Problem sheet 4
Due Monday, May 14th at 17:30.

Question 1

A graph is triangle-formed if each edge is contained in exactly one triangle. Prove that for every \(\lambda > 0 \) there is \(n_0 \) such that each triangle-formed graph on \(n \) vertices, with \(n \geq n_0 \), has at most \(\lambda n^2 \) edges.

Solution Let \(t \) denote the number of triangles in a graph \(G \). If \(G \) is triangles-formed, then \(|E(G)| = 3t \), since each edge is contained in exactly one triangle. Hence one needs to remove \(t = \frac{|E(G)|}{3} \) edges from \(G \) to make \(G \) triangle-free. Let \(\epsilon = \frac{\lambda}{3} \). Due to the triangle removal lemma, there is \(\delta > 0 \) such that every graph on \(n \) vertices with at most \(\delta n^3 \) triangles can be made triangle-free by removing at most \(\epsilon n^2 \) edges.

Let \(n_0 = \frac{1}{6\delta} \). Assume that \(G \) is triangle-formed with \(n \geq n_0 \) vertices and more than \(\lambda n^2 \) edges. Then more than \(\frac{\lambda n^2}{3} = \epsilon n^2 \) edges are needed to make \(G \) triangle-free, as argued above. Due to the triangle removal lemma, \(G \) has more than

\[
\delta n^3 \geq \delta n_0 n^2 = \frac{1}{3} \frac{1}{2} n^2 \geq \frac{1}{3} \left(\frac{n}{2} \right) \geq \frac{1}{3} |E(G)| = t
\]

triangles, a contradiction.

Question 2

(a) Prove that if \(G \) is a a graph on \(n \) vertices which consists of the union of \(n \) induced matchings. Then \(|E(G)| = o(n^2) \).

(Hint: Start the proof by removing edges as we did in the lecture for the triangle removal lemma and the alternative proof of Erdős-Stone-Simonovits. Moreover remove the following additional set of edges. For each of the given induced matchings \(M \), remove the edges which are incident to \(V_i \) and satisfying \(|V_i \cap V(M)| \leq \epsilon |V_i| \) for each \(i \).)
(b) Use part (a) to give an alternative proof of Roth’s theorem.

(c) Use part (a) to show that if H is a 3-uniform hypergraph with no 6 vertices spanning at least 3 edges then $|E(H)| = o(n^2)$.

Solution The result in the question was first proved by Ruzsa and Szemerédi.

(a) Let $\delta > 0$, we show that there exists $n_0 \in \mathbb{N}$ such that for all $n \geq n_0$, any graph on n vertices as above has $|E(G)| \leq \delta n^2$. Assume to the contrary that $|E(G)| \geq \delta n$. Apply Szemerédi’s regularity lemma as in Problem sheet 3 with $0 < \epsilon < \frac{\delta}{8}$ and $k_0 > \frac{1}{\epsilon}$. Let K be the resulting constant and let $V_0, V_1, ..., V_k$ be an ϵ-regular partition such that $|V_0| \leq \epsilon n$ and $|V_1| = |V_2| = ... = |V_k|$. We remove from G the following sets of edges,

1. Edges incident to vertices in V_0. There are at most $|V_0| \cdot n = \epsilon n^2$ such edges.
2. Edges contained in the sets V_i, $i \in [k]$. There are at most $k \cdot (\frac{n}{k})^2 \leq \epsilon n^2$ such edges.
3. Edges between the sets V_i, V_j so (V_i, V_j) is not an ϵ-regular pair. There are at most ϵn^2 such edges.
4. Edges between the sets V_i, V_j so $d(V_i, V_j) \leq 2\epsilon$. There are at most $2\epsilon (\frac{n}{k})^2 \cdot k^2 \leq 2\epsilon n^2$ such edges.
5. For each matching M, and $i \in [k]$, the edges which are incident to V_i and satisfying $|V_i \cap M| \leq \epsilon |V_i|$. There are at most $n \cdot \epsilon n = \epsilon n^2$ such edges.

Let G' be the resulting subgraph of G. Then $|E(G')| \geq (\delta - 6\epsilon)n^2$. By the pigeonhole principle there must be a matching M so $|M \cap E(G')| \geq (\delta - 6\epsilon)n \geq 1$. Let $i \neq j \in [k]$ be such that there is an edge $e \in M$ such that $V_i \cap e \neq \emptyset$ and $V_j \cap e \neq \emptyset$. By (5) we know that $|V(M) \cap V_i| \geq \epsilon n$ and $|V(M) \cap V_j| \geq \epsilon n$. The pair (V_i, V_j) is ϵ-regular and $d(V_i, V_j) \geq 2\epsilon$, therefore $|E(V(M) \cap V_i, V(M) \cap V_j)| \geq \epsilon |V(M) \cap V_i| \cdot |V(M) \cap V_j| > \min\{|V(M) \cap V_i|, |V(M) \cap V_j|\}$ for n large enough, in contradiction to the fact that M is an induced matching.

(b) Let $A \subseteq [n]$ such that there is $\delta > 0$ such that $|A| \geq \delta n$. Let G be a bipartite graph with a bipartition (X, Y) so $X = [2n]$ and $Y = [3n]$. For each $x \in X$ define a matching $M_x = \{x + a, x + 2a\} | a \in A$ wherever the computation is modulo $3n$. Let $E(G) = \cup_{x \in X} M_x$. Then $|V(G)| = 5n$ and $|E(G)| \geq \frac{\delta}{5}|V(G)|$ edges. By part (a) this means that not all the matchings are induced. Let $x \in X$ so M_x is not an induced matching. Let $a \neq b \in A$ so we have an edge e between the edges $\{x + a, x + 2a\}, \{x + b, x + 2b\}$. Assume without loss of generality that $e = \{x + a, x + 2b\}$, then there are x' and c such that $x + a = x' + c$ and...
\[x + 2b = x' + 2c. \] Hence \(c = 2b - a \) which can rewritten as \(c - b = b - a \). The sequence \(a, b, c \) is an arithmetic progression. Indeed, it can be rewritten as \(a, a + (b - a), b + (c - b) \)

and \(b + (c - b) = b + (b - a) = a + 2(b - a) \) as required.

(c) We can assume that every vertex is contained in at least 2 hyperedges. If there are vertices which are contained in at most 1 hyperedge then we remove them from the hypergraph. For each vertex \(v \in V(H) \), let \(M_v := \{ e \setminus \{ v \} \mid e \in E(H), e \cap \{ v \} \neq \emptyset \} \). If there is \(v \in V(H) \) such that \(M_v \) is not a matching then there are hyperedges \(e_1 = \{ v, x, y \} \) and \(e_2 = \{ v, x', y' \} \) in \(E(H) \), choosing \(e_1, e_2 \) together with some edge \(e_3 \) that contains \(y \) which is different from \(e_1 \) gives us the required set of vertices and hyperedges. A hyperedge \(e_3 \) exists due to our assumption that every vertex is contained in at least 2 hyperedges.

Let \(G \) be a graph with \(V(G) = V(H) \) and \(E(G) = \bigcup_{v \in V(H)} M_v \). By part (a) there must be a vertex \(v \in V(H) \) so \(M_v \) is not an induced matching. Let \(\{ x, y \}, \{ x', y' \} \in M_v \) and assume without loss of generality that \(\{ x', y' \} \in E(G) \). Then the hyperedges \(\{ v, x, y \}, \{ v, x', y' \}, \{ v', x, y \} \) gives us the required set of vertices and hyperedges.

Question 3

Suppose that \(\Delta \in \mathbb{N} \). Prove that there exists a constant \(c \) such that

\[
R(H) \leq c|V(H)|
\]

for every graph \(H \) with maximum degree \(\Delta(H) \leq \Delta \). We define \(R(H) \), the Ramsey number of \(H \), to be the smallest number \(n \) such that in any two colouring of \(K_n \) we get a monochromatic copy of \(H \).

(Hint: For a solution to this question you would need Szemerédi’s regularity lemma, Turán’s theorem, the fact that \(R(K_{\Delta+1}) \leq 4^\Delta \) and the counting lemma.)

Solution The result in the question was first proved by Chvátal, Rödl, Szemerédi and Trotter.

Let \(|V(H)| = h \), let \(0 < \epsilon < \frac{1}{4} \), let \(k_0 = 4^\Delta \) and let \(0 < \epsilon' < \min\{\frac{1}{k_0}, \frac{\epsilon'}{2\Delta} \} \). Let \(K = K(\epsilon') \) be the constant we get from Szemerédi’s regularity lemma. Let \(c \geq \frac{4K}{\epsilon} \).

Let \(G \) be a graph on \(n \geq ch \) vertices. We will show that either \(G \) or \(\overline{G} \) contains \(H \). By Szemerédi’s regularity lemma there is an \(\epsilon' \)-regular partition \(X_0 \cup X_1 \cup \ldots \cup X_k \) of \(V(G) \) so \(k_0 \leq k \leq K \), \(|X_0| \leq \epsilon'n \) and \(|X_1| = |X_2| = \ldots = |X_k| \).

Let \(R \) be the reduced graph where each vertex corresponds to a set \(X_i, i \in [k] \). There is an edge between the vertices which correspond to the sets \(X_i, X_j \) if and only if the pair \((X_i, X_j)\)
is \(\epsilon' \)-regular. Using the assumption on \(\epsilon' \), we have that,

\[
|E(R)| \geq \left(\frac{k}{2} \right) - \epsilon'k^2 = \left(1 - \frac{1}{k} - 2\epsilon' \right) \frac{k^2}{2} = \left(1 - \frac{1}{k_0(k_0 - 1)} \right) \frac{k^2}{2} = \left(1 - \frac{1}{k_0 - 1} \right) \frac{k^2}{2}
\]

Hence by Turán’s theorem there are \(k_0 = 4^\Delta \) sets \(X_{i_1}, X_{i_2}, ..., X_{i_{4^\Delta}} \) sets such that every pair of such sets is \(\epsilon' \)-regular. For every pair of sets \(X_{ij}, X_{it}, j, t \in [4^\Delta] \), if the density \(d(X_{ij}, X_{it}) \geq \frac{1}{2} \), then we colour the edge between \(X_{ij}, X_{it} \) in \(R \) in red, and we colour it in blue otherwise. By the bound \(R(K_{\Delta+1}) \leq 4^\Delta \) there must be either red or blue clique of size \(\Delta + 1 \), let \(X_{j_1}, ..., X_{j_{\Delta+1}} \) be the corresponding sets. By part (a) in question 1 in problem sheet 3 we can assume without loss of generality that the clique is red.

For each \(t \in [\Delta + 1] \),

\[
|X_{jt}| \geq \frac{n - |X_0|}{k} \geq \frac{(1 - \epsilon')n}{k} \geq \frac{ch}{2k} \geq \frac{2h}{e^\Delta}.
\]

Each pair \(X_{j_i}, X_{j_i'} \) has density \(\frac{1}{2} \geq 2\epsilon \) and it is \(\epsilon' \)-regular and therefore \(\frac{\epsilon^2}{2^\Delta} \)-regular. Using that fact that \(\chi(H) \leq \Delta + 1 \) and applying the counting lemma, we get that \(G \) contains \(H \). This completes the proof.