Stochastic and Integral Geometry I (WS 06/07)

Exercise Sheet 2

Please, hand in your solutions at the end of the lecture on Monday, Nov 13th!

1. Let

$$(\mathbb{R}^d)_{\neq}^m := \{(x_1, \dots, x_m) : x_i \in \mathbb{R}^d, x_i \neq x_j \text{ for all } i \neq j\}$$

and \mathcal{B}_{\neq} be the Borel σ -algebra on $(\mathbb{R}^d)^m_{\neq}$. \mathcal{B}_{\neq} is equivalent to the trace σ -algebra $\mathcal{B}((\mathbb{R}^d)^m) \cap (\mathbb{R}^d)^m_{\neq}$ of the Borel σ -algebra $\mathcal{B}((\mathbb{R}^d)^m)$ on the set $(\mathbb{R}^d)^m_{\neq}$. (Why?) Show that \mathcal{B}_{\neq} is generated by the system

$$\mathcal{D} := \left\{ A_1 \times \ldots \times A_m : A_i \in \mathcal{B}(\mathbb{R}^d), A_i \cap A_j = \emptyset \text{ for all } i \neq j \right\}.$$

2. Let $0 < \gamma < \infty$. Theorem 1.2.1 states the existence of a point process X on \mathbb{R}^d (the Poisson process with intensity γ) characterized by the property that for each bounded Borel set $B \subset \mathbb{R}^d$

(1)
$$\mathbb{P}(|X \cap B| = k) = e^{-\gamma \lambda_d(B)} \frac{[\gamma \lambda_d(B)]^k}{k!} \text{ for } k = 0, 1, 2, \dots$$

Show that X satisfies (1) for all Borel sets $B \subset \mathbb{R}^d$. If $\lambda_d(B)$ is infinite, (1) has to be interpreted as a degenerated Poisson distribution for which the random variable $|X \cap B|$ is allowed to assume values in $\mathbb{N}_0 \cup \{+\infty\}$ and which is given by $\mathbb{P}(|X \cap B| = k) = 0$ for $k \in \mathbb{N}_0$ and $\mathbb{P}(|X \cap B| = +\infty) = 1$.

3. For a stationary Poisson process X in \mathbb{R}^d with intensity γ , let

$$d_X := \inf \{ ||x|| : x \in X \}.$$

- (a) Show that d_X is a random variable and determine the distribution function H of d_X (given by $H(r) = \mathbb{P}(d_X \leq r)$).
- (b) Show that

$$H(r) = \lim_{\varepsilon \to 0} \mathbb{P}\left(|X \cap B(r)| \ge 2 \mid |X \cap B(\varepsilon)| = 1\right),\,$$

where B(s) denotes the ball of radius s centered at the origin.

- 4. Let X be a stationary Poisson process on \mathbb{R}^d with intensity γ and K, M compact subsets of \mathbb{R}^d .
 - (a) Show that the mapping $x \mapsto \lambda_d(K \cap (M+x)), \mathbb{R}^d \to [0,+\infty)$ is measurable.
 - (b) Prove that

$$\mathbb{E}\sum_{x\in X}\lambda_d(K\cap (M+x))=\gamma\lambda_d(K)\lambda_d(M).$$