Exercise 1
Show that the unit tangent bundle of the 2-sphere is equivalent to \(SO(3) \cong \mathbb{R}P^3 \).

Exercise 2
Let \(\xi = (E, \pi, M, F) \) be a locally trivial fiber bundle over a smooth manifold \(M \). Let \(N \) be another smooth manifold and \(f : N \to M \) a smooth function. Show that the pullback bundle \(f^*\xi \) is a locally trivial fiber bundle over \(N \).

Exercise 3
Let \(\xi = (P, \pi, M, G) \) be a principal \(G \)-bundle over \(M \). Let \(N \) be a smooth manifold and let \(f : N \to M \) be a smooth map. Show that the pullback bundle \(f^*\xi \) is a principal \(G \)-bundle over \(N \).

Exercise 4
Let \(G \) be a Lie group and \(H \leq G \) a closed subgroup. Let \(G/H \) be the corresponding homogeneous space of \(G \) and let \(\pi : G \to G/H \) be the quotient map. Show that \((G, \pi, G/H, H) \) is a principal \(H \)-bundle over \(G/H \) with total space \(G \).

Due: Friday, 6.6.2014, during the exercise class.