Institut für Algebra und Geometrie

Dr. F. Galaz-García J.-B. Kordaß

Comparison Geometry in Summer 2015 Exercise sheet 11

Exercise 1 (Existence of a small basis).

Let (M, g) be a compact connected Riemannian manifold. Show that its fundamental group $\pi := \pi_1(M, p_0)$ is finitely generated.

Certainly, π is discrete and acts freely by isometries on the universal cover \tilde{M} .

(i) Consider the so-called *Dirichlet Fundamental domain* for a fixed point $x_0 \in \tilde{M}$

 $F := \{ x \in \tilde{M} \mid |x, x_0| \le |x, l \cdot x_0| \ \forall l \in \pi \}.$

Show that $F \subset \tilde{M}$ is a closed subset with $int(F) \cap int(l \cdot F) = \emptyset$ for all $l \in \pi, l \neq 1$, and $\pi \cdot F = \tilde{M}$.

(ii) Call an element $l \in \pi$ small if $F \cap l \cdot F \neq \emptyset$. Show that the set of all small elements is a finite generating set of π .

Exercise 2 (Fundamental group of manifolds with non-negative curvature). Prove the following theorem.

Theorem (Gromov, 1978). Let (M^n, g) be a complete connected Riemannian manifold with $\sec_g \ge 0$. Then $\pi := \pi_1(M, p_0)$ contains a generating set of $N \le C(n)$ elements, where C(n) is a number only depending on the dimension n of M.

You may want to proceed as follows.

Define $|l| := |p, l \cdot p|$ for all $l \in \pi$ and pick l_1 with $|l_1|$ minimal. Inductively define

$$\Gamma_k := \langle l_1, \ldots, l_k \rangle \subset \pi$$

with $l_{k+1} \in \pi \setminus \Gamma_k$ with $|l_{k+1}|$ minimal. Now it suffices to show that $\Gamma_k = \pi$ for some $k \leq C(n) := 2\sqrt{5}^n$.

- (i) Consider the triangle $p, p_i := g_i \cdot p, p_j := g_j \cdot p$ for j > i and use Toponogov's theorem to conclude that $\alpha_{ij} \ge 60^\circ$ for all $i \ne j$, where α_{ij} is the angle between v_i and v_j such that $\gamma_{v_i} : p \rightsquigarrow p_i$ and $\gamma_{v_j} : p \rightsquigarrow p_j$ are shortest geodesics joining, respectively, p to p_i and p to p_j .
- (ii) Notice that for any two such vectors v_i, v_j , the balls with radius $\frac{1}{2}$ centered at v_i and v_j are disjoint and their inner half balls are contained in $B_{\frac{\sqrt{5}}{2}}(0)$. Deduce, by comparing the volume of $B_{\frac{\sqrt{5}}{2}}(0)$ with the volume of $B_{\frac{1}{2}}$, that there can be at most $2\sqrt{5}^n$ vectors such that $\alpha_{ij} \ge 60^\circ$.

Due: Wednesday July 15th, 2015, before the exercise class.