Stochastic and Integral Geometry I (WS 06/07)

Exercise Sheet 5

Please, hand in your solutions at the end of the lecture on Monday, Dec 4th!

- 1. Let Z be a stationary random closed set in \mathbb{R}^d and $\overline{V}_d(Z) := \mathbb{P}(0 \in Z)$ the probability that Z contains the origin.
 - (a) Show that, for all $B \in \mathcal{B}(\mathbb{R}^d)$,

$$\mathbb{E}\lambda_d(Z\cap B) = \overline{V}_d(Z)\lambda_d(B).$$

(b) Assume that $\overline{V}_d(Z) < 1$. Show that the contact distribution function H^B of Z with structuring element $B \in \mathcal{K}$ is then given by the formula

$$H^{B}(r) = \frac{\overline{V}_{d}(Z + rB^{*}) - \overline{V}_{d}(Z)}{1 - \overline{V}_{d}(Z)} \quad \text{for } r > 0.$$

2. Let Z be the Boolean model in \mathbb{R}^2 with intensity $\gamma > 0$ and the trivial grain distribution \mathbb{Q} that chooses the unit ball B(1) with probability 1. Then the particles of Z are the balls x + B(1) centered at the points $x \in X$ of the underlying Poisson process X.

A point $z \in Z$ is called *visible* if $|\{x \in X : z \in x + B(1)\}| = 1$, i.e. if z is contained in exactly one particle of Z. Let u = (0, -1) be the unit vector pointing in direction of the negative x_2 -axis. Geometrically, u is the osculation point of the unit ball with a horizontal tangent line (touching the ball from below). Now let

$$\tilde{X} := \{x + u : x \in X, x + u \text{ visible}\}\$$

be the point process of visible lower osculation points of Z with horizontal tangent lines. Show that, \tilde{X} is a stationary point process in \mathbb{R}^d with intensity $\tilde{\gamma} = \gamma e^{-\pi \gamma}$.

3. Recall that a functional $\varphi : \mathcal{R} \to \mathbb{R}$ is called *additive* if and only if $\varphi(\emptyset) = 0$ and, for all $K, M \in \mathcal{R}$,

$$\varphi(K \cup M) + \varphi(K \cap M) = \varphi(K) + \varphi(M).$$

Here \mathcal{R} denotes the *convex ring*, i.e. the family of all finite unions of compact convex sets in \mathbb{R}^d . Prove the so called *inclusion-exclusion principle*, i.e. prove that for additive φ the formula

$$\varphi(\bigcup_{i=1}^{m} C_i) = \sum_{k=1}^{m} (-1)^{k+1} \sum_{1 \le i_1 < \dots < i_k \le m} \varphi(C_{i_1} \cap \dots \cap C_{i_k})$$

holds for each $m \in \mathbb{N}$ and $C_1, \ldots, C_m \in \mathcal{R}$.

4*. For $C \in \mathcal{C}$, let $A_C = \{D \in \mathcal{C} : D \cap C \neq \emptyset\}$. Show that the family $\{A_C : C \in \mathcal{C}\}$ generates the Borel σ -algebra $\mathcal{B}(\mathcal{C})$.