Exercise 1 (Completeness of submanifolds).
Let (M, g) be a complete Riemannian manifold and let $N \subset M$ be a closed embedded submanifold. Show that N with the induced metric is again complete.

Exercise 2.
Let (M, g) be a Riemannian manifold and let further $f: M \to \mathbb{R}$ be a smooth function on M with the property $|\text{grad } f| \equiv 1$. Show that integral curves of $\text{grad } f$ are geodesics.

Exercise* 3 (Riemannian coverings).
Let $p: \tilde{M} \to M$ be a smooth covering of a Riemannian manifold (M, g). Show that \tilde{M} admits a metric \tilde{g} such that p becomes a local isometry. Show that (\tilde{M}, \tilde{g}) is complete if and only if (M, g) is.

Exercise 4 (Hopf-Rinow Theorem).
Give an example of a non-complete connected Riemannian manifold M such that any two points p and q can be joined by a distance realising geodesic in M.

Due: Wednesday May 3rd, 2017, before the exercise class.