Question 1

For a positive integer n let nK_3 denote the vertex disjoint union of n copies of K_3.

(a) Prove that there is a unique coloring of K_5 without monochromatic K_3 (up to isomorphism and renaming of colors).

(b) Prove that $r(K_3, 2K_3) = 8$.

(c) Prove that $r(sK_3, tK_3) = 2s + 3t$ for all $t \geq s \geq 1, t \geq 2$.

(Hint: Use $r(2K_3, 2K_3) = 10$ without proof.)

Solution

(a) Consider a coloring of K_5 without monochromatic copies of K_3. It is easy to see that no vertex is incident to three red or three blue edges. Thus each color class forms a spanning 2-regular graph. The only such graph on 5 vertices is a cycle and hence the coloring is unique.

(b) To establish $r(K_3, 2K_3) \geq 8$ color a copy of $K_{2,5}$ in K_7 in red and the remaining edges blue. Then there is no red K_3 and no two vertex disjoint blue triangles.

Next we shall prove that any coloring of K_8 either contains a red triangle or two vertex disjoint blue triangles. Consider a coloring without red triangles. Since $r(K_3) = 6$ there is a blue triangle, say on vertices $u, v,$ and w. If the remaining five vertices do not contain another blue triangle, then by part (a) the blue and the red edges form a C_5 each. Say the blue edges form a cycle C with vertices x_1, \ldots, x_5. It is easy to see that there are exactly two red and three blue edges between $\{x_1, \ldots, x_5\}$ and each vertex $y \in \{u, v, w\}$, and that the three blue neighbors of each $y \in \{u, v, w\}$ are consecutive on the blue cycle. An easy case distinction shows that, no matter how the blue neighborhoods are distributed in C, \
there are two vertex disjoint blue triangles, each with at most two vertices from \(\{u, v, w\} \) and at most two from \(C \).

(c) To establish \(r(sK_3, tK_3) \geq 2s + 3t \) we color the edges of \(K_{2s+3t-1} \) without red \(sK_3 \) and blue \(tK_3 \) as follows. Color a copy of \(K_{3t-1} \) and a vertex disjoint copy of \(K_{1,2s-1} \) blue and color the remaining edges red. Then all blue triangles are contained in the blue clique and hence there are at most \(t - 1 \) vertex disjoint blue triangles. The red subgraph forms a complete bipartite graph \(K_{3t-1,2s-1} \) where all edges are added in the part of size \(2s - 1 \). Each red triangle contains at least two vertices from this part and hence there are at most \(s - 1 \) vertex disjoint red triangles.

Next we shall prove that for any \(t \geq s \geq 1, t \geq 2 \), any 2-coloring of \(K_{2s+3t} \) either contains \(t \) vertex disjoint red triangles or \(s \) vertex disjoint blue triangles by induction on \(t \). The hint yields the base cases \(s \in \{1, 2\} \) and \(t = 2 \) (and can be proven by case distinction).

So assume that \(t \geq 3 \) and consider a 2-coloring of \(K_{2s+3t} \). We treat the case \(s = 1 \) first. Since \(r(K_3) = 6 \) there is a monochromatic triangle \(K \). If \(K \) is red we are done. Otherwise consider the graph induced by vertices not in \(K \). It has \(2 + 3t - 3 = 2 + 3(t - 1) \) vertices. Inductively there is either a red triangle or \(t - 1 \) vertex disjoint blue triangles and in both cases we are done.

So assume that \(s \geq 2 \). Iteratively removing vertices of a monochromatic \(K_3 \) as long as at least 6 vertices are left yields at least \(\left\lceil \frac{2s+3t-5}{3} \right\rceil = t + \left\lceil \frac{2s-5}{3} \right\rceil \geq t \) vertex disjoint monochromatic triangles. If these triangles are all of the same color we are done. So assume that there is a red triangle on vertices \(a, b, c \) and a vertex disjoint blue triangle on vertices \(u, v, w \). At least 5 out of the 9 edges between these triangles are of the same color, say blue. Then there is a blue triangle that shares exactly one vertex with the red triangle on \(\{a, b, c\} \) (they form a so-called bow-tie) like in the figure. Then the set \[V = \{a, b, c\} \cup \{v, w, u\} \] of vertices not in these two triangles has size \(2s + 3t - 5 = 2(s - 1) + 3(t - 1) \). Since \(t - 1 \geq s - 1 \geq 1 \) and \(t - 1 \geq 2 \), \(V \) induces either \(s - 1 \) vertex disjoint red triangles or \(t - 1 \) vertex disjoint blue triangles by induction. Together with a triangle from the bow-tie we have either \(s \) vertex disjoint red triangles or \(t \) vertex disjoint blue triangles. Hence \(r(sK_3, tK_3) \leq 2s + 3t \).
Question 2

(a) Calculate $r(C_3, C_4)$.

(b) Calculate $r(C_4, C_4)$.

Solution

(a) We claim that $r(C_3, C_4) = 7$.

First we show a coloring of K_6 without either red C_3 or blue C_4. Color the edges of K_6 such that the red edges form a copy of $K_{3,3}$. Then the blue edges form two vertex disjoint blue copies of $K_3 = C_3$ and there is no red C_3 and no blue C_4. This shows that

$$r(C_3, C_4) \geq 7.$$

It remains to prove that every coloring of K_7 yields a red C_3 or a blue C_4. Consider a coloring of K_7 with no red copy of C_3. We shall prove that there is a blue copy of C_4. Since $r(3, 3) = 6$ there is a blue copy of $K_3 = C_3$, say with vertex set U. Let V denote the remaining four vertices. If V induces no red edge then V induces a blue C_4. Otherwise let xy be a red edge with $x, y \in V$. Then, for each $u \in U$ there is at least one blue edge between $\{x, y\}$ and u. By pigeonhole principle there are two blue edges between one of x or y and U, and hence a blue C_4.

(b) We claim that $r(C_4, C_4) = 6$.

Coloring the edges of K_5 with two edge disjoint copies of C_5 shows that

$$r(C_4, C_4) \geq 6.$$

It remains to prove that every coloring of K_6 yields a monochromatic C_4. Since $r(3, 3) = 6$ there is a monochromatic copy of $K_3 = C_3$, say blue and with vertex set U. Let V denote the remaining three vertices. If there are two blue edges between a vertex $v \in V$ and U, then there is a blue copy of C_4. Otherwise each vertex in V sends at least two red edges to U. No two vertices from V send two red edges to the same two vertices from U otherwise we get a red C_4. This shows that the blue edges between U and V form a matching with three edges and the red edges form a copy of C_6. If there are at least two red edges induced on V, then at least one of those edges creates C_4 with 3 of the edges of the red C_6. So V induces a blue edge that is contained in a blue C_4 together with two matching edges and one edge induced by U.

Question 3

Let G be a graph on n vertices and let P_3 be the path with 3 vertices.

(a) Calculate $r(P_3, G)$ if there is a perfect matching in the complement of G.

(b) Calculate $r(P_3, G)$ if there is no perfect matching in the complement of G.

Solution
Let m denote the size of a largest matching in the complement of G. We claim that

$$r(P_3, G) = \begin{cases} n, & \text{if } 2m = n, \\ 2n - 2m - 1, & \text{if } 2m < n. \end{cases}$$

(a) Consider the case $2m = n$ first, i.e., there is a perfect matching in the complement of G. Coloring all edges of K_{n-1} blue shows that $r(P_3, G) > n - 1$. Let $u_1, \ldots, u_m, v_1, \ldots, v_m$ denote the vertices of G such that u_iv_i is a non-edge of G. Consider a coloring of K_n with no red copy of P_3. Then the red edges form a matching x_1y_1, \ldots, x_ty_t. Mapping u_i to x_i and v_i to y_i for $1 \leq i \leq t$ and mapping the remaining vertices from G arbitrarily to the remaining vertices of K_n yields a blue copy of G. Thus $r(P_3, G) \leq n$.

(b) Now assume that $2m < n$ and let $N = 2n - 2m - 2$. Color a perfect matching (i.e., with $n - m - 1$ edges) in K_N red and all other edges blue. Consider a set S of n vertices in K_N. Then S induces at least $m + 1$ red matching edges and hence not a blue copy of G. Hence there is no blue copy of G and $r(P_3, G) > N$.

Finally consider a coloring of K_{N+1} with no red copy of P_3. Then the red edges form a matching x_1y_1, \ldots, x_ty_t. Let z_1, \ldots, z_{N+1-2t} denote the remaining vertices of K_{N+1}. Further let $u_1, \ldots, u_m, v_1, \ldots, v_m, w_1, \ldots, w_{n-2m}$ denote the vertices of G such that u_iv_i is a non-edge of G and w_1, \ldots, w_{n-2m} induce a complete graph in G. Observe that

$$|\{x_1, \ldots, x_t, z_1, \ldots, z_{N+1-2t}\}| \geq \left\lceil \frac{N+1}{2} \right\rceil = n - m = |\{u_1, \ldots, u_m, w_1, \ldots, w_{n-2m}\}|.$$

Mapping u_i to x_i and v_i to y_i for $1 \leq i \leq \min\{m, t\}$ and the remaining vertices from G to (some of) the remaining vertices of $\{x_1, \ldots, x_t, z_1, \ldots, z_{N+1-2t}\}$ yields a blue copy of G. Hence $r(P_3, G) \leq N + 1$ and thus

$$r(P_3, G) = 2n - 2m - 1.$$