Aufgabe 3

a) Die Lösung der DGL ist durch $V(t) = V_0 \cdot e^{-\frac{t}{\lambda}}$ gegeben. Aber reicht man für $\lambda \in \mathbb{N}$

$V(t + \lambda) = \lambda \cdot V(t)$

(⇒) $V_0 \cdot e^{-\frac{(t + \lambda)}{\lambda}} = \lambda \cdot V_0 \cdot e^{-\frac{t}{\lambda}}$

(⇒) $e^{\lambda \cdot \frac{t}{\lambda}} = \lambda$

(⇒) $\lambda = e^{h}$

(⇒) $t = \frac{1}{h} \ln(h)$

Man stelle das h nicht von t abhängig.
Für \(t \to \infty \) gilt allnächst \(V(t) = V_0 \exp \left(\frac{\lambda t}{2} \right) \).

Das Volumen \(V \) also beschränkt.

Für kleine \(t \) gilt näherungsweise

\[
\frac{\Delta}{2} (1 - e^{-\lambda t}) = \frac{\Delta}{2} (1 - 1 + k t - \frac{k t^2}{2})
\]

\[
= k t - \frac{k t^2}{2}
\]

Also gilt \(V(t) \approx V_0 \exp \left(\frac{t}{2} \left(k - \frac{k t^2}{2} \right) \right) \) für kleine \(t \).

Durch Ableitung (i) erhält man die DGL

\[
\left[V'(t) = \lambda e^{-\lambda t} V(t) \right]
\]

Dies läßt zwei Lösungslinien zu

(i) \(V'(t) = \left(\lambda e^{\lambda t} \right) V(t) \)

Parameter man \(\lambda \) als

(ii) \(V'(t) = \lambda \left(e^{\lambda t} V(t) \right) \)

Volumen gilt nur unendlich geänderter Ablauf ein

c) Im Gleichgewichtszustand muß \(x'(t) = 0 \) gelten.

Also folgt

\[
\Delta \cdot x \cdot \ln \left(\frac{K}{x} \right) = 0 \Rightarrow x
\]

Damit erhält man für \(x_1 = 0 \) und \(x_2 = K \exp \left(\frac{\sigma}{\lambda} \right) \) Gleichgewicht.

In einem stabilen G6W wird die Gleichung der G6W langfristig nicht aus.
Es sei also \(x(t) = 0 + \varepsilon(t) \) \((\varepsilon(t) \text{ klein})\). Dann gilt

\[
\begin{align*}
\sigma'(t) &= \lambda \varepsilon(t) \left(K - \lambda \varepsilon(t) \right) = \sigma(t) - \lambda \varepsilon(t) \\
&= -\lambda \varepsilon(t) \varepsilon(t) > 0
\end{align*}
\]

Ein Fehler wird also verstärkt und der G6W ist somit instabil.

Jetzt sei \(x(t) = x_2 + \varepsilon(t) \)

\[
\begin{align*}
\sigma'(t) &= \lambda \left(x_2 + \varepsilon \right) \lambda \left(K \right) - \varepsilon \left(x_2 + \varepsilon \right) \\
&= \lambda x_2 \lambda K - \lambda \varepsilon \lambda K - \lambda x_2 \lambda \left(x_2 + \varepsilon \right) - \lambda \varepsilon \lambda \left(1 + \frac{\sigma^2}{x_2} \right) \\
&= \lambda \varepsilon \lambda \left(x_2 \right) - \lambda \varepsilon \lambda \left(1 + \frac{\sigma^2}{x_2} \right) - \varepsilon x_2 - \varepsilon \varepsilon
\end{align*}
\]

\[\text{Mit} \quad \gamma_{(\varepsilon)} = \varepsilon \]

\[\approx \lambda \varepsilon \lambda \left(K \right) - \lambda \varepsilon - \varepsilon \lambda \left(x_2 \right) + \frac{\varepsilon^2}{x_2} \]

\[= \lambda \varepsilon \lambda \left(K \right) - \lambda \varepsilon - \lambda \varepsilon - \lambda \varepsilon \lambda \left(K \right) - \varepsilon \varepsilon \]
\[\approx -e^t. \]

Also gilt \(e'(t) = -L \cdot e^t, \quad L \geq 0. \)

Daraus folgt \(e(t) \approx e^{-Lt} \) und somit

\[\lim_{t \to \infty} e(t) = 0. \]

Damit ist der Linien stabil.

Der nachhallende Signal \(y(t) \cdot e^{-x(t)} \) ist der Anteil von \(x(t) \) der im stabilen SGBW entnommen wird. Also gilt

\[y(t) = e \cdot K \cdot \exp \left(-\frac{t}{2L} \right) \]

Daraus folgt

\[y'(t) = K \cdot \exp \left(-\frac{t}{2L} \right) + eK \left(-\frac{1}{2L} \right) \exp \left(-\frac{t}{2L} \right) \]

\[= K \cdot \exp \left(-\frac{t}{2L} \right) \left[1 - e \right] \]

Also gilt \(y'(t) = 0 \iff e = L \)

Max der 1. Ableitung, man sieht, daß es nicht echt ein Maximum zu sein Maximum landet \(y(t) \). Daraus folgt

\[T_{\text{max}} = y(L) = 2 \cdot L \cdot K \cdot \exp \left(-\frac{L}{2} \right). \]
Laut dem Vorliegenden zur Gleichung

gilt: Das X(t)

\[x'(t) = \beta \times x(t) \times \left(\frac{K}{x(t)} \right) \]
\[x(0) = x_0 \]

Lässt die Lösung

\[x(t) = K \exp \left[\ln \left(\frac{x_0}{K} \right) \exp (-\beta t) \right] \]

Aus der Definition von \(V(t) \) ergibt sich mit der
Pendelregel in der \(\exp \)-Funktion die Gleichung

\[V(t) = V_0 \exp \left(\frac{-x}{\alpha} \right) \cdot \exp \left(-\left(\frac{x}{\beta} \right) \exp (-\alpha t) \right) \]

Wie man sieht, laut die DGL (3) Gleichung (2)

als Lösung, sofern man entsprechend umgeformt

Aufgabe 4

Mit Hilfe der thermo. Quotienten bei \(10^5 \) Fahrenheit

darstellung findet man die Gleichung

\[C^0(10^5) = 100 \ell_a \cdot \frac{0.1 \text{ km}}{0.1 \text{ km}^3} \]

\[= 100 \ell_a \cdot \frac{0.1 \text{ km}}{0.1 \text{ km}^3 + 0.75 \ell_a} \]

\[= 100 \ell_a \cdot \frac{0.2 \ell_a}{0.1 + 0.75} \]
\[\frac{40}{t^2} \]

Das entspricht der Aufgabenstellung.

Man ist das AWP
\[C'(t) = 60 - \frac{1}{2} \left(\frac{4}{9} + 0.75 \right) C(t) , \quad C(0) = 40 \]
zu lösen.

Dies ist eine lineare Dgl 1. Ordnung mit konstanten Koeffizienten. Die Lösung ist
\[C(t) = 24 + 16 \cdot e^{-4t} \]

wobei die Konstante aus der Lösung des AWP abgeleitet wird.

Es gilt
\[\lim_{t \to \infty} C(t) = 24 \]
was der neuen stationären Vorgabe entspricht.

Für
\[t \text{ von 24 und 172} \text{, gemäß A} \text{, also} \]
\[C(t) = 25 \]

gilt.

Dieser Wert stößt sich mit
\[t \leq 2 \]