofabelian di�erentials. Their Veeh groups are subgroups of SL2(Z).There is an abundant literature on the subjet (see for instane [HL2℄,[S2℄, [S3℄, [S4℄). In this paper, we study Veeh groups of a family ofin�nite origamis that are obtained as Z-overs of �nite origamis.Theorem 1. There exists a ountable family of origamis (Yn, αn) ofin�nite area whih arise as Z-overs of genus 2 origamis and whoseVeeh groups are in�nitely generated subgroups of SL2(Z).Moreover, we prove that the limit set of these Fuhsian groups is P1(R)whih means that they are Fuhsian groups of the �rst kind. We willsee in the sequel of the paper that these families are ompletely expliitand we will give a more preise statement later. A slightly more generalresult is stated in Theorem 2. Our result provides a new phenomenon.In fat, if a subgroup of SL2(Z) that ontains a hyperboli element anbe realized as the Veeh group of a �nite origami, then it is a lattie inSL2(R) (see [GJ℄).Reader's guide The strategy of the proof has ommonalities with[HS℄ and [M℄. One way to prove that a Fuhsian group is not �nitelygenerated, is to show that it is not a lattie and that the limit set isequal to P1(R). We hek that some periodi diretion is not paraboli,1



2 PASCAL HUBERT, GABRIELA SCHMITHÜSENwhih immediately implies that the group is not a lattie. The di�ultpart is to prove that the limit set is everything. We prove that theparaboli diretions are dense. In our situation, the key ingredient isto hek that the periodi diretions with one ylinder on the �niteorigami are still paraboli on its Z-over. Then, it is lear that the or-bits of the usps orresponding to periodi diretions with one ylinderare dense in P1(R) whih is enough to �nish the proof.In the last setion of the paper, we use the embedding of the a�ne groupin some linear group GLk(Z) to �nd expliit subgroups of GLk(Z)that are in�nitely generated and intersetion of two �nitely generatedgroups.Aknowledgments: The �rst author is partially supported by projetblan ANR: ANR-06-BLAN-0038.The seond author is indebted tothe Landesstiftung Baden-Württemberg for failitating the analysis en-tailed in this paper. 2. BakgroundIn this setion, we reall lassial fats about origamis and translationsurfaes.Translation surfaes A surfae is a ompat translation surfae, if itan be obtained by edge-to-edge gluing of �nitely many polygons in theplane using translations only. A ompat translation surfae indues a�at metri with singularities. It is a Riemann surfae X endowed witha holomorphi 1�form whose zeroes are the singularities of the �at met-ri. There is a one to one orrespondene between ompat translationsurfaes and ompat Riemann surfaes equipped with a holomorphi1�form.In�nite translation surfaes are obtained from glueing ountably in-�nitely many polygons again by edge-to-edge gluing via translations.The result X̂ is in general not a surfae, sine the verties of in�nitelymany polygons might glue to the same point on X̂. Suh a point isalled an in�nite angle singularity. A puntured neighbourhood of anin�nite angle singularity is a Z-over of the puntured disk. Let X be
X̂ with all in�nite angle singularities removed. Then X is an in�nitetranslation surfae. As in the ompat ase X is a Riemann surfaeendowed with a holomorphi 1�form, whih de�nes a �at metri on X.
X̂ is the ompletion of X with respet to this metri (see e.g. [Va2℄for a more detailed introdution to in�nite translation surfaes). Ina slight abuse of notations, we will sometimes also refer to X̂ as the



A SEQUENCE OF INFINITELY GENERATED VEECH GROUPS 3translation surfae, in order to keep notations simple.Veeh groups Given any translation surfae (X, ω), an a�ne dif-feomorphism is an orientation preserving homeomorphism of X thatpermutes the singularities of the �at metri and ats a�nely on thepolygons de�ning X. The group of a�ne di�eomorphisms is denotedby A�(X, ω). The image of the derivation
d :

{A�(X, ω) → GL2(R)
f 7→ dfis alled the Veeh group. In the sequel, it is denoted by Γ(X) (SL(X, ω)is an other frequently used denotation for it). If (X, ω) is a �nitetranslation surfae, then Γ(X) is a Fuhsian group. If (X, ω) is anin�nite translation surfae as de�ned above and X̂ is its ompletion,we de�ne Γ(X̂) = Γ(X).Paraboli elements A ylinder on a ompat translation surfae Xis a maximal onneted set of homotopi simple losed geodesis. Ifthe genus of X is greater than one, then every ylinder is bounded bysaddle onnetions. A ylinder has a width (or irumferene) x and aheight y. The modulus of a ylinder is µ = x/y.An a�ne di�eomorphism is paraboli if the absolute value of the traeof its derivative is equal to 2. We know from Veeh's paper (see [Ve℄)that there is a anonial way to onstrut paraboli elements in thea�ne group.Let (X, ω) be a translation surfae of �nite area. Assume that it hasa deomposition into metri ylinders for the horizontal diretion withommensurable moduli, then the Veeh group SL(X, ω) ontains

Df =

(

1 c
0 1

)where c is the least ommon multiple of the moduli.A diretion (slope) is paraboli if the surfae is deomposed in this di-retion into ylinders with ommensurable moduli. This means thatthere is a paraboli a�ne di�eomorphism �xing this diretion. A para-boli diretion is a one-ylinder diretion, if the surfae is deomposedinto one ylinder in this diretion.Origamis de�ne speial ases of translation surfaes. There are severalde�nitions of origamis (algebrai, geometri, ombinatorial). We willswith between the following di�erent possible desriptions (eah withthe appropriate equivalene relation):
• olletion of Eulidean unit squares with gluing rules,
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• overing p : X̂ → E of the torus E rami�ed over at most onepoint alled ∞; here a (rami�ed) overing is a map whih isontinuous, open and disrete;
• monodromy map F2 → Sd or F2 → Sym(Z), whih leads to atransitive ation,
• transitive pairs of permutations (σh, σv) in Sd or in Sym(Z),where σh desribes the horizontal gluings and σv desribes thevertial gluings and
• subgroups U of F2. F2 = F2(x, y) is the free group in the 2generators x and y. It is identi�ed with the fundamental groupof the one-puntured torus E∗

I = C/(Z ⊕ Zi); x is identi�edwith the horizontal and y with the vertial standard generatorof π1(E
∗
I ).If the origami is built from �nitely many squares than it is alled a �niteorigami; otherwise it is an in�nite origami. The equivalene above isarried out for �nite origamis in details in Setion 1 of [S4℄; the sameproofs work for in�nite origamis.For �nite origamis, X = X̂ is a translation surfae; for in�nite origamis,we have to remove the in�nite-angle singularities and obtain an in�nitetranslation surfae X. The deomposition into Eulidean unit squaresmakes it to a square-tiled surfae. We all the points in p−1(∞) usps.They are preisely the points oming from verties of the Eulideansquares and all singularities are among them.Monodromy Reall that an unrami�ed overing p : X → Y naturallyde�nes an ation from the right of the fundamental group π1(Y ) onthe �bre E of a base point y on Y . Namely for x1, x2 ∈ X with

p(x1) = p(x2) = y, c ∈ π1(Y ) we have:
x1 · c = x2 ⇔ the lift of c in x1 ends in x2.This ation de�nes the monodromy map m : π1(Y ) → Sym(E):

m(c) = (x1 7→ x1 · c) for c ∈ π1(X)Observe that the monodromy map de�ned in this way in general isnot a group homomorphism, but su�es the ondition m(c1 · c2) =
m(c2) ◦ m(c1). However if the image of m is abelian, as it will almostalways be the ase in this artile, this is equivalent to being a grouphomomorphism.



A SEQUENCE OF INFINITELY GENERATED VEECH GROUPS 5Veeh groups of �nite origamis The Veeh group of a �nite origamiis a lattie in SL2(R)(see [GJ℄). More preisely, the Veeh group of anorigami is ommensurable to SL2(Z), i.e. they share a subgroup whihis of �nite index in both groups. Moreover, if (X, ω) is an origamiand if we denote by X∗ the omplement in X of the preimages of theorigin of the torus, then the Veeh group of (X∗, ω) is a subgroup of�nite index of SL2(Z). As an origami is a overing of the torus, everydiretion of rational slope is a paraboli diretion.3. An infinite family of infinite translation surfaesIn this setion we introdue the family Z∞
a,b of in�nite square-tiled sur-faes. They our as limit ases of sequenes (Zk

a,b)k∈Z of �nite ones.De�nition 1. Let Za,b = Z1
a,b (a, b ∈ N0, a ≥ 2) be the origami drawnin Figure 1. More preisely, the orresponding overing map to thetorus is desribed by the two permutations

σh =
(

1 2 . . . a
)

, σv =
(

1 a a + 1 . . . a + b
)

.Let Z∗
a,b be the puntured surfae obtained from Za,b by removing all theverties of the squares. Its fundamental group Ua,b = π1(Z

∗
a,b) is:

Ua,b = < g1, g2, g3, hi, lj | i ∈ {1, . . . , a − 2}, j ∈ {1, . . . , b} >with g1 = yx−(a−1), g2 = xa−1yb+1, g3 = xa,

hi = xiyx−i, lj = xa−1yjxy−jx−(a−1).We have hosen the base point of π1(Z
∗
a,b) in the square labelled by 1.

1 . . . . . . . . . . . . . . . . . . . . . . . . aa+1...
...a+b

A
A

B Bt t t

t

t t

d

d

d d�

�

-

-Figure 1: The origami Za,b. Edges labelled by the same letter andunlabelled opposite edges are identi�ed.Observe that the genus of the surfae Za,b is 2, if (a, b) 6= (2, 0). Morepreisely, the genus g of Za,b and the number n of zeroes an be reado� from Figure 1 and Figure 2 di�ering four ases:
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• Case I: a = 2, b = 0 ⇒ g = 1 and n = 0 (Figure 2).
• Case II, III: a = 2, b ≥ 1 or a ≥ 3, b = 0

⇒ g = 2 and n = 1 (Figure 2).
• General ase: a ≥ 3, b ≥ 1

⇒ g = 2 and n = 2 (Figure 1).In Case II and Case III we have one zero of angle 6π and in the generalase two zeroes eah of angle 4π.
1 2A AB Bv

v

v
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fCase I 1 23...
...2+b
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B Bv

v

v

v

v

v
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Case II 1 . . . . . . . . . . . . . . . aA AB Bv

v

v

v

v v

v vCase IIIFigure 2: The three speial ases for Za,b:Case I: a = 2, b = 0, Case II: a = 2, b ≥ 1, Case III: a ≥ 3, b = 0.Now, we build the surfae Zk
a,b (k ∈ N) from Za,b as follows: We slit Za,balong the edges A and B (ompare Figure 1 and 2). We then take kopies of the two-slit surfae and label them by the elements in Z/kZ.We glue A-edges to A-edges and B-edges to B-edges aording to thefollowing rules.Gluing Rules:

• Crossing the A-edge of the opy labelled by l in the diretionbottom to top leads to the opy labelled by l + 1.
• Crossing the B-edge in the diretion bottom to top leads to theopy labelled by l − 1.The result is a onneted translation surfae without boundary (seeFigure 3). By onstrution Zk

a,b omes with a overing map pk = pk
a,b :

Zk
a,b → Za,b of degree k whih is rami�ed at most over the verties ofthe squares. Its group of Dek transformations is Z/kZ.



A SEQUENCE OF INFINITELY GENERATED VEECH GROUPS 7De�nition 2. Let pk = pk
a,b : Zk

a,b → Za,b be the k-fold over given bythe monodromy map
mk = mk

a,b : Ua,b → Sym(Z/kZ), de�ned on the generators as follows:
g1 7→ (z 7→ z − 1), g2 7→ (z 7→ z + 1),

g3, hi, lj 7→ id (i ∈ {1, . . . , a − 2}, j ∈ {1, . . . , b})Here Sym(Z/kZ) denotes the symmetri group of Z/kZ and g1, g2, g3,the hi's and the lj's are the generators from De�nition 1.

1 . . . . . . . . . a...a+b
. . . . . . . . . 2a+b...2a+2b . . . . . . . . . 3a+2b...3a+3b

A

A

B
B

Figure 3: The origami Zk
a,b for k = 3. Edges labelled by the sameletter and unlabelled opposite edges are identi�ed.Finally, we obtain a onneted in�nite translation surfae Z∞

a,b by gluingin�nitely many opies of the two-slit surfae whih are labelled by theinteger numbers aording to the same gluing rules from above.De�nition 3. Let p∞ = p∞a,b : Z∞
a,b → Za,b be the Z-over given by themonodromy map

m∞ = m∞
a,b : Ua,b → Sym(Z), de�ned on the generators as follows:

g1 7→ (z 7→ z − 1), g2 7→ (z 7→ z + 1),

g3, hi, lj 7→ id (i ∈ {1, . . . , a − 2}, j ∈ {1, . . . , b})Sym(Z) denotes the symmetri group of Z, Z∞
a,b

∗ is the puntured sur-fae Z∞
a,b\{verties of the squares}.



8 PASCAL HUBERT, GABRIELA SCHMITHÜSEN4. Monodromy of the infinite origamiThere is a simple way, to determine the monodromy of the map p∞from De�nition 3: Let c be a losed path on Z∗
a,b and let c̃ be a liftof c on Z∞

a,b
∗. It follows immediately from the gluing rules on Page 6that c̃ asends one opy, whenever c intersets the A-slit or the B-slitin a positive rossing and it desends one opy, whenever it intersetsin a negative rossing. Here A and B arry the orientation indiatedin Figure 1 and positive and negative rossing is de�ned as shown inFigure 4.

cpositive rossing cnegative rossingFigure 4: Oriented rossings.From this we obtain the following Lemma.Lemma 4. Let c be a losed urve on Z∗
a,b and let w be the orre-sponding element in π1(Z

∗
a,b) written as word in the generators fromDe�nition 1.i) m∞(c) = ♯ of positive rossings − ♯ of negative rossings,where we onsider rossings of c with the slits A and B.ii) m∞(c) = −♯g1

(w) + ♯g2
(w);here ♯gi

(w) is the number of gi's in w with g−1
i ounting as −1.Reall that the usps of Zk

a,b, resp. Z∞
a,b, are the points in Zk

a,b\Z
k
a,b

∗,resp. Z∞
a,b\Z

∞
a,b

∗. Using Lemma 4 we easily obtain their type. For thiswe onsider small positively oriented simple loops around the usps.Corollary 5. For a usp P let lP be a small positively oriented looparound P . We distinguish the four di�erent ases desribed after De�-nition 1 and shown in Figure 1 and Figure 2:General ase: If P = •, the monodromy of lP is 1; if P = ◦, it is −1.Thus on Zk
a,b both usps have preisely one preimage whih is a zero ofangle 2kπ. Hene the genus of Zk

a,b is 2k.On Z∞
a,b the singularities have eah preisely one preimage whih is anin�nite angle singularity. The genus of Z∞

a,b is in�nite.Case (I): If P = ◦, the monodromy of lP is 2; if P = •, it is -2.Thus eah usp has one preimage on Zk
a,b, if k is odd and two preimages,if k is even. The genus of Zk

a,b is k, if k is odd and k − 1, if k is even.



A SEQUENCE OF INFINITELY GENERATED VEECH GROUPS 9On Z∞
a,b eah usp of Za,b has 2 preimages whih are in�nite anglesingularities. Z∞

a,b has in�nite genus.Case (II) and Case (III): For P = • , the monodromy of lp is 0.Hene the maps pk
a,b and p∞a,b are unrami�ed even above the usps. Inpartiular the usp • on Za,b has k preimages on Zk

a,b and in�nitelymany preimages on Z∞
a,b, eah of angle 6π respetively. The genus of

Zk
a,b is k + 1 and Z∞

a,b is again an in�nite genus surfae.
5. The Veeh groupsIn the following, Za,b, Zk
a,b and Z∞

a,b are always endowed with the trans-lation struture oming from the square tiling; therefore, throughoutall notations we will omit to expliitely denote the translation struture.Observe that the Z-module spanned by the development vetors ofthe saddle onnetion on Z∞
a,b is equal to Z2. Hene we do not haveto distinguish between Z∞

a,b and the puntured surfae Z∞
a,b

∗, sine thea�ne groups A�(Z∞
a,b) and A�(Z∞

a,b
∗) oinide and we have Γ(Z∞

a,b
∗) =

Γ(Z∞
a,b) = GL+(Z∞

a,b) = SL(Z∞
a,b). If (a, b) 6= (2, 0) or k ≥ 3, thesame is true for the translation surfae Zk

a,b. In partiular we have
Γ(Zk

a,b) = Γ(Zk
a,b

∗
) for (a, b) 6= (2, 0) or k ≥ 3.The surfaes Zk

2,0 (k ∈ N, k odd) appear in [He, 4.3℄ as origamis NStk.They our as the smallest normal over of the �stair-origamis� Stk,whih onsists of stairs of k squares, whose opposite edges are identi�ed.Hene the Veeh groups Γ(Zk
2,0) ontain the subgroup of the respetive

Γ(Stk) (see e.g. [S3, 3.1(5)℄). The Veeh groups Γ(Stk) were alulatedin [S3℄. They are Γ(2), if k is even, and(1) Γ = {

(

a b
c d

)

| a + c and b + d odd},if k is odd. We will see in Remark 6 that Γ(Zk
2,0) = Γ for all k. Equa-tions for urves in these in�nite families have been examined in [LS℄.
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1 23 4. . . . . .. . . 2k

. . . . . .
. . . . . .Figure 5: The origami Zk

2,0 for k �nite and k in�nite. Edges with thesame label and unlabelled opposite edges are identi�ed.Remark 6. Let k ∈ N≥3 ∪ {∞}. The Veeh group Γ(Zk
2,0) = Γ, where

Γ is the group de�ned in (1).Proof. Observe that the surfae Zk
2,0 deomposes in the horizontal andthe vertial diretion in ylinders of length 2. Thus the Veeh groupontains the two matries

(

1 0
2 1

) and (

1 2
0 1

)These two matries generate Γ(2), hene we have Γ(Zk
2,0) ⊇ Γ(2). Ob-serve furthermore that the fundamental group Nk := π1(Z

k
2,0

∗
) is anormal subgroup of F2 and we have:

Nk = << x2, y2, (xy)k >>, if k is �nite, and N∞ = << x2, y2 >>,where << · >> denotes the normal subgroup generated by the ele-ments between the brakets. The automorphism de�ned by x 7→ y and
y 7→ x−1 stabilises Nk for all k ∈ N≥3 ∪ {∞}. Thus

S =

(

0 −1
1 0

)is in Γ(Zk
2,0) (see e.g. [S2, Lemma 2.8℄). Sine Γ is generated by Γ(2)and S, we have that Γ(Zk

2,0) ontains Γ. Finally, Γ has index 3 inSL2(Z). Thus it su�es to show that Γ(Zk
2,0) 6= SL2(Z). Consider theautomorphism γ : x 7→ y, y 7→ xy. Then γ(y2) 6∈ Nn for all n. Thus γdoes not stabilise Nk. Sine Nk is normal, omposing by a onjugationleads again to an element whih is not in the stabiliser. Thus the imageof γ under the projetion Aut+(F2) → SL2(Z) is not in the Veeh group

Γ(Zk
2,0). This �nishes the proof. �



A SEQUENCE OF INFINITELY GENERATED VEECH GROUPS 11It follows from Remark 6 that in the ase (a, b) = (2, 0) the Veehgroup of Z∞
a,b is a lattie. We will see in Theorem 1 that this is not thease in general. We assume from now on always that (a, b) 6= (2, 0).Theorem 1. Let Γ∞

a,b = Γ(Z∞
a,b) be the Veeh group of the in�nite trans-lation surfae Z∞

a,b with (a, b) 6= (2, 0). If a or b is even, then Γ∞
a,b is anin�nitely generated subgroup of SL2(Z).Proof. We show in Lemma 7 that Γ∞

a,b has in�nite index in SL2(Z). Itremains to show that the limit set of the Fuhsian group Γ∞
a,b is denseon R = R ∪ {∞}. In order to prove this, we proeed as follows:

• We show in Corollary 9 that, whenever v ∈ R2 is a one-ylinderdiretion of Za,b, then Z∞
a,b deomposes in diretion v into ylin-ders isometri to the one ylinder on Za,b. It follows that theVeeh group Γ∞

a,b ontains paraboli matries with eigenvetor
v. Thus zv = pv

qv
is a usp of Γ∞

a,b, where pv, qv are the x- and
y-oordinates of v, i.e. v =

(

pv

qv

).
• We show in Lemma 10 that v =

(

2
1

) is a one-ylinder diretionof Za,b, if a is even and v =
(

1
2

) is a one-ylinder diretion, if bis even. It follows that γ(v) is a one-ylinder diretion of Za,bfor all γ in the Veeh group Γ(Za,b). By the preeding item itfollows that all the points zγ(v) are usps of Γ∞
a,b. Sine Γ(Za,b)is a lattie in SL2(R),they lie dense in R.

�We now �ll in the details of the proof of Theorem 1.Lemma 7. For any a, b ∈ N0 with a ≥ 2, (a, b) 6= (2, 0) the Veehgroup Γ∞
a,b of the translation surfae Z∞

a,b has in�nite index in SL2(Z).Proof. We proeed as follows: we onsider the translation surfae(2) Y ∞
a,b = Z∞

a,b · B, where B =

(

0 1
−1 1

)

,This means that Y ∞
a,b arises from Z∞

a,b by deomposing eah hart inthe atlas with the a�ne map z 7→ B · z. Then Y ∞
a,b and Z∞

a,b are a�neequivalent and Γ(Y ∞
a,b) = BΓ(Z∞

a,b)B
−1. We show that the Veeh groupof Y ∞

a,b does not ontain any power of
T =

(

1 1
0 1

)

.Thus Γ(Y ∞
a,b) � and therefore also Γ(Z∞

a,b) � has in�nite index in SL2(Z).



12 PASCAL HUBERT, GABRIELA SCHMITHÜSENBy onstrution Y ∞
a,b omes with a Z-overing p′∞ : Y ∞

a,b → Y a,b, where
Y a,b = Za,b ·B. The surfae Y a,b is equivalently obtained by omposingthe origami map Za,b → E = C/(Z ⊕ Zi) with the a�ne (but notholomorphi!) map E → E whih is the desend of C → C, z 7→ B · z.Hene, Y a,b is again an origami with monodromy σ′ = σ ◦ γ−1

B , where
σ is the monodromy of the origami map Za,b → E and γB is a lift of
B to Aut(F2). We hoose γB : F2 → F2, x 7→ y−1, y 7→ yx. Using thepermutations σh = σ(x) and σv = σ(y) given in De�nition 1, we obtainthe monodromy of Y a,b.

σ′(x) = σ(γ−1
B (x)) = σ(xy) = σ(y) ◦ σ(x) = σv ◦ σh

=
(

1 2 . . . a − 1 a + 1 . . . a + b
)

σ′(y) = σ(γ−1
B (y)) = σ(x−1) = σ−1

h =
(

a a − 1 . . . 1
)The orresponding square-tiled surfae is drawn in Figure 6.

1 . . . . . . . . . . . . . . . . . . a-2 a-1 a+1 a+2 . . . a+baA AB B1 12 23 34 45 56 6. . . . . .a-2 a-2a-1
a-1

? ?

6 6

cFigure 6: The origami Y a,b = Za,b · B. Edges labelled with the samenumber or letter and unlabelled opposite edges are identi�ed.
Y a,b onsists of two horizontal ylinders, one of length a + b − 1 andone of length 1. The two oriented segments A and B on Za,b beomesegments in diretion B ·

(

1
0

)

=
(

0
−1

) and B ·
(

−1
0

)

=
(

0
1

) on Y a,b, respe-tively. A is the unique horizontal segment on Za,b, whih is intersetedby the path starting in Square 1 indued by y−1 (see Figure 1). Heneit beomes the unique vertial segment on Y a,b, whih is interseted bythe path starting in Square 1 indued by γB(y−1) = x−1y−1. This isthe vertial edge between the square labelled with 1 and the squarelabelled with a + b. Similarly one obtains that B beomes the vertialedge whih bounds the square labelled with a from both sides.Similarly as before (see Lemma 4), the monodromy map m′ ∞ of thein�nite over p′∞ : Y ∞
a,b → Y a,b is obtained as follows: Let c be a losedurve on Y a,b. Its monodromy m′ ∞(c) is the number of oriented inter-setions with the segments A and B. The orientations of A and B areindiated by the arrows in Figure 6.



A SEQUENCE OF INFINITELY GENERATED VEECH GROUPS 13Let us suppose for the moment that b ≥ 1. We �x in the following thevetor v1 =
(

0
1

).Let c now be a losed urve on Y ∗
a,b with developing vetor v1 whihruns through the square labelled by a + 1 (see Figure 6). It does notross any utting slit. Hene eah lift ĉ of c on Y ∞

a,b
∗ is also a losedurve with developing vetor v1. Suppose now that T n ∈ Γ(Y ∞

a,b) forsome n ∈ N≥1 and let f̂ be an a�ne di�eomorphisms of Y ∞
a,b withderivative T n. By passing to a power if neessary, we may assume that

n > a + b. Then ĉ2 = f̂(ĉ) is a losed urve with developing vetor
v2 = T n · v1 =

(

n
1

)

.Its image c2 = p′∞(ĉ2) on Y ∗
a,b is then as well a losed urve with devel-oping vetor v2. Furthermore its monodromy m′ ∞(c2) is 0. Observefrom Figure 6 that �rst of all any losed urve with developing ve-tor v2 intersets a horizontal saddle onnetion. Thus we may assumethat the starting point of c2 lies on a boundary of the two horizontalylinders. Then again sine its developing vetor is v2, c2 hits at mostone of the two slits and it intersets it always in the same diretion.Furthermore it intersets at least one, sine n > a + b − 1. Therefore

m′ ∞(c2) is either positive, if c2 lies in the bottom ylinder, or it is nega-tive, if c2 lies in the top ylinder. In any ase it is not 0. Contradition!Let us �nally onsider the ase b = 0, see Figure 7. We replae thevetor v1 =
(

0
1

) by the vetor v′
1 =

(

1
1

) and the losed urve c by thelosed urve with developing vetor v′
1 whih starts on the lower edgeof Square 1. The laim follows by similar arguments as before.

1 . . . . . . a-1aA AB B
u u

u u

u uu

u

u

u1 1 a-2 a-2a-1
a-1

? ?

6 6

�
�

�c

Figure 7: The origami Y a,b = Za,b ·B, if b = 0. Edges labelled with thesame number or letter and unlabelled opposite edges are identi�ed.
�Lemma 8. In the following we �x a diretion v =

(

p

q

). Let k be thenumber of ylinders of Za,b in diretion v and let c1, . . . , ck be geodesis



14 PASCAL HUBERT, GABRIELA SCHMITHÜSENin diretion v whih are ore urves of the ylinders. We then have:
k

∑

i=1

m(ci) = 0,where m = m∞
a,b is the monodromy of the over p∞a,b : Z∞

a,b
∗ → Za,b

∗.Proof. We onsider the �rst return map for the union A∪B in diretion
v. In order to be more expliit we �x some r ∈ R\Q with 0 < r < 1

q
, qpoints P1, . . . , Pq on the segment A and q points Pq+1, . . . , P2q on thesegment B (see Figure 8) suh that

• ~O1Pi = (r + i−1
q

) ·
(

1
0

) for i ∈ {1, . . . , q}, where O1 is the lowerleft vertex of the square labelled by 1.
• ~O2Pi = (r + i−1−q

q
) ·

(

1
0

) for i ∈ {q + 1, . . . , 2q}, where O2 is thelower left vertex of the square labelled by a.

1 . . . . . . a...
a+b

A

A
B B

u

P1

u

P2

u. . . u

Pq

u
Pq+1

u
. . .

u u
P2q

u

Pq+1

u. . .u u

P2q

u
P1

u
P2

u
. . .

u
Pq

O1

O2- �

-

�

Figure 8: The �ow in diretion v ats on the points Pi.The geodesi �ow in diretion v de�nes a permutation pv of the points
P1, . . . , P2q. Mapping z to the permutation (pv)

z gives an ation of
Z on them. The orbits of this ation are in one-to-one orrespondenewith the geodesi ylinders on Za,b in diretion v and thus as wellin one-to-one orrespondene with the given geodesis c1, . . . , ck. Inpartiular we may hoose the geodesis cj , suh that they start in oneof the points Pi.Let now c be a losed geodesi in diretion v starting from the point
Pi. Then c intersets the slits A or B preisely in the points Pj. Let



A SEQUENCE OF INFINITELY GENERATED VEECH GROUPS 15us assume for the moment, that the geodesi c runs �from the bottomto the top�, i.e. that the y-oordinate q of v is positive. Then themonodromym(c) inreases, whenever c runs through A and it dereaseswhenever c runs through B. We de�ne χ(Pj) = 1 for j ∈ {1, . . . , q}and χ(Pj) = −1 for j ∈ {q + 1, . . . , 2q}. It follows that in the ase
q > 0 we obtain:(3) m(c) =

∑

Pj∈ orbit(Pi)

χ(Pj)Similarly, we obtain for q < 0:(4) m(c) =
∑

Pj∈ orbit(Pi)

−χ(Pj)Sine ∑2q

j=1 χ(Pj) =
∑q

j=1 1 +
∑2q

j=q+1 −1 = 0, the laim follows from(3) and (4).
�From Lemma 8 we immediately obtain the following orollary.Corollary 9. If v =

(

p

q

) is a one-ylinder diretion on Za,b and c is alosed geodesi in diretion v, then we have:i) The monodromy m(c) is 0.ii) Z∞
a,b deomposes in diretion v into ylinders isometri to theone ylinder on Za,b.iii) The Veeh group Γ(Z∞

a,b) ontains a paraboli element in SL2(Z)with eigenvetor v =
(

p

q

).iv) p/q is a usp of Γ(Z∞
a,b).Observe that so far, we have not used the prerequisite that a or b iseven. We will need this now in the last step, where we �nd a one-ylinder diretion on Za,b.Lemma 10. Let

v =

(

1
2

) and v′ =

(

2
1

)

.If b is even, then v is a one-ylinder diretion on Za,b. If a is even,then v′ is a one-ylinder diretion.Proof. Let us �rst assume that b is even. Consider the geodesi path cvon the one-square translation surfae E with developing vetor v =
(

1
2

)starting in the midpoint M . This atually is a losed urve on thepuntured surfae E∗.
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�
�
�
�
�
�

�
�
�

�
�
�

u�
���

�
���

�
���

6

-x
y

cvFigure 9: The losed urve cv on the one puntured torus E∗ with
v =

(

1
2

).As element of π1(E
∗, M) it is equal to yxy (ompare Figure 9). Heneits monodromy with respet to the overing Z∗

a,b → E∗ is
m(yxy) = pv ◦ ph ◦ pv

=
(

1 a a + 1 . . . a + b
)

◦
(

1 2 . . . a
)

◦
(

1 a a + 1 . . . a + b
)

b even
= ( 1 a a + 2 a + 4 . . . a + b

2 3 . . . a − 1 a + 1 a + 3 . . . a + b − 1)Sine m(yxy) ats transitively, it follows that we have only one ylinderin diretion v.In the ase that a is even the proof works similarly: The geodesi path
cv′ on E with developing vetor v′ =

(

2
1

) starting in M is equal to xyxin π1(E
∗, M). Its monodromy is:

m(xyx) = ph ◦ pv ◦ ph

=
(

1 2 . . . a
)

◦
(

1 a a + 1 . . . a + b
)

◦
(

1 2 . . . a
)

a even
= (1 3 5 . . . a − 1 a + 1 a + 2 . . . a + b 2 4 . . . a).

�6. GeneralizationIn this setion, we desribe a general onstrution produing in�niteorigamis with large Veeh groups.Let O be a �nite origami. Let A and B be two horizontal segmentsof length 1, eah of them joining preimages of the origin of the torus(in other words, the end points of the horizontal segments A, B haveintegral oordinates). We assume that A and B are not homologous.We ut the surfae along these segments. We obtain a translationsurfae with boundary. We all the part of the boundary where thevertial �ow an be de�ned for some positive time the positive boundary.Its omplement is the negative boundary. This yields a partition of theboundary: (A, +), (A,−), (B, +), (B,−).We onstrut an in�nite origami O∞ whih is a Z-over of O. Considera ountable number of opies of O ut along A and B. On eah opy
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Oi, there are slits (Ai, +), (Ai,−), and (Bi, +), (Bi,−). For all i ∈ Z,we glue (Ai,−) with (Ai+1, +) and (Bi, +) with (Bi+1,−). We denoteby O∞ the in�nite origami obtained by this onstrution.We note that, as A and B are not homologous, the surfae O∞ is on-neted. In fat, O\A∪B is onneted and, by onstrution, every levelis onneted to the previous one by two segments. Assuming that Aand B are homologous is neessary to get an interesting objet. Other-wise the onstrution produes a non onneted surfae homeomorphito O × Z.Theorem 2. If there is a one-ylinder diretion on O, then the Veehgroup of O∞ is either a lattie or in�nitely generated. Its limit set isequal to P1(R).The proof is omitted beause it is mutatis mutandis the same as forthe family Z∞

a,b.This theorem provides many examples. We know that �nite origamiswith one-ylinder diretions are dense in every onneted omponentsof every stratum of moduli spaes of holomorphi di�erentials (see[KZ℄). Moreover, by results of Hubert-Lelièvre ([HL1℄) and MMullen([M℄), every origami of genus 2 with one singularity has a one-ylinderdiretion.Open questions
• There are origamis without one-ylinder deompositions. Forinstane, the Veeh group of Z∞

3,1 has two usps. Eah of themorresponds to diretions in whih the surfae is deomposedinto two ylinders. We don't know whether the limit set of theVeeh group of Z∞
3,1 is P1(R) or a Cantor set.

• When Theorem 2 holds, it seems di�ult to give a general ri-terion to deide whether the group is a lattie or in�nitely gen-erated.7. The Veeh groups as subgroups of GLk(Z)Let X be a losed surfae, µ a translation struture on X, S a �niteset whih ontains the singularities of µ and X∗ = X\S. Reall thatthe natural ation of the a�ne group A�(X∗, µ) on its �rst homology
H1(X

∗, Z) de�nes an embedding of A�(X∗, µ) into Aut(H1(X
∗, Z)).Let k be the rank of π1(X

∗), i.e. k = 2g + n − 1, where g is thegenus of X and n is the number of elements in S. Any hoie ofan isomorphism ϕ : H1(X
∗, Z) → Zk de�nes an isomorphism ϕ∗ :Aut(H1(X

∗, Z))
∼=
→ GLk(Z). Thus we an desribe the a�ne group as a



18 PASCAL HUBERT, GABRIELA SCHMITHÜSENsubgroup of GLk(Z). If X∗ does not have nontrivial translations, thenthe derivative map D : A�+(X∗, µ) → Γ(X∗, µ) is an isomorphism.Altogether, in this ase we obtain an embedding:
hϕ : Γ(X∗, µ)

D−1

→ A�+(X∗, µ) →֒ Aut(H1(X
∗, Z))

ϕ∗

∼= GLk(Z).(5)This embedding depends on ϕ only up to onjugation.We now return to the translation surfaes Za,b and Z∞
a,b de�ned in Se-tion 3. As before we omit the notation of the translation strutures.Let S be the set of the integral points on Za,b. The rank k of π1(Z

∗
a,b)is the number of squares plus 1, i.e. k = a + b + 1. We assumethat (a, b) 6= (2, 0). In Remark 13 we will see that the Veeh group

Γ(Z∞
a,b) is a subgroup of Γ(Za,b). The aim of this setion is to desribeits isomorphi image hϕ(Γ(Z∞

a,b)) in GLk(Z) for a suitable hoie of
ϕ : H1(Z

∗
a,b, Z) → Zk. We follow the onstrution in [S1, Setion 7.1℄.In partiular, we show that hϕ(Γ(Z∞

a,b)) is the intersetion of two �nitelygenerated subgroups of GLk(Z). Sine Γ(Z∞
a,b) itself is in�nitely gen-erated by Theorem 1, this is an example for GLk(Z) not having theHowson property. Reall that a group has the Howson property, if theintersetion of any two �nitely generated subgroups is �nitely generated(see e.g. [BB℄).Proposition 11. Let a ≥ 2, b ≥ 0, (a, b) 6= (2, 0) and k = a + b + 1.The Veeh group Γ(Z∞

a,b) embeds to a subgroup of GLk(Z), whih isthe intersetion of two �nitely generated subgroups of GLk(Z). Morepreisely we have for a suitable hoie of ϕ : H1(Z
∗
a,b, Z)

∼
→ Zk:

hϕ(Γ(Z∞
a,b)) = hϕ(Γ(Za,b)) ∩ H,with H =

{









a1,1 0 . . . 0
a2,1 a2,2 . . . a2,k... ... ... ...
ak,1 ak,2 . . . ak,k









∈ SLk(Z)| ai,j ∈ Z
}and hϕ de�ned as in (5).Part of Proposition 11 an be onluded from Corollary 7.3 in [S1℄.Nevertheless, we inlude the whole proof adapted to our present situ-ation.Proof. First of all, we show in Remark 12 that Z∗

a,b has no nontriv-ial translations. Therefore we atually obtain an embedding hϕ :
Γ(Za,b) →֒ GLk(Z) as desribed in the setion before Proposition 11.



A SEQUENCE OF INFINITELY GENERATED VEECH GROUPS 19We then show in Remark 13 that any a�ne di�eomorphism of Z∞
a,b de-sends to an a�ne di�eomorphism of Za,b. Thus Γ(Z∞

a,b) is a subgroupof Γ(Za,b). Finally we hoose an isomorphism ϕ : H1(X
∗, Z) → Zk andshow in Corollary 15 that an element A ∈ Γ(Za,b) lifts to Z∞

a,b if andonly if hϕ(A) stabilises the subspae U of Zk spanned by all standardbasis vetors other than the �rst one. This is equivalent to A being inthe group H . �Remark 12. If (a, b) 6= (2, 0), then Z∗
a,b has no nontrivial translations.Proof. Reall that Z∗

a,b has a nontrivial translation if and only if thefundamental group π1(Z
∗
a,b, Mi) and π1(Z

∗
a,b, Mj) de�ne the same sub-group of F2 for the midpoints Mi and Mj of two squares. Let M1 be themidpoint of the square labelled by 1 (see Figure 1). Then we have yx isin π1(Z

∗
a,b, M1). For any other midpoint Mi we have yx 6∈ π1(Z

∗
a,b, Mi).Hene there are no nontrivial translations. Observe that this argumentworks as well for the speial ases II and III (see Figure 2). In Case I,i.e. (a, b) = (2, 0), we in fat have a translation on Z∗

a,b. �Remark 13. Any a�ne di�eomorphism of Z∞
a,b

∗ desends to Z∗
a,b viathe overing map p∞ : Z∞

a,b
∗ → Z∗

a,b. In partiular we have Γ(Z∞
a,b) ⊆

Γ(Za,b).Proof. Here we again use the desription of the origamis by their or-responding subgroups of F2:
U = Ua,b = π1(Z

∗
a,b, M1) ⊆ F2,where M1 is the midpoint of Square 1,

U∞ = π1(Z
∞
a,b

∗, M̂1) ⊆ U,where M̂1 is a preimage of M1 on Z∞
a,b.We show that NormF2

(U∞) = U . Sine we have thatStabAut+(F2)
(U∞) ⊆ StabAut+(F2)

(NormF2
(U∞))(see e.g. [S3, Remark 3.1℄), the laim follows e.g. from [S2, Lemma2.8(2)℄.We use the same notations as in De�nition 3. Sine the over p∞ :

Z∞
a,b

∗ → Z∗
a,b is normal, U∞ is the kernel of m∞. In partiular U∞ isa normal subgroup of U . Therefore NormF2

(U∞) ontains U . Supposenow that there is some w ∈ NormF2
(U∞) whih is not in U . Thenthere exists a square on Za,b labelled by i 6= 1 , suh that a losed pathstarting in the midpoint Mi lifts to Z∞

a,b if and only if its image in F2 isin U∞. Observe from Figure 1 and Figure 2 that for eah square other



20 PASCAL HUBERT, GABRIELA SCHMITHÜSENthan Square 1 at least one of the paths x,y, yxy−1 or x−1yx is losedand lifts to Z∞
a,b. But they are all three not in π1(Z

∗
a,b, M1) and thus inpartiular not in U∞. It follows that NormF2

(U∞) = U . �We now want to hoose an isomorphism ϕ : H1(Z
∗
a,b, Z) → Zk. Insteadof this, we may hoose as well an isomorphism ϕ̂ : π1(Z

∗
a,b) → Fk =

F (x1, . . . , xk), the free group in the k = a + b + 1 generators x1, . . . ,
xk. For matter of onveniene we start with the somehow naturalisomorphism

ϕ̂′ : π1(Z
∗
a,b) → Fk, gi 7→ xi for i ∈ {1, . . . , 3},

hi 7→ x3+i for i ∈ {1, . . . , a − 2},
li 7→ x1+a+i for i ∈ {1, . . . , b},respetively with its desend ϕ′ : H1(Z

∗
a,b, Z) → Zk. Here the gi's, hi'sand li's are as in De�nition 1. We will later modify ϕ′ by a base hangein order to obtain a nier subgroup in GLk(Z).Lemma 14. Let A be in the Veeh group Γ(Za,b) and onsider theembedding hϕ′ : Γ(Za,b) →֒ GLk(Z) de�ned in (5).

A is in Γ(Z∞
a,b) ⇔ hϕ′(A) stabilises V ′ = {





a1...
ak



 ∈ Zk|a1−a2 = 0}.Proof. Reall that Za,b has no nontrivial translations. Let f = fA bethe unique a�ne homeomorphism of Za,b with derivative A. Reallfurther that f de�nes an outer automorphism [f∗] of the fundamentalgroup U of Z∗
a,b and that f lifts to Z∞

a,b
∗ if and only if [f∗] preservesthe onjugay lass of U∞, i.e. for eah automorphism f⋆ in the lassof [f∗] we have that f⋆(U

∞) is onjugate to U∞. Sine U∞ is normalin U this is in this ase equivalent to f⋆(U
∞) = U∞. Furthermore wehave the following ommutative diagram, where proj : Fk → Zk is thenatural projetion:

U = π1(Z
∗
a,b) ∼=

ϕ̂′

//

f⋆

��

Fk

proj
// Zk

hϕ′ (A)

��

U = π1(Z
∗
a,b) ∼=

ϕ̂′

// Fk

proj
// ZkBy Lemma 4 we have that

U∞ = {w ∈ U | m∞(w) = ♯g2
(w) − ♯g1

(w) = 0},where ♯gi
(w) is the number of ourrenes of gi in w; g−1

i is ountednegative. It follows that U∞ is the preimage of V ′, i.e. U∞ = (proj ◦
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ϕ̂′)−1(V ′). Thus f⋆(U

∞) = U∞ if and only if hϕ′(A)(V ′) = V ′. Thisproves the laim. �Observe that V ′ de�ned in in Lemma 14 is the following (k − 1) -dimensional submodule of Zk:
V ′ = <





















1
1
0
0
0...
0





















,





















0
0
1
0
0...
0





















,





















0
0
0
1
0...
0





















, . . . ,





















0
0
0
0
0...
1





















>

Let B be the matrix
B =

















1 1 0 0 . . . 0
0 1 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0... ... ... ... ... ...
0 0 0 0 . . . 1

















.

In the following lB and lB−1 are the linear maps z 7→ B · z and z 7→
B−1 · z, respetively. Then we have lB(V ) = V ′, where

V = <





















0
1
0
0
0...
0





















,





















0
0
1
0
0...
0





















,





















0
0
0
1
0...
0





















, . . . ,





















0
0
0
0
0...
1





















> .

Corollary 15. Let ϕ = lB−1 ◦ ϕ′. Let furthermore H be the groupde�ned in Proposition 11. Then we have for all A ∈ Γ(Za,b):
A is in Γ(Z∞

a,b) ⇔ hϕ(A) ∈ H.Proof. Let us onsider the isomorphismϕ∗ : Aut(H1(Z
∗
a,b, Z)) → GLk(Z)indued by ϕ. Then we have for any automorphism f̄ of H1(Z

∗
a,b, Z)



22 PASCAL HUBERT, GABRIELA SCHMITHÜSENthe following ommutative diagram:
H1(Z

∗
a,b, Z)

ϕ′

//

f̄

��

Zk
l
B−1

//

ϕ′

∗
(f̄)

��

Zk

ϕ∗(f̄)

��

H1(Z
∗
a,b, Z)

ϕ′

// Zk
l
B−1

// ZkHene ϕ∗ = lB−1 ◦ ϕ′
∗ ◦ lB. It follows from the De�nition of hϕ and

hϕ′ in (5) that hϕ = lB−1 ◦ hϕ′ ◦ lB. Sine lB(V ) = V ′, we have for all
A ∈ Γ(Za,b) that hϕ(A)(V ) = V ⇔ hϕ′(A)(V ′) = V ′. The laim nowfollows from Lemma 14, sine H is the stabiliser of V in GLk(Z). �Observe �nally that H is �nitely generated, sine it is generated by theelementary matries ontained in H together with an arbitrary matrixin H having determinant -1. This �nishes the proof of Proposition 11.Example 16. Let us onsider the surfae Z∞

3,0 over the basis surfae
Z3,0 (see Figure 10). The Veeh group Γ(Z∞

3,0) is isomorphi to
< C1, C2, C3 > ∩ H

with C1 = 







−1 −1 0 1
1 1 0 0
−1 0 1 1
0 1 0 0









, C2 =









1 0 0 0
1 1 −2 0
0 0 1 0
2 0 −2 1









,

C3 = 







1 1 0 −1
−2 0 2 1
1 0 −1 −1
0 1 2 0









in SL4(Z)

and H = {









a1,1 0 0 0
a2,1 a2,2 a2,3 a2,4

a3,1 a3,2 a3,3 a3,4

a4,1 a4,2 a4,3 a4,4









∈ SL4(Z)| ai,j ∈ Z
}.This is obtained as follows: The fundamental group U of the basissurfae Z3,0 is isomorphi to F4. More preisely, we have:

U = < g1 = yx−2, g2 = x2y, g3 = x3, h1 = xyx−1 >
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v

v

v

v v

v vFigure 10: The translation surfae Z3,0.One an alulate the Veeh group Γ(Z3,0) e.g. with the algorithm de-sribed in [S2℄ and obtains:
Γ(Z3,0) = < A1 =

(

1 1
0 1

)

, A2 =

(

1 0
−2 1

)

, A3 =

(

−1 −1
2 1

)

>This is an index 3 subgroup of SL2(Z), whih onsists of all elementswhih are ongruent to I or A1 modulo 2.The following lifts γ1, γ2 and γ3 of the matries A1, A2 and A3 toAut+(F2) are all in Stab(U):
γ1 : x 7→ x, y 7→ x2yx−1

γ2 : x 7→ xy−2, y 7→ y,

γ3 : x 7→ y2x−1, y 7→ yx−1Their restrition to U give the following automorphisms:
γ1 : g1 7→ g2g

−1
3 , g2 7→ g3h1,

g3 7→ g3, h1 7→ g3g1

γ2 : g1 7→ g1g2g1h
2
1, g2 7→ h−2

1 g−1
1 ,

g3 7→ h−2
1 g−1

1 g−1
2 g3g

−1
2 g−1

1 , h1 7→ h1

γ3 : g1 7→ g−1
2 g3g

−1
2 g−1

1 , g2 7→ g1g2g
−1
3 g2g1h1,

g3 7→ g1g2g
−1
3 g2g1h

2
1, h1 7→ g1g2g

−1
3 g−1

1These automorphisms indue the following matries in GLk(Z):
C ′

1 =









0 0 0 1
1 0 0 0
−1 1 1 1
0 1 0 0









, C ′
2 =









2 −1 −2 0
1 0 −2 0
0 0 1 0
2 −2 −2 1









,

C ′
3 =









−1 2 2 0
−2 2 2 1
1 −1 −1 −1
0 1 2 0
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i, wherewe have hosen the basis of H1(Z

∗
3,0, Z) to be the images of the fourlosed urves g1, g2, g3 and h1. Using the notations in Proposition 11and Lemma 14, we have that hϕ′(Ai) = C ′

i. Conjugating with the matrix
B−1 from the proof of Corollary 15 gives the desired matries Ci =
B−1C ′
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