Problem sheet 2

Due Monday, April 30th at 17:30.

Question 1

Consider a graph G on n vertices and m edges. Prove that G contains at least $\frac{4m}{3n}(m-\frac{n^2}{4})$ triangles.

Solution Let G and |V(G)| = n, |E(G)| = m. Let $x, y \in V(G)$, then $|N(x) \cap N(y)| \ge d(x) + d(y) - n$. Therefore, in particular, any edge $\{x, y\}$ is contained in at least d(x) + d(y) - n triangles. Hence the total number of triangles in G is at least

$$\frac{1}{3}\sum_{\{x,y\}\in E(G)} \left(d(x) + d(y) - n\right) = \frac{1}{3}\sum_{x\in V(G)} d^2(x) - \frac{1}{3}nm \ge \frac{\left(\sum_{x\in V(G)} d(x)\right)^2}{3n} - \frac{1}{3}nm = \frac{4m^2}{3n} - \frac{1}{3}nm.$$

Question 2

Let G be a graph on n vertices and let N_t , $t \ge 2$, denote the number of copies of K_t in G. Prove that

$$\frac{N_{t+1}}{N_t} \ge \frac{1}{t^2 - 1} \left(t^2 \frac{N_t}{N_{t-1}} - n \right).$$

(**Hint:** Double count pairs (A, U) such that |A| = |U| = t, $|A \cap U| = t - 1$, A induces K_t and U induces a non-complete graph of t vertices.)

Solution Let $A_1, A_2, ..., A_{N_t}$ be the collection of different K_t in G and let $B_1, B_2, ..., B_{N_{t-1}}$ be the collection of different K_{t-1} in G. Let a_i be the number of copies of K_{t+1} in G containing A_i . Let b_i be the number of copies of K_t in G containing B_i .

We double count the number N of pairs (A, U) where $A \subseteq V(G)$ induces K_t and $U \subseteq V(G)$ induces a non-complete graph on t vertices and $|A \cap U| = t - 1$. Considering, for the i^{th} copy A_i of K_t , pairs $(A_i, U_j(x))$, where $U_j(x) \subset A_i \cup \{x\}$ is a set containing a vertex $x \notin A_i$ and a vertex $y \in A_i$ that is not adjacent to $x, 1 \leq j \leq t - 1$, yields

$$N \ge \sum_{i=1}^{N_t} (t-1)(n-t-a_i).$$

This is true because there are at least $(n - t - a_i)$ vertices in G which have a non-neighbour in A_i . After choosing such a vertex v with a non-neighbour w in A_i , there are at least (t - 1) to remove on of the vertices in A_i which is not w.

Also we have,

$$N = \sum_{i=1}^{N_{t-1}} b_i (n - (t-1) - b_i).$$

We have $\sum_{i=1}^{N_t} a_i = (t+1)N_{t+1}$ and $\sum_{i=1}^{N_{t-1}} b_i = t N_t$. Using Jensen's inequality (for the concave function f(x) = x(n-t+1-x)) we show

$$(t-1)(n-t)N_t - (t^2 - 1)N_{t+1} \le N \le N_{t-1} \frac{\sum_{i=1}^{N_{t-1}} b_i}{N_{t-1}} \left(n - t + 1 - \frac{\sum_{i=1}^{N_{t-1}} b_i}{N_{t-1}} \right) = t(n-t+1)N_t - \frac{t^2 N_t^2}{N_{t-1}}$$

The above gives us the required inequality.

Question 3

Let H be a graph with $\chi(H) = t$.

- (a) Prove that $ex(n, H) \ge ex(n, K_t)$ for all $n \ge 1$.
- (b) Suppose that $ex(n, H) = ex(n, K_t)$ for some $n \ge t$.

Prove that there is an edge e in H such that $\chi(H - e) < t$.

Solution

- (a) The complete multi-partite graph G with parts of sizes as equal as possible has chromatic number t-1, hence can not contain H as a subgraph. This implies that $ex(n, H) \ge |E(G)|$. By Turán's theorem $|E(G)| = ex(n, K_t)$.
- (b) Let G be a graph as in part (a). Since n ≥ t, the graph G is not a complete graph. Let G' be a graph obtained from G by adding an edge e' within one of the parts. Then G' contains a copy K of H, since ex(n, H) = ex(n, K_t) < |E(G')|. Since G does not contain H, the edge e' is contained in K. Let e denote the edge in H corresponding to e'. Then H − e is contained in G and therefore χ(H − e) ≤ χ(G) = t − 1 < t.</p>

Question 4

Suppose that *H* is a graph with $ex(n, H) \leq \lambda \binom{n}{2}$ for some constant λ , $0 < \lambda < 1$, and $n \geq n_0$. Prove that for any $\epsilon > 0$ and sufficiently large *n* any graph on *n* vertices and $(\lambda + \epsilon)\binom{n}{2}$ edges contains at least $c(\epsilon, n_0)n^{|V(H)|}$ copies of *H*. **Solution** Let G be a graph on n vertices and at $\operatorname{least}(\lambda + \epsilon)\binom{n}{2}$ edges. Let t be the number of sets N on n_0 vertices and more than $\lambda\binom{n_0}{2}$ edges in G[N].

We double-count pairs (e, N), where N is a set of n_0 vertices in G and e is an edge with both endpoints in N, let P be the number of such pairs. Then by first considering the edges and then choosing additional $n_0 - 2$ vertices to N we get that,

$$P = |E(G)| \binom{n-2}{n_0-2} \ge (\lambda+\epsilon) \binom{n}{2} \binom{n-2}{n_0-2} = (\lambda+\epsilon) \binom{n}{n_0} \binom{n_0}{2}$$

On the other hand, by first considering sets of n_0 edges and then the edges in those sets we get,

$$P \le t \binom{n_0}{2} + \left(\binom{n}{n_0} - t\right) \lambda \binom{n_0}{2} = t(1-\lambda)\binom{n_0}{2} + \lambda \binom{n}{n_0}\binom{n_0}{2}$$

This is true because in t sets N on n_0 vertices we can have at most $\binom{n_0}{2}$ edges. On the rest $\binom{n}{n_0} - t$ we have at most $\lambda \binom{n_0}{2}$ edges.

These inequalities yield

$$t \ge \frac{\epsilon}{(1-\lambda)} \binom{n}{n_0} \ge \epsilon \binom{n}{n_0}.$$

For each set N on n_0 vertices and more than $\lambda \binom{n_0}{2}$ edges there is a copy of H in G[N]. The vertices of each copy of H in G are contained in $\binom{n-|V(H)|}{n_0-|V(H)|}$ sets on n_0 vertices. Let v = |V(H)|. Therefore the number of copies of H in G is at least

$$t\binom{n-v}{n_0-v}^{-1} \ge \epsilon \binom{n}{n_0} \binom{n-v}{n_0-v}^{-1} = \epsilon \frac{n!(n_0-v)!}{n_0!(n-v)!} \ge \epsilon \frac{(n_0-v)!}{n_0!} c(v) n^v.$$

For the last inequality we used that there is a constant c(v), depending on v, such that $\frac{n!}{(n-v)!} \ge c(v)n^v$. This is given by Stirling's approximation, i.e., there are constants c_1 and c_2 such that for all n > 0 we have $c_1\sqrt{2\pi n} \left(\frac{n}{e}\right)^n \le n! \le c_2\sqrt{2\pi n} \left(\frac{n}{e}\right)^n$. This yields

$$\frac{n!}{(n-v)!} \ge \frac{c_1 \sqrt{2\pi n} \left(\frac{n}{e}\right)^n}{c_2 \sqrt{2\pi (n-v)} \left(\frac{n-v}{e}\right)^{n-v}} \ge \frac{c_1}{c_2 e^v} n^v.$$