
INFINITE TRANSLATION SURFACES WITHINFINITELY GENERATED VEECH GROUPSPASCAL HUBERT, GABRIELA SCHMITHÜSEN1. Introdu
tionAfter the fundamental work of Vee
h in 1989 ([Ve℄), a lot of e�orts havebeen done to understand Vee
h groups of translation surfa
es of �nitearea. In�nitely generated Vee
h groups were dis
overed among them(see [HS℄, [M
℄).Re
ently, work on translation surfa
es of in�nite area was done (see[Ho℄, [Va1℄, [HW℄), whi
h motivates our study. We work with a 
lass ofspe
ial translation surfa
es that are 
overings of the square torus ram-i�ed over the origin. They are 
alled square tiled surfa
es or origamis.These surfa
es 
orrespond to integer points in the moduli spa
es ofabelian di�erentials. Their Vee
h groups are subgroups of SL2(Z).There is an abundant literature on the subje
t (see for instan
e [HL2℄,[S
2℄, [S
3℄, [S
4℄). In this paper, we study Vee
h groups of a family ofin�nite origamis that are obtained as Z-
overs of �nite origamis.Theorem 1. There exists a 
ountable family of origamis (Yn, αn) ofin�nite area whi
h arise as Z-
overs of genus 2 origamis and whoseVee
h groups are in�nitely generated subgroups of SL2(Z).Moreover, we prove that the limit set of these Fu
hsian groups is P1(R)whi
h means that they are Fu
hsian groups of the �rst kind. We willsee in the sequel of the paper that these families are 
ompletely expli
itand we will give a more pre
ise statement later. A slightly more generalresult is stated in Theorem 2. Our result provides a new phenomenon.In fa
t, if a subgroup of SL2(Z) that 
ontains a hyperboli
 element 
anbe realized as the Vee
h group of a �nite origami, then it is a latti
e inSL2(R) (see [GJ℄).Reader's guide The strategy of the proof has 
ommonalities with[HS℄ and [M
℄. One way to prove that a Fu
hsian group is not �nitelygenerated, is to show that it is not a latti
e and that the limit set isequal to P1(R). We 
he
k that some periodi
 dire
tion is not paraboli
,1
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h immediately implies that the group is not a latti
e. The di�
ultpart is to prove that the limit set is everything. We prove that theparaboli
 dire
tions are dense. In our situation, the key ingredient isto 
he
k that the periodi
 dire
tions with one 
ylinder on the �niteorigami are still paraboli
 on its Z-
over. Then, it is 
lear that the or-bits of the 
usps 
orresponding to periodi
 dire
tions with one 
ylinderare dense in P1(R) whi
h is enough to �nish the proof.In the last se
tion of the paper, we use the embedding of the a�ne groupin some linear group GLk(Z) to �nd expli
it subgroups of GLk(Z)that are in�nitely generated and interse
tion of two �nitely generatedgroups.A
knowledgments: The �rst author is partially supported by proje
tblan
 ANR: ANR-06-BLAN-0038.The se
ond author is indebted tothe Landesstiftung Baden-Württemberg for fa
ilitating the analysis en-tailed in this paper. 2. Ba
kgroundIn this se
tion, we re
all 
lassi
al fa
ts about origamis and translationsurfa
es.Translation surfa
es A surfa
e is a 
ompa
t translation surfa
e, if it
an be obtained by edge-to-edge gluing of �nitely many polygons in theplane using translations only. A 
ompa
t translation surfa
e indu
es a�at metri
 with singularities. It is a Riemann surfa
e X endowed witha holomorphi
 1�form whose zeroes are the singularities of the �at met-ri
. There is a one to one 
orresponden
e between 
ompa
t translationsurfa
es and 
ompa
t Riemann surfa
es equipped with a holomorphi
1�form.In�nite translation surfa
es are obtained from glueing 
ountably in-�nitely many polygons again by edge-to-edge gluing via translations.The result X̂ is in general not a surfa
e, sin
e the verti
es of in�nitelymany polygons might glue to the same point on X̂. Su
h a point is
alled an in�nite angle singularity. A pun
tured neighbourhood of anin�nite angle singularity is a Z-
over of the pun
tured disk. Let X be
X̂ with all in�nite angle singularities removed. Then X is an in�nitetranslation surfa
e. As in the 
ompa
t 
ase X is a Riemann surfa
eendowed with a holomorphi
 1�form, whi
h de�nes a �at metri
 on X.
X̂ is the 
ompletion of X with respe
t to this metri
 (see e.g. [Va2℄for a more detailed introdu
tion to in�nite translation surfa
es). Ina slight abuse of notations, we will sometimes also refer to X̂ as the



A SEQUENCE OF INFINITELY GENERATED VEECH GROUPS 3translation surfa
e, in order to keep notations simple.Vee
h groups Given any translation surfa
e (X, ω), an a�ne dif-feomorphism is an orientation preserving homeomorphism of X thatpermutes the singularities of the �at metri
 and a
ts a�nely on thepolygons de�ning X. The group of a�ne di�eomorphisms is denotedby A�(X, ω). The image of the derivation
d :

{A�(X, ω) → GL2(R)
f 7→ dfis 
alled the Vee
h group. In the sequel, it is denoted by Γ(X) (SL(X, ω)is an other frequently used denotation for it). If (X, ω) is a �nitetranslation surfa
e, then Γ(X) is a Fu
hsian group. If (X, ω) is anin�nite translation surfa
e as de�ned above and X̂ is its 
ompletion,we de�ne Γ(X̂) = Γ(X).Paraboli
 elements A 
ylinder on a 
ompa
t translation surfa
e Xis a maximal 
onne
ted set of homotopi
 simple 
losed geodesi
s. Ifthe genus of X is greater than one, then every 
ylinder is bounded bysaddle 
onne
tions. A 
ylinder has a width (or 
ir
umferen
e) x and aheight y. The modulus of a 
ylinder is µ = x/y.An a�ne di�eomorphism is paraboli
 if the absolute value of the tra
eof its derivative is equal to 2. We know from Vee
h's paper (see [Ve℄)that there is a 
anoni
al way to 
onstru
t paraboli
 elements in thea�ne group.Let (X, ω) be a translation surfa
e of �nite area. Assume that it hasa de
omposition into metri
 
ylinders for the horizontal dire
tion with
ommensurable moduli, then the Vee
h group SL(X, ω) 
ontains

Df =

(

1 c
0 1

)where c is the least 
ommon multiple of the moduli.A dire
tion (slope) is paraboli
 if the surfa
e is de
omposed in this di-re
tion into 
ylinders with 
ommensurable moduli. This means thatthere is a paraboli
 a�ne di�eomorphism �xing this dire
tion. A para-boli
 dire
tion is a one-
ylinder dire
tion, if the surfa
e is de
omposedinto one 
ylinder in this dire
tion.Origamis de�ne spe
ial 
ases of translation surfa
es. There are severalde�nitions of origamis (algebrai
, geometri
, 
ombinatorial). We willswit
h between the following di�erent possible des
riptions (ea
h withthe appropriate equivalen
e relation):
• 
olle
tion of Eu
lidean unit squares with gluing rules,
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• 
overing p : X̂ → E of the torus E rami�ed over at most onepoint 
alled ∞; here a (rami�ed) 
overing is a map whi
h is
ontinuous, open and dis
rete;
• monodromy map F2 → Sd or F2 → Sym(Z), whi
h leads to atransitive a
tion,
• transitive pairs of permutations (σh, σv) in Sd or in Sym(Z),where σh des
ribes the horizontal gluings and σv des
ribes theverti
al gluings and
• subgroups U of F2. F2 = F2(x, y) is the free group in the 2generators x and y. It is identi�ed with the fundamental groupof the one-pun
tured torus E∗

I = C/(Z ⊕ Zi); x is identi�edwith the horizontal and y with the verti
al standard generatorof π1(E
∗
I ).If the origami is built from �nitely many squares than it is 
alled a �niteorigami; otherwise it is an in�nite origami. The equivalen
e above is
arried out for �nite origamis in details in Se
tion 1 of [S
4℄; the sameproofs work for in�nite origamis.For �nite origamis, X = X̂ is a translation surfa
e; for in�nite origamis,we have to remove the in�nite-angle singularities and obtain an in�nitetranslation surfa
e X. The de
omposition into Eu
lidean unit squaresmakes it to a square-tiled surfa
e. We 
all the points in p−1(∞) 
usps.They are pre
isely the points 
oming from verti
es of the Eu
lideansquares and all singularities are among them.Monodromy Re
all that an unrami�ed 
overing p : X → Y naturallyde�nes an a
tion from the right of the fundamental group π1(Y ) onthe �bre E of a base point y on Y . Namely for x1, x2 ∈ X with

p(x1) = p(x2) = y, c ∈ π1(Y ) we have:
x1 · c = x2 ⇔ the lift of c in x1 ends in x2.This a
tion de�nes the monodromy map m : π1(Y ) → Sym(E):

m(c) = (x1 7→ x1 · c) for c ∈ π1(X)Observe that the monodromy map de�ned in this way in general isnot a group homomorphism, but su�
es the 
ondition m(c1 · c2) =
m(c2) ◦ m(c1). However if the image of m is abelian, as it will almostalways be the 
ase in this arti
le, this is equivalent to being a grouphomomorphism.



A SEQUENCE OF INFINITELY GENERATED VEECH GROUPS 5Vee
h groups of �nite origamis The Vee
h group of a �nite origamiis a latti
e in SL2(R)(see [GJ℄). More pre
isely, the Vee
h group of anorigami is 
ommensurable to SL2(Z), i.e. they share a subgroup whi
his of �nite index in both groups. Moreover, if (X, ω) is an origamiand if we denote by X∗ the 
omplement in X of the preimages of theorigin of the torus, then the Vee
h group of (X∗, ω) is a subgroup of�nite index of SL2(Z). As an origami is a 
overing of the torus, everydire
tion of rational slope is a paraboli
 dire
tion.3. An infinite family of infinite translation surfa
esIn this se
tion we introdu
e the family Z∞
a,b of in�nite square-tiled sur-fa
es. They o

ur as limit 
ases of sequen
es (Zk

a,b)k∈Z of �nite ones.De�nition 1. Let Za,b = Z1
a,b (a, b ∈ N0, a ≥ 2) be the origami drawnin Figure 1. More pre
isely, the 
orresponding 
overing map to thetorus is des
ribed by the two permutations

σh =
(

1 2 . . . a
)

, σv =
(

1 a a + 1 . . . a + b
)

.Let Z∗
a,b be the pun
tured surfa
e obtained from Za,b by removing all theverti
es of the squares. Its fundamental group Ua,b = π1(Z

∗
a,b) is:

Ua,b = < g1, g2, g3, hi, lj | i ∈ {1, . . . , a − 2}, j ∈ {1, . . . , b} >with g1 = yx−(a−1), g2 = xa−1yb+1, g3 = xa,

hi = xiyx−i, lj = xa−1yjxy−jx−(a−1).We have 
hosen the base point of π1(Z
∗
a,b) in the square labelled by 1.

1 . . . . . . . . . . . . . . . . . . . . . . . . aa+1...
...a+b

A
A

B Bt t t

t

t t

d

d

d d�

�

-

-Figure 1: The origami Za,b. Edges labelled by the same letter andunlabelled opposite edges are identi�ed.Observe that the genus of the surfa
e Za,b is 2, if (a, b) 6= (2, 0). Morepre
isely, the genus g of Za,b and the number n of zeroes 
an be reado� from Figure 1 and Figure 2 di�ering four 
ases:
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• Case I: a = 2, b = 0 ⇒ g = 1 and n = 0 (Figure 2).
• Case II, III: a = 2, b ≥ 1 or a ≥ 3, b = 0

⇒ g = 2 and n = 1 (Figure 2).
• General 
ase: a ≥ 3, b ≥ 1

⇒ g = 2 and n = 2 (Figure 1).In Case II and Case III we have one zero of angle 6π and in the general
ase two zeroes ea
h of angle 4π.
1 2A AB Bv

v

v

f

f

fCase I 1 23...
...2+b

A
A

B Bv

v

v

v

v

v

v v

Case II 1 . . . . . . . . . . . . . . . aA AB Bv

v

v

v

v v

v vCase IIIFigure 2: The three spe
ial 
ases for Za,b:Case I: a = 2, b = 0, Case II: a = 2, b ≥ 1, Case III: a ≥ 3, b = 0.Now, we build the surfa
e Zk
a,b (k ∈ N) from Za,b as follows: We slit Za,balong the edges A and B (
ompare Figure 1 and 2). We then take k
opies of the two-slit surfa
e and label them by the elements in Z/kZ.We glue A-edges to A-edges and B-edges to B-edges a

ording to thefollowing rules.Gluing Rules:

• Crossing the A-edge of the 
opy labelled by l in the dire
tionbottom to top leads to the 
opy labelled by l + 1.
• Crossing the B-edge in the dire
tion bottom to top leads to the
opy labelled by l − 1.The result is a 
onne
ted translation surfa
e without boundary (seeFigure 3). By 
onstru
tion Zk

a,b 
omes with a 
overing map pk = pk
a,b :

Zk
a,b → Za,b of degree k whi
h is rami�ed at most over the verti
es ofthe squares. Its group of De
k transformations is Z/kZ.



A SEQUENCE OF INFINITELY GENERATED VEECH GROUPS 7De�nition 2. Let pk = pk
a,b : Zk

a,b → Za,b be the k-fold 
over given bythe monodromy map
mk = mk

a,b : Ua,b → Sym(Z/kZ), de�ned on the generators as follows:
g1 7→ (z 7→ z − 1), g2 7→ (z 7→ z + 1),

g3, hi, lj 7→ id (i ∈ {1, . . . , a − 2}, j ∈ {1, . . . , b})Here Sym(Z/kZ) denotes the symmetri
 group of Z/kZ and g1, g2, g3,the hi's and the lj's are the generators from De�nition 1.

1 . . . . . . . . . a...a+b
. . . . . . . . . 2a+b...2a+2b . . . . . . . . . 3a+2b...3a+3b

A

A

B
B

Figure 3: The origami Zk
a,b for k = 3. Edges labelled by the sameletter and unlabelled opposite edges are identi�ed.Finally, we obtain a 
onne
ted in�nite translation surfa
e Z∞

a,b by gluingin�nitely many 
opies of the two-slit surfa
e whi
h are labelled by theinteger numbers a

ording to the same gluing rules from above.De�nition 3. Let p∞ = p∞a,b : Z∞
a,b → Za,b be the Z-
over given by themonodromy map

m∞ = m∞
a,b : Ua,b → Sym(Z), de�ned on the generators as follows:

g1 7→ (z 7→ z − 1), g2 7→ (z 7→ z + 1),

g3, hi, lj 7→ id (i ∈ {1, . . . , a − 2}, j ∈ {1, . . . , b})Sym(Z) denotes the symmetri
 group of Z, Z∞
a,b

∗ is the pun
tured sur-fa
e Z∞
a,b\{verti
es of the squares}.



8 PASCAL HUBERT, GABRIELA SCHMITHÜSEN4. Monodromy of the infinite origamiThere is a simple way, to determine the monodromy of the map p∞from De�nition 3: Let c be a 
losed path on Z∗
a,b and let c̃ be a liftof c on Z∞

a,b
∗. It follows immediately from the gluing rules on Page 6that c̃ as
ends one 
opy, whenever c interse
ts the A-slit or the B-slitin a positive 
rossing and it des
ends one 
opy, whenever it interse
tsin a negative 
rossing. Here A and B 
arry the orientation indi
atedin Figure 1 and positive and negative 
rossing is de�ned as shown inFigure 4.

cpositive 
rossing cnegative 
rossingFigure 4: Oriented 
rossings.From this we obtain the following Lemma.Lemma 4. Let c be a 
losed 
urve on Z∗
a,b and let w be the 
orre-sponding element in π1(Z

∗
a,b) written as word in the generators fromDe�nition 1.i) m∞(c) = ♯ of positive 
rossings − ♯ of negative 
rossings,where we 
onsider 
rossings of c with the slits A and B.ii) m∞(c) = −♯g1

(w) + ♯g2
(w);here ♯gi

(w) is the number of gi's in w with g−1
i 
ounting as −1.Re
all that the 
usps of Zk

a,b, resp. Z∞
a,b, are the points in Zk

a,b\Z
k
a,b

∗,resp. Z∞
a,b\Z

∞
a,b

∗. Using Lemma 4 we easily obtain their type. For thiswe 
onsider small positively oriented simple loops around the 
usps.Corollary 5. For a 
usp P let lP be a small positively oriented looparound P . We distinguish the four di�erent 
ases des
ribed after De�-nition 1 and shown in Figure 1 and Figure 2:General 
ase: If P = •, the monodromy of lP is 1; if P = ◦, it is −1.Thus on Zk
a,b both 
usps have pre
isely one preimage whi
h is a zero ofangle 2kπ. Hen
e the genus of Zk

a,b is 2k.On Z∞
a,b the singularities have ea
h pre
isely one preimage whi
h is anin�nite angle singularity. The genus of Z∞

a,b is in�nite.Case (I): If P = ◦, the monodromy of lP is 2; if P = •, it is -2.Thus ea
h 
usp has one preimage on Zk
a,b, if k is odd and two preimages,if k is even. The genus of Zk

a,b is k, if k is odd and k − 1, if k is even.
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a,b ea
h 
usp of Za,b has 2 preimages whi
h are in�nite anglesingularities. Z∞

a,b has in�nite genus.Case (II) and Case (III): For P = • , the monodromy of lp is 0.Hen
e the maps pk
a,b and p∞a,b are unrami�ed even above the 
usps. Inparti
ular the 
usp • on Za,b has k preimages on Zk

a,b and in�nitelymany preimages on Z∞
a,b, ea
h of angle 6π respe
tively. The genus of

Zk
a,b is k + 1 and Z∞

a,b is again an in�nite genus surfa
e.
5. The Vee
h groupsIn the following, Za,b, Zk
a,b and Z∞

a,b are always endowed with the trans-lation stru
ture 
oming from the square tiling; therefore, throughoutall notations we will omit to expli
itely denote the translation stru
ture.Observe that the Z-module spanned by the development ve
tors ofthe saddle 
onne
tion on Z∞
a,b is equal to Z2. Hen
e we do not haveto distinguish between Z∞

a,b and the pun
tured surfa
e Z∞
a,b

∗, sin
e thea�ne groups A�(Z∞
a,b) and A�(Z∞

a,b
∗) 
oin
ide and we have Γ(Z∞

a,b
∗) =

Γ(Z∞
a,b) = GL+(Z∞

a,b) = SL(Z∞
a,b). If (a, b) 6= (2, 0) or k ≥ 3, thesame is true for the translation surfa
e Zk

a,b. In parti
ular we have
Γ(Zk

a,b) = Γ(Zk
a,b

∗
) for (a, b) 6= (2, 0) or k ≥ 3.The surfa
es Zk

2,0 (k ∈ N, k odd) appear in [He, 4.3℄ as origamis NStk.They o

ur as the smallest normal 
over of the �stair-origamis� Stk,whi
h 
onsists of stairs of k squares, whose opposite edges are identi�ed.Hen
e the Vee
h groups Γ(Zk
2,0) 
ontain the subgroup of the respe
tive

Γ(Stk) (see e.g. [S
3, 3.1(5)℄). The Vee
h groups Γ(Stk) were 
al
ulatedin [S
3℄. They are Γ(2), if k is even, and(1) Γ = {

(

a b
c d

)

| a + c and b + d odd},if k is odd. We will see in Remark 6 that Γ(Zk
2,0) = Γ for all k. Equa-tions for 
urves in these in�nite families have been examined in [LS℄.
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1 23 4. . . . . .. . . 2k

. . . . . .
. . . . . .Figure 5: The origami Zk

2,0 for k �nite and k in�nite. Edges with thesame label and unlabelled opposite edges are identi�ed.Remark 6. Let k ∈ N≥3 ∪ {∞}. The Vee
h group Γ(Zk
2,0) = Γ, where

Γ is the group de�ned in (1).Proof. Observe that the surfa
e Zk
2,0 de
omposes in the horizontal andthe verti
al dire
tion in 
ylinders of length 2. Thus the Vee
h group
ontains the two matri
es

(

1 0
2 1

) and (

1 2
0 1

)These two matri
es generate Γ(2), hen
e we have Γ(Zk
2,0) ⊇ Γ(2). Ob-serve furthermore that the fundamental group Nk := π1(Z

k
2,0

∗
) is anormal subgroup of F2 and we have:

Nk = << x2, y2, (xy)k >>, if k is �nite, and N∞ = << x2, y2 >>,where << · >> denotes the normal subgroup generated by the ele-ments between the bra
kets. The automorphism de�ned by x 7→ y and
y 7→ x−1 stabilises Nk for all k ∈ N≥3 ∪ {∞}. Thus

S =

(

0 −1
1 0

)is in Γ(Zk
2,0) (see e.g. [S
2, Lemma 2.8℄). Sin
e Γ is generated by Γ(2)and S, we have that Γ(Zk

2,0) 
ontains Γ. Finally, Γ has index 3 inSL2(Z). Thus it su�
es to show that Γ(Zk
2,0) 6= SL2(Z). Consider theautomorphism γ : x 7→ y, y 7→ xy. Then γ(y2) 6∈ Nn for all n. Thus γdoes not stabilise Nk. Sin
e Nk is normal, 
omposing by a 
onjugationleads again to an element whi
h is not in the stabiliser. Thus the imageof γ under the proje
tion Aut+(F2) → SL2(Z) is not in the Vee
h group

Γ(Zk
2,0). This �nishes the proof. �



A SEQUENCE OF INFINITELY GENERATED VEECH GROUPS 11It follows from Remark 6 that in the 
ase (a, b) = (2, 0) the Vee
hgroup of Z∞
a,b is a latti
e. We will see in Theorem 1 that this is not the
ase in general. We assume from now on always that (a, b) 6= (2, 0).Theorem 1. Let Γ∞

a,b = Γ(Z∞
a,b) be the Vee
h group of the in�nite trans-lation surfa
e Z∞

a,b with (a, b) 6= (2, 0). If a or b is even, then Γ∞
a,b is anin�nitely generated subgroup of SL2(Z).Proof. We show in Lemma 7 that Γ∞

a,b has in�nite index in SL2(Z). Itremains to show that the limit set of the Fu
hsian group Γ∞
a,b is denseon R = R ∪ {∞}. In order to prove this, we pro
eed as follows:

• We show in Corollary 9 that, whenever v ∈ R2 is a one-
ylinderdire
tion of Za,b, then Z∞
a,b de
omposes in dire
tion v into 
ylin-ders isometri
 to the one 
ylinder on Za,b. It follows that theVee
h group Γ∞

a,b 
ontains paraboli
 matri
es with eigenve
tor
v. Thus zv = pv

qv
is a 
usp of Γ∞

a,b, where pv, qv are the x- and
y-
oordinates of v, i.e. v =

(

pv

qv

).
• We show in Lemma 10 that v =

(

2
1

) is a one-
ylinder dire
tionof Za,b, if a is even and v =
(

1
2

) is a one-
ylinder dire
tion, if bis even. It follows that γ(v) is a one-
ylinder dire
tion of Za,bfor all γ in the Vee
h group Γ(Za,b). By the pre
eding item itfollows that all the points zγ(v) are 
usps of Γ∞
a,b. Sin
e Γ(Za,b)is a latti
e in SL2(R),they lie dense in R.

�We now �ll in the details of the proof of Theorem 1.Lemma 7. For any a, b ∈ N0 with a ≥ 2, (a, b) 6= (2, 0) the Vee
hgroup Γ∞
a,b of the translation surfa
e Z∞

a,b has in�nite index in SL2(Z).Proof. We pro
eed as follows: we 
onsider the translation surfa
e(2) Y ∞
a,b = Z∞

a,b · B, where B =

(

0 1
−1 1

)

,This means that Y ∞
a,b arises from Z∞

a,b by de
omposing ea
h 
hart inthe atlas with the a�ne map z 7→ B · z. Then Y ∞
a,b and Z∞

a,b are a�neequivalent and Γ(Y ∞
a,b) = BΓ(Z∞

a,b)B
−1. We show that the Vee
h groupof Y ∞

a,b does not 
ontain any power of
T =

(

1 1
0 1

)

.Thus Γ(Y ∞
a,b) � and therefore also Γ(Z∞

a,b) � has in�nite index in SL2(Z).



12 PASCAL HUBERT, GABRIELA SCHMITHÜSENBy 
onstru
tion Y ∞
a,b 
omes with a Z-
overing p′∞ : Y ∞

a,b → Y a,b, where
Y a,b = Za,b ·B. The surfa
e Y a,b is equivalently obtained by 
omposingthe origami map Za,b → E = C/(Z ⊕ Zi) with the a�ne (but notholomorphi
!) map E → E whi
h is the des
end of C → C, z 7→ B · z.Hen
e, Y a,b is again an origami with monodromy σ′ = σ ◦ γ−1

B , where
σ is the monodromy of the origami map Za,b → E and γB is a lift of
B to Aut(F2). We 
hoose γB : F2 → F2, x 7→ y−1, y 7→ yx. Using thepermutations σh = σ(x) and σv = σ(y) given in De�nition 1, we obtainthe monodromy of Y a,b.

σ′(x) = σ(γ−1
B (x)) = σ(xy) = σ(y) ◦ σ(x) = σv ◦ σh

=
(

1 2 . . . a − 1 a + 1 . . . a + b
)

σ′(y) = σ(γ−1
B (y)) = σ(x−1) = σ−1

h =
(

a a − 1 . . . 1
)The 
orresponding square-tiled surfa
e is drawn in Figure 6.

1 . . . . . . . . . . . . . . . . . . a-2 a-1 a+1 a+2 . . . a+baA AB B1 12 23 34 45 56 6. . . . . .a-2 a-2a-1
a-1

? ?

6 6

cFigure 6: The origami Y a,b = Za,b · B. Edges labelled with the samenumber or letter and unlabelled opposite edges are identi�ed.
Y a,b 
onsists of two horizontal 
ylinders, one of length a + b − 1 andone of length 1. The two oriented segments A and B on Za,b be
omesegments in dire
tion B ·

(

1
0

)

=
(

0
−1

) and B ·
(

−1
0

)

=
(

0
1

) on Y a,b, respe
-tively. A is the unique horizontal segment on Za,b, whi
h is interse
tedby the path starting in Square 1 indu
ed by y−1 (see Figure 1). Hen
eit be
omes the unique verti
al segment on Y a,b, whi
h is interse
ted bythe path starting in Square 1 indu
ed by γB(y−1) = x−1y−1. This isthe verti
al edge between the square labelled with 1 and the squarelabelled with a + b. Similarly one obtains that B be
omes the verti
aledge whi
h bounds the square labelled with a from both sides.Similarly as before (see Lemma 4), the monodromy map m′ ∞ of thein�nite 
over p′∞ : Y ∞
a,b → Y a,b is obtained as follows: Let c be a 
losed
urve on Y a,b. Its monodromy m′ ∞(c) is the number of oriented inter-se
tions with the segments A and B. The orientations of A and B areindi
ated by the arrows in Figure 6.



A SEQUENCE OF INFINITELY GENERATED VEECH GROUPS 13Let us suppose for the moment that b ≥ 1. We �x in the following theve
tor v1 =
(

0
1

).Let c now be a 
losed 
urve on Y ∗
a,b with developing ve
tor v1 whi
hruns through the square labelled by a + 1 (see Figure 6). It does not
ross any 
utting slit. Hen
e ea
h lift ĉ of c on Y ∞

a,b
∗ is also a 
losed
urve with developing ve
tor v1. Suppose now that T n ∈ Γ(Y ∞

a,b) forsome n ∈ N≥1 and let f̂ be an a�ne di�eomorphisms of Y ∞
a,b withderivative T n. By passing to a power if ne
essary, we may assume that

n > a + b. Then ĉ2 = f̂(ĉ) is a 
losed 
urve with developing ve
tor
v2 = T n · v1 =

(

n
1

)

.Its image c2 = p′∞(ĉ2) on Y ∗
a,b is then as well a 
losed 
urve with devel-oping ve
tor v2. Furthermore its monodromy m′ ∞(c2) is 0. Observefrom Figure 6 that �rst of all any 
losed 
urve with developing ve
-tor v2 interse
ts a horizontal saddle 
onne
tion. Thus we may assumethat the starting point of c2 lies on a boundary of the two horizontal
ylinders. Then again sin
e its developing ve
tor is v2, c2 hits at mostone of the two slits and it interse
ts it always in the same dire
tion.Furthermore it interse
ts at least on
e, sin
e n > a + b − 1. Therefore

m′ ∞(c2) is either positive, if c2 lies in the bottom 
ylinder, or it is nega-tive, if c2 lies in the top 
ylinder. In any 
ase it is not 0. Contradi
tion!Let us �nally 
onsider the 
ase b = 0, see Figure 7. We repla
e theve
tor v1 =
(

0
1

) by the ve
tor v′
1 =

(

1
1

) and the 
losed 
urve c by the
losed 
urve with developing ve
tor v′
1 whi
h starts on the lower edgeof Square 1. The 
laim follows by similar arguments as before.

1 . . . . . . a-1aA AB B
u u

u u

u uu

u

u

u1 1 a-2 a-2a-1
a-1

? ?

6 6

�
�

�c

Figure 7: The origami Y a,b = Za,b ·B, if b = 0. Edges labelled with thesame number or letter and unlabelled opposite edges are identi�ed.
�Lemma 8. In the following we �x a dire
tion v =

(

p

q

). Let k be thenumber of 
ylinders of Za,b in dire
tion v and let c1, . . . , ck be geodesi
s
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tion v whi
h are 
ore 
urves of the 
ylinders. We then have:
k

∑

i=1

m(ci) = 0,where m = m∞
a,b is the monodromy of the 
over p∞a,b : Z∞

a,b
∗ → Za,b

∗.Proof. We 
onsider the �rst return map for the union A∪B in dire
tion
v. In order to be more expli
it we �x some r ∈ R\Q with 0 < r < 1

q
, qpoints P1, . . . , Pq on the segment A and q points Pq+1, . . . , P2q on thesegment B (see Figure 8) su
h that

• ~O1Pi = (r + i−1
q

) ·
(

1
0

) for i ∈ {1, . . . , q}, where O1 is the lowerleft vertex of the square labelled by 1.
• ~O2Pi = (r + i−1−q

q
) ·

(

1
0

) for i ∈ {q + 1, . . . , 2q}, where O2 is thelower left vertex of the square labelled by a.

1 . . . . . . a...
a+b

A

A
B B

u

P1

u

P2

u. . . u

Pq

u
Pq+1

u
. . .

u u
P2q

u

Pq+1

u. . .u u

P2q

u
P1

u
P2

u
. . .

u
Pq

O1

O2- �

-

�

Figure 8: The �ow in dire
tion v a
ts on the points Pi.The geodesi
 �ow in dire
tion v de�nes a permutation pv of the points
P1, . . . , P2q. Mapping z to the permutation (pv)

z gives an a
tion of
Z on them. The orbits of this a
tion are in one-to-one 
orresponden
ewith the geodesi
 
ylinders on Za,b in dire
tion v and thus as wellin one-to-one 
orresponden
e with the given geodesi
s c1, . . . , ck. Inparti
ular we may 
hoose the geodesi
s cj , su
h that they start in oneof the points Pi.Let now c be a 
losed geodesi
 in dire
tion v starting from the point
Pi. Then c interse
ts the slits A or B pre
isely in the points Pj. Let
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 c runs �from the bottomto the top�, i.e. that the y-
oordinate q of v is positive. Then themonodromym(c) in
reases, whenever c runs through A and it de
reaseswhenever c runs through B. We de�ne χ(Pj) = 1 for j ∈ {1, . . . , q}and χ(Pj) = −1 for j ∈ {q + 1, . . . , 2q}. It follows that in the 
ase
q > 0 we obtain:(3) m(c) =

∑

Pj∈ orbit(Pi)

χ(Pj)Similarly, we obtain for q < 0:(4) m(c) =
∑

Pj∈ orbit(Pi)

−χ(Pj)Sin
e ∑2q

j=1 χ(Pj) =
∑q

j=1 1 +
∑2q

j=q+1 −1 = 0, the 
laim follows from(3) and (4).
�From Lemma 8 we immediately obtain the following 
orollary.Corollary 9. If v =

(

p

q

) is a one-
ylinder dire
tion on Za,b and c is a
losed geodesi
 in dire
tion v, then we have:i) The monodromy m(c) is 0.ii) Z∞
a,b de
omposes in dire
tion v into 
ylinders isometri
 to theone 
ylinder on Za,b.iii) The Vee
h group Γ(Z∞

a,b) 
ontains a paraboli
 element in SL2(Z)with eigenve
tor v =
(

p

q

).iv) p/q is a 
usp of Γ(Z∞
a,b).Observe that so far, we have not used the prerequisite that a or b iseven. We will need this now in the last step, where we �nd a one-
ylinder dire
tion on Za,b.Lemma 10. Let

v =

(

1
2

) and v′ =

(

2
1

)

.If b is even, then v is a one-
ylinder dire
tion on Za,b. If a is even,then v′ is a one-
ylinder dire
tion.Proof. Let us �rst assume that b is even. Consider the geodesi
 path cvon the one-square translation surfa
e E with developing ve
tor v =
(

1
2

)starting in the midpoint M . This a
tually is a 
losed 
urve on thepun
tured surfa
e E∗.
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6

-x
y

cvFigure 9: The 
losed 
urve cv on the on
e pun
tured torus E∗ with
v =

(

1
2

).As element of π1(E
∗, M) it is equal to yxy (
ompare Figure 9). Hen
eits monodromy with respe
t to the 
overing Z∗

a,b → E∗ is
m(yxy) = pv ◦ ph ◦ pv

=
(

1 a a + 1 . . . a + b
)

◦
(

1 2 . . . a
)

◦
(

1 a a + 1 . . . a + b
)

b even
= ( 1 a a + 2 a + 4 . . . a + b

2 3 . . . a − 1 a + 1 a + 3 . . . a + b − 1)Sin
e m(yxy) a
ts transitively, it follows that we have only one 
ylinderin dire
tion v.In the 
ase that a is even the proof works similarly: The geodesi
 path
cv′ on E with developing ve
tor v′ =

(

2
1

) starting in M is equal to xyxin π1(E
∗, M). Its monodromy is:

m(xyx) = ph ◦ pv ◦ ph

=
(

1 2 . . . a
)

◦
(

1 a a + 1 . . . a + b
)

◦
(

1 2 . . . a
)

a even
= (1 3 5 . . . a − 1 a + 1 a + 2 . . . a + b 2 4 . . . a).

�6. GeneralizationIn this se
tion, we des
ribe a general 
onstru
tion produ
ing in�niteorigamis with large Vee
h groups.Let O be a �nite origami. Let A and B be two horizontal segmentsof length 1, ea
h of them joining preimages of the origin of the torus(in other words, the end points of the horizontal segments A, B haveintegral 
oordinates). We assume that A and B are not homologous.We 
ut the surfa
e along these segments. We obtain a translationsurfa
e with boundary. We 
all the part of the boundary where theverti
al �ow 
an be de�ned for some positive time the positive boundary.Its 
omplement is the negative boundary. This yields a partition of theboundary: (A, +), (A,−), (B, +), (B,−).We 
onstru
t an in�nite origami O∞ whi
h is a Z-
over of O. Considera 
ountable number of 
opies of O 
ut along A and B. On ea
h 
opy
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Oi, there are slits (Ai, +), (Ai,−), and (Bi, +), (Bi,−). For all i ∈ Z,we glue (Ai,−) with (Ai+1, +) and (Bi, +) with (Bi+1,−). We denoteby O∞ the in�nite origami obtained by this 
onstru
tion.We note that, as A and B are not homologous, the surfa
e O∞ is 
on-ne
ted. In fa
t, O\A∪B is 
onne
ted and, by 
onstru
tion, every levelis 
onne
ted to the previous one by two segments. Assuming that Aand B are homologous is ne
essary to get an interesting obje
t. Other-wise the 
onstru
tion produ
es a non 
onne
ted surfa
e homeomorphi
to O × Z.Theorem 2. If there is a one-
ylinder dire
tion on O, then the Vee
hgroup of O∞ is either a latti
e or in�nitely generated. Its limit set isequal to P1(R).The proof is omitted be
ause it is mutatis mutandis the same as forthe family Z∞

a,b.This theorem provides many examples. We know that �nite origamiswith one-
ylinder dire
tions are dense in every 
onne
ted 
omponentsof every stratum of moduli spa
es of holomorphi
 di�erentials (see[KZ℄). Moreover, by results of Hubert-Lelièvre ([HL1℄) and M
Mullen([M
℄), every origami of genus 2 with one singularity has a one-
ylinderdire
tion.Open questions
• There are origamis without one-
ylinder de
ompositions. Forinstan
e, the Vee
h group of Z∞

3,1 has two 
usps. Ea
h of them
orresponds to dire
tions in whi
h the surfa
e is de
omposedinto two 
ylinders. We don't know whether the limit set of theVee
h group of Z∞
3,1 is P1(R) or a Cantor set.

• When Theorem 2 holds, it seems di�
ult to give a general 
ri-terion to de
ide whether the group is a latti
e or in�nitely gen-erated.7. The Vee
h groups as subgroups of GLk(Z)Let X be a 
losed surfa
e, µ a translation stru
ture on X, S a �niteset whi
h 
ontains the singularities of µ and X∗ = X\S. Re
all thatthe natural a
tion of the a�ne group A�(X∗, µ) on its �rst homology
H1(X

∗, Z) de�nes an embedding of A�(X∗, µ) into Aut(H1(X
∗, Z)).Let k be the rank of π1(X

∗), i.e. k = 2g + n − 1, where g is thegenus of X and n is the number of elements in S. Any 
hoi
e ofan isomorphism ϕ : H1(X
∗, Z) → Zk de�nes an isomorphism ϕ∗ :Aut(H1(X

∗, Z))
∼=
→ GLk(Z). Thus we 
an des
ribe the a�ne group as a



18 PASCAL HUBERT, GABRIELA SCHMITHÜSENsubgroup of GLk(Z). If X∗ does not have nontrivial translations, thenthe derivative map D : A�+(X∗, µ) → Γ(X∗, µ) is an isomorphism.Altogether, in this 
ase we obtain an embedding:
hϕ : Γ(X∗, µ)

D−1

→ A�+(X∗, µ) →֒ Aut(H1(X
∗, Z))

ϕ∗

∼= GLk(Z).(5)This embedding depends on ϕ only up to 
onjugation.We now return to the translation surfa
es Za,b and Z∞
a,b de�ned in Se
-tion 3. As before we omit the notation of the translation stru
tures.Let S be the set of the integral points on Za,b. The rank k of π1(Z

∗
a,b)is the number of squares plus 1, i.e. k = a + b + 1. We assumethat (a, b) 6= (2, 0). In Remark 13 we will see that the Vee
h group

Γ(Z∞
a,b) is a subgroup of Γ(Za,b). The aim of this se
tion is to des
ribeits isomorphi
 image hϕ(Γ(Z∞

a,b)) in GLk(Z) for a suitable 
hoi
e of
ϕ : H1(Z

∗
a,b, Z) → Zk. We follow the 
onstru
tion in [S
1, Se
tion 7.1℄.In parti
ular, we show that hϕ(Γ(Z∞

a,b)) is the interse
tion of two �nitelygenerated subgroups of GLk(Z). Sin
e Γ(Z∞
a,b) itself is in�nitely gen-erated by Theorem 1, this is an example for GLk(Z) not having theHowson property. Re
all that a group has the Howson property, if theinterse
tion of any two �nitely generated subgroups is �nitely generated(see e.g. [BB℄).Proposition 11. Let a ≥ 2, b ≥ 0, (a, b) 6= (2, 0) and k = a + b + 1.The Vee
h group Γ(Z∞

a,b) embeds to a subgroup of GLk(Z), whi
h isthe interse
tion of two �nitely generated subgroups of GLk(Z). Morepre
isely we have for a suitable 
hoi
e of ϕ : H1(Z
∗
a,b, Z)

∼
→ Zk:

hϕ(Γ(Z∞
a,b)) = hϕ(Γ(Za,b)) ∩ H,with H =

{









a1,1 0 . . . 0
a2,1 a2,2 . . . a2,k... ... ... ...
ak,1 ak,2 . . . ak,k









∈ SLk(Z)| ai,j ∈ Z
}and hϕ de�ned as in (5).Part of Proposition 11 
an be 
on
luded from Corollary 7.3 in [S
1℄.Nevertheless, we in
lude the whole proof adapted to our present situ-ation.Proof. First of all, we show in Remark 12 that Z∗

a,b has no nontriv-ial translations. Therefore we a
tually obtain an embedding hϕ :
Γ(Za,b) →֒ GLk(Z) as des
ribed in the se
tion before Proposition 11.



A SEQUENCE OF INFINITELY GENERATED VEECH GROUPS 19We then show in Remark 13 that any a�ne di�eomorphism of Z∞
a,b de-s
ends to an a�ne di�eomorphism of Za,b. Thus Γ(Z∞

a,b) is a subgroupof Γ(Za,b). Finally we 
hoose an isomorphism ϕ : H1(X
∗, Z) → Zk andshow in Corollary 15 that an element A ∈ Γ(Za,b) lifts to Z∞

a,b if andonly if hϕ(A) stabilises the subspa
e U of Zk spanned by all standardbasis ve
tors other than the �rst one. This is equivalent to A being inthe group H . �Remark 12. If (a, b) 6= (2, 0), then Z∗
a,b has no nontrivial translations.Proof. Re
all that Z∗

a,b has a nontrivial translation if and only if thefundamental group π1(Z
∗
a,b, Mi) and π1(Z

∗
a,b, Mj) de�ne the same sub-group of F2 for the midpoints Mi and Mj of two squares. Let M1 be themidpoint of the square labelled by 1 (see Figure 1). Then we have yx isin π1(Z

∗
a,b, M1). For any other midpoint Mi we have yx 6∈ π1(Z

∗
a,b, Mi).Hen
e there are no nontrivial translations. Observe that this argumentworks as well for the spe
ial 
ases II and III (see Figure 2). In Case I,i.e. (a, b) = (2, 0), we in fa
t have a translation on Z∗

a,b. �Remark 13. Any a�ne di�eomorphism of Z∞
a,b

∗ des
ends to Z∗
a,b viathe 
overing map p∞ : Z∞

a,b
∗ → Z∗

a,b. In parti
ular we have Γ(Z∞
a,b) ⊆

Γ(Za,b).Proof. Here we again use the des
ription of the origamis by their 
or-responding subgroups of F2:
U = Ua,b = π1(Z

∗
a,b, M1) ⊆ F2,where M1 is the midpoint of Square 1,

U∞ = π1(Z
∞
a,b

∗, M̂1) ⊆ U,where M̂1 is a preimage of M1 on Z∞
a,b.We show that NormF2

(U∞) = U . Sin
e we have thatStabAut+(F2)
(U∞) ⊆ StabAut+(F2)

(NormF2
(U∞))(see e.g. [S
3, Remark 3.1℄), the 
laim follows e.g. from [S
2, Lemma2.8(2)℄.We use the same notations as in De�nition 3. Sin
e the 
over p∞ :

Z∞
a,b

∗ → Z∗
a,b is normal, U∞ is the kernel of m∞. In parti
ular U∞ isa normal subgroup of U . Therefore NormF2

(U∞) 
ontains U . Supposenow that there is some w ∈ NormF2
(U∞) whi
h is not in U . Thenthere exists a square on Za,b labelled by i 6= 1 , su
h that a 
losed pathstarting in the midpoint Mi lifts to Z∞

a,b if and only if its image in F2 isin U∞. Observe from Figure 1 and Figure 2 that for ea
h square other



20 PASCAL HUBERT, GABRIELA SCHMITHÜSENthan Square 1 at least one of the paths x,y, yxy−1 or x−1yx is 
losedand lifts to Z∞
a,b. But they are all three not in π1(Z

∗
a,b, M1) and thus inparti
ular not in U∞. It follows that NormF2

(U∞) = U . �We now want to 
hoose an isomorphism ϕ : H1(Z
∗
a,b, Z) → Zk. Insteadof this, we may 
hoose as well an isomorphism ϕ̂ : π1(Z

∗
a,b) → Fk =

F (x1, . . . , xk), the free group in the k = a + b + 1 generators x1, . . . ,
xk. For matter of 
onvenien
e we start with the somehow naturalisomorphism

ϕ̂′ : π1(Z
∗
a,b) → Fk, gi 7→ xi for i ∈ {1, . . . , 3},

hi 7→ x3+i for i ∈ {1, . . . , a − 2},
li 7→ x1+a+i for i ∈ {1, . . . , b},respe
tively with its des
end ϕ′ : H1(Z

∗
a,b, Z) → Zk. Here the gi's, hi'sand li's are as in De�nition 1. We will later modify ϕ′ by a base 
hangein order to obtain a ni
er subgroup in GLk(Z).Lemma 14. Let A be in the Vee
h group Γ(Za,b) and 
onsider theembedding hϕ′ : Γ(Za,b) →֒ GLk(Z) de�ned in (5).

A is in Γ(Z∞
a,b) ⇔ hϕ′(A) stabilises V ′ = {





a1...
ak



 ∈ Zk|a1−a2 = 0}.Proof. Re
all that Za,b has no nontrivial translations. Let f = fA bethe unique a�ne homeomorphism of Za,b with derivative A. Re
allfurther that f de�nes an outer automorphism [f∗] of the fundamentalgroup U of Z∗
a,b and that f lifts to Z∞

a,b
∗ if and only if [f∗] preservesthe 
onjuga
y 
lass of U∞, i.e. for ea
h automorphism f⋆ in the 
lassof [f∗] we have that f⋆(U

∞) is 
onjugate to U∞. Sin
e U∞ is normalin U this is in this 
ase equivalent to f⋆(U
∞) = U∞. Furthermore wehave the following 
ommutative diagram, where proj : Fk → Zk is thenatural proje
tion:

U = π1(Z
∗
a,b) ∼=

ϕ̂′

//

f⋆

��

Fk

proj
// Zk

hϕ′ (A)

��

U = π1(Z
∗
a,b) ∼=

ϕ̂′

// Fk

proj
// ZkBy Lemma 4 we have that

U∞ = {w ∈ U | m∞(w) = ♯g2
(w) − ♯g1

(w) = 0},where ♯gi
(w) is the number of o

urren
es of gi in w; g−1

i is 
ountednegative. It follows that U∞ is the preimage of V ′, i.e. U∞ = (proj ◦
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ϕ̂′)−1(V ′). Thus f⋆(U

∞) = U∞ if and only if hϕ′(A)(V ′) = V ′. Thisproves the 
laim. �Observe that V ′ de�ned in in Lemma 14 is the following (k − 1) -dimensional submodule of Zk:
V ′ = <





















1
1
0
0
0...
0





















,





















0
0
1
0
0...
0





















,





















0
0
0
1
0...
0





















, . . . ,





















0
0
0
0
0...
1





















>

Let B be the matrix
B =

















1 1 0 0 . . . 0
0 1 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0... ... ... ... ... ...
0 0 0 0 . . . 1

















.

In the following lB and lB−1 are the linear maps z 7→ B · z and z 7→
B−1 · z, respe
tively. Then we have lB(V ) = V ′, where

V = <





















0
1
0
0
0...
0





















,





















0
0
1
0
0...
0





















,





















0
0
0
1
0...
0





















, . . . ,





















0
0
0
0
0...
1





















> .

Corollary 15. Let ϕ = lB−1 ◦ ϕ′. Let furthermore H be the groupde�ned in Proposition 11. Then we have for all A ∈ Γ(Za,b):
A is in Γ(Z∞

a,b) ⇔ hϕ(A) ∈ H.Proof. Let us 
onsider the isomorphismϕ∗ : Aut(H1(Z
∗
a,b, Z)) → GLk(Z)indu
ed by ϕ. Then we have for any automorphism f̄ of H1(Z

∗
a,b, Z)
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ommutative diagram:
H1(Z

∗
a,b, Z)

ϕ′

//

f̄

��

Zk
l
B−1

//

ϕ′

∗
(f̄)

��

Zk

ϕ∗(f̄)

��

H1(Z
∗
a,b, Z)

ϕ′

// Zk
l
B−1

// ZkHen
e ϕ∗ = lB−1 ◦ ϕ′
∗ ◦ lB. It follows from the De�nition of hϕ and

hϕ′ in (5) that hϕ = lB−1 ◦ hϕ′ ◦ lB. Sin
e lB(V ) = V ′, we have for all
A ∈ Γ(Za,b) that hϕ(A)(V ) = V ⇔ hϕ′(A)(V ′) = V ′. The 
laim nowfollows from Lemma 14, sin
e H is the stabiliser of V in GLk(Z). �Observe �nally that H is �nitely generated, sin
e it is generated by theelementary matri
es 
ontained in H together with an arbitrary matrixin H having determinant -1. This �nishes the proof of Proposition 11.Example 16. Let us 
onsider the surfa
e Z∞

3,0 over the basis surfa
e
Z3,0 (see Figure 10). The Vee
h group Γ(Z∞

3,0) is isomorphi
 to
< C1, C2, C3 > ∩ H

with C1 = 







−1 −1 0 1
1 1 0 0
−1 0 1 1
0 1 0 0









, C2 =









1 0 0 0
1 1 −2 0
0 0 1 0
2 0 −2 1









,

C3 = 







1 1 0 −1
−2 0 2 1
1 0 −1 −1
0 1 2 0









in SL4(Z)

and H = {









a1,1 0 0 0
a2,1 a2,2 a2,3 a2,4

a3,1 a3,2 a3,3 a3,4

a4,1 a4,2 a4,3 a4,4









∈ SL4(Z)| ai,j ∈ Z
}.This is obtained as follows: The fundamental group U of the basissurfa
e Z3,0 is isomorphi
 to F4. More pre
isely, we have:

U = < g1 = yx−2, g2 = x2y, g3 = x3, h1 = xyx−1 >
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v

v

v

v v

v vFigure 10: The translation surfa
e Z3,0.One 
an 
al
ulate the Vee
h group Γ(Z3,0) e.g. with the algorithm de-s
ribed in [S
2℄ and obtains:
Γ(Z3,0) = < A1 =

(

1 1
0 1

)

, A2 =

(

1 0
−2 1

)

, A3 =

(

−1 −1
2 1

)

>This is an index 3 subgroup of SL2(Z), whi
h 
onsists of all elementswhi
h are 
ongruent to I or A1 modulo 2.The following lifts γ1, γ2 and γ3 of the matri
es A1, A2 and A3 toAut+(F2) are all in Stab(U):
γ1 : x 7→ x, y 7→ x2yx−1

γ2 : x 7→ xy−2, y 7→ y,

γ3 : x 7→ y2x−1, y 7→ yx−1Their restri
tion to U give the following automorphisms:
γ1 : g1 7→ g2g

−1
3 , g2 7→ g3h1,

g3 7→ g3, h1 7→ g3g1

γ2 : g1 7→ g1g2g1h
2
1, g2 7→ h−2

1 g−1
1 ,

g3 7→ h−2
1 g−1

1 g−1
2 g3g

−1
2 g−1

1 , h1 7→ h1

γ3 : g1 7→ g−1
2 g3g

−1
2 g−1

1 , g2 7→ g1g2g
−1
3 g2g1h1,

g3 7→ g1g2g
−1
3 g2g1h

2
1, h1 7→ g1g2g

−1
3 g−1

1These automorphisms indu
e the following matri
es in GLk(Z):
C ′

1 =









0 0 0 1
1 0 0 0
−1 1 1 1
0 1 0 0









, C ′
2 =









2 −1 −2 0
1 0 −2 0
0 0 1 0
2 −2 −2 1









,

C ′
3 =









−1 2 2 0
−2 2 2 1
1 −1 −1 −1
0 1 2 0








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onstru
tion we have that Ai a
ts on the homology by C ′
i, wherewe have 
hosen the basis of H1(Z

∗
3,0, Z) to be the images of the four
losed 
urves g1, g2, g3 and h1. Using the notations in Proposition 11and Lemma 14, we have that hϕ′(Ai) = C ′

i. Conjugating with the matrix
B−1 from the proof of Corollary 15 gives the desired matri
es Ci =
B−1C ′

iB = hϕ(Ai). Then the statement follows from Proposition 11.Referen
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