Exercise 1.
Show that if equality holds in the Bishop-Gromov inequality for some $0 < r < R \leq \text{diam}(M)$, then $B_R(p)$ is isometric to a ball of radius R in the simply-connected space of constant sectional curvature k.

Exercise 2.
Let M be a complete non-compact Riemannian manifold. A ray in M is a geodesic $\gamma: [0, \infty) \rightarrow M$ such that $d(\gamma(0), \gamma(t)) = t$ for all t. Assume that M has non-negative sectional curvature and let $\gamma, \sigma: [0, \infty) \rightarrow M$ be geodesics such that $\gamma(0) = \sigma(0)$. Show that, if γ is a ray and $\angle(\gamma'(0), \sigma'(0)) < \pi/2$, then
\[
\lim_{t \rightarrow \infty} d(\sigma(0), \sigma(t)) = \infty.
\]

Due: Wednesday July 5, 2017, before the exercise class.