Musterlösungen zum 3. Übungsblatt
Optimierungstheorie SS09

10. Aufgabe

(a) \[Ax = 0, \ x \geq 0, \ x \neq 0 \text{ lösbar} \]

\[\iff \ \left(\begin{array}{c}
-\frac{A}{1} \\
\vdots \\
1
\end{array} \right) x = \left(\begin{array}{c}
0 \\
1
\end{array} \right), \ x \geq 0 \text{ lösbar} \]

\[\iff \ \left(-A^T \begin{array}{c}
1 \\
\vdots \\
1
\end{array} \right) u \geq 0, \ \langle \left(\begin{array}{c}
0 \\
1
\end{array} \right), u \rangle < 0 \text{ unlösbar (L. v. Farkas)} \]

\[\iff \ \begin{pmatrix}
-t \\
\vdots \\
t
\end{pmatrix} \text{ für alle } t < 0 \text{ unlösbar} \quad (u = \begin{pmatrix}
\tilde{u} \\
t
\end{pmatrix} \in \mathbb{R}^{m+1}) \]

\[\iff \ A^T \tilde{u} < 0 \text{ unlösbar}. \]

(b) Sei \(A = \left(\begin{array}{c|\ldots|c}
a^1 & \ldots & a^n
\end{array} \right). \)

\[A^T u \leq 0, \ A^T u \neq 0 \text{ unlösbar} \]

\[\iff \ A^T u \leq 0 \text{ und } \left[(\langle a^1, u \rangle < 0) \text{ oder } \ldots \text{ oder } (\langle a^n, u \rangle < 0) \right] \text{ unlösbar} \]

\[\iff \ \text{Keines der Systeme } \begin{pmatrix}
(-A)^T u \geq 0 \\
\langle a^1, u \rangle < 0
\end{pmatrix} \quad \ldots \quad \begin{pmatrix}
(-A)^T u \geq 0 \\
\langle a^n, u \rangle < 0
\end{pmatrix} \text{ unlösbar} \]

\[\iff \ \text{Jedes der Systeme } \begin{pmatrix}
-A \cdot x = a^1 \\
x \geq 0
\end{pmatrix} \quad \ldots \quad \begin{pmatrix}
-A \cdot x = a^n \\
x \geq 0
\end{pmatrix} \text{ unlösbar (Farkas)} \]

\[\iff^{(*)} \ Ax = 0, x > 0 \text{ ist lösbar} \]

Beweis von \((*)\):

\[\Rightarrow \] Es existieren Lösungen \(x^j \) mit \((-A) x^j = a^j, \ x^j \geq 0. \) Setze

\[x := x^1 + \ldots + x^n + \begin{pmatrix}
1 \\
\vdots \\
1
\end{pmatrix} > 0. \]

Dann ist \(Ax = -a^1 - a^2 - \ldots - a^n + a^1 + \ldots + a^n = 0. \)
"⇒" Ist $x > 0$ eine Lösung von $Ax = 0$, $x = (x_1, \ldots, x_n)$, so folgt

$$0 = \sum_{i=1}^{n} x_i a^i$$

$$\Rightarrow \sum_{i \neq j} \frac{x_i}{x_j} a^i = -a^j$$

$$\Rightarrow x^j := (\frac{x_1}{x_j}, \ldots, \frac{x_{j-1}}{x_j}, 0, \frac{x_{j+1}}{x_j}, \ldots, \frac{x_n}{x_j}) \geq 0$$

ist Lsg. von $Ax = -a^j$

11. Aufgabe

V ist endlich erzeugt $\Rightarrow \exists y^1, \ldots, y^k \in \mathbb{R}^n \setminus \{0\}$:

$$V = \{\alpha_1 y^1 + \ldots + \alpha_k y^k | \alpha_i \geq 0\}.$$

(b) Es sei $A := (y^1 | \cdots | y^k)$.

Sei $b \in V^\circ$ \iff $\langle b, z \rangle \leq 0$ $\forall z \in V^\circ$

$$\iff \left[\langle z, y^i \rangle \leq 0 \text{ für alle } i = 1, \ldots, k \Rightarrow \langle b, z \rangle \leq 0 \right]$$

$$\iff \left[A^T u \geq 0 \Rightarrow \langle b, u \rangle \geq 0 \right]$$

($u := -z$)

$$\iff \exists x \geq 0, \ x = (x_1, \ldots, x_k), \text{ mit } Ax = b$$

(Lemma von Farkas)

$$\iff \exists x_1, \ldots, x_k \geq 0 \text{ mit } b = x_1 y^1 + \ldots + x_k y^k$$

$$\iff b \in V.$$