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1 Introduction

These brief notes include major definitions and theorems of the graph theory lecture
held by Prof. Maria Axenovich at KIT in the winter term 2013/14. We neither prove
nor motivate the results and definitions. You can look up the proofs of the theorems
in the book “Graph Theory” by Reinhard Diestel [4]. A free version of the book is
available at http://diestel-graph-theory.com.

Conventions:

• G = (V,E) is an arbitrary (undirected, simple) graph

• n := |V | is its number of vertices

• m := |E| is its number of edges

2 Notations

notation definition meaning

(
V
k

)
, V finite set,

k integer
{S ⊆ V : |S| = k} the set of all k-element

subsets of V

V 2, V finite set {(u, v) : u, v ∈ V } the set of all ordered pairs
of elements in V

[n], n integer {1, . . . , n} the set of the first n posi-
tive integers

N 1, 2, . . . the natural numbers, not
including 0

2S , S finite set {T : T ⊆ S} the power set of S, i.e.,
the set of all subsets of S

S4T , S, T finite sets (S ∪ T ) \ (S ∩ T ) the symmetric difference
of sets S and T , i.e., the
set of elements that ap-
pear in exactly one of S
or T

A∪̇B, A, B disjoint sets A ∪B the disjoint union of A
and B
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3 Preliminaries

Definition. A graph, Ggraph G is an ordered pair (V,E), where V is a finite set and

E ⊆
(
V
2

)
is a set of pairs of elements in V .

• The set V is called the set of vertex, edgevertices and E is called the set of edges of G.

• The edge e = {u, v} ∈
(
V
2

)
is also denoted by e = uv.

• If e = uv ∈ E is an edge of G, then u is called adjacent, incidentadjacent to v and u is called
incident to e.

• If e1 and e2 are two edges of G, then e1 and e2 are called adjacent if e1∩e2 6=
∅, i.e., the two edges are incident to the same vertex in G.

We can visualize graphs G = (V,E) using pictures. For each vertex v ∈ V we draw a
point (or small disc) in the plane. And for each edge uv ∈ E we draw a continuous
curve starting and ending in the point/disc for u and v, respectively.

Several examples of graphs and their corresponding pictures follow:

V = [5], E = {12, 13, 24}

1 2

3

4
5

V = {A,B,C,D,E},
E = {AB,AC,AD,AE,CE}

A

B
C D

E

Definition (Graph variants).

• A directed graph directed graphis a pair G = (V,A) where V is a finite set and E ⊆ V 2.
The edges of a directed graph are also called arcs arc.

• A multigraph multigraphis a pair G = (V,E) where V is a finite set and E is a multiset

of elements from
(
V
1

)
∪
(
V
2

)
, i.e., we also allow loops and multiedges.

• A hypergraph hypergraphis a pair H = (X,E) where X is a finite set and E ⊆ 2X \{∅}.

Definition. For two graphs G1 = (V1, E1) and G2 = (V2, E2) we say that G1 and
G2 are isomorphic isomorphic, ', denoted by G1 ' G2, if there exists a bijection φ : V1 → V2 with
xy ∈ E1 if and only if φ(x)φ(y) ∈ E2. Loosely speaking, G1 and G2 are isomorphic if
they are the same up to renaming of vertices.

When making structural comments, we do not normally distinguish between isomor-
phic graphs. Hence, we usually write G1 = G2 =instead of G1 ' G2 whenever vertices
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are indistinguishable. Then we use the informal expression unlabeled graph unlabeled graph(or just
graph when it is clear from the context) to mean an isomorphism class of graphs.

Important graphs and graph classes

Definition. For all natural numbers n we define:

• the complete graph complete graph,
Kn

Kn on n vertices as the (unlabeled) graph isomorphic to(
[n],

(
[n]
2

))
. Complete graphs correspond to cliques.

K5 K3

• for n ≥ 3, the cycle cycle, CnCn on n vertices as the (unlabeled) graph isomorphic to(
[n],

{
{i, i+ 1} : i = 1, . . . , n− 1

}
∪
{
n, 1
})

. The length of a cycle is its number
of edges. We write Cn = 12 . . . n1. The cycle of length 3 is also called a triangle triangle.

v1 v2

v3

v4
v5

v6

C6 = v1v2v3v4v5v6v1

• the path path, PnPn on n vertices as the (unlabeled) graph isomorphic to
(
[n],

{
{i, i+1} :

i = 1, . . . , n− 1
})

. The vertices 1 and n are called the endpoints or ends of the
path. The length of a path is its number of edges. We write Pn = 12 . . . n.

1 2 3 4 5 6

• the empty graph empty graph, EnEn on n vertices as the (unlabeled) graph isomorphic to
(
[n], ∅

)
.

Empty graphs correspond to independent sets.

E10

• for m ≥ 1, the complete bipartite graph complete bipartite
graph, Km,n

Km,n on n+m vertices as the (unlabeled)
graph isomorphic to (A ∪ B, {xy : x ∈ A, y ∈ B}), where |A| = m and |B| = n,
A ∩B = ∅.

m

n
Km,n
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• for r ≥ 2, a complete r-partite complete r-partitegraph as an (unlabeled) graph isomorphic to

(
A1∪̇ · · · ∪̇Ar, {xy : x ∈ Ai, y ∈ Aj , i 6= j}

)
,

where A1, . . . , Ar are non-empty finite sets. In particular, the complete bipartite
graph Km,n is a complete 2-partite graph.

• the Petersen graph Petersen graphas the (unlabeled) graph isomorphic to
((

[5]
2

)
,
{
{S, T} : S, T ∈(

[5]
2

)
, S ∩ T = ∅

})
.

{1, 2}

{3, 4}{3, 5}{4, 5}

{1, 3}

{2, 3}

{1, 4} {2, 4}

{1, 5}

{2, 5}

• for a natural number k, k ≤ n, the Kneser graph Kneser graph,
K(n, k)

K(n, k) as the (unlabeled)
graph isomorphic to

((
[n]

k

)
,

{
{S, T} : S, T ∈

(
[n]

k

)
, S ∩ T = ∅

})
.

Note that K(5, 2) is the Petersen graph.

• the n-dimensional hypercube hypercube, QnQn as the (unlabeled) graph isomorphic to

(
2[n],

{
{S, T} : S, T ∈ 2[n], |S4T | = 1

})
.

Vertices are labeled either by corresponding sets or binary indicators vectors.
For example the vertex {1, 3, 4} in Q6 is coded by (1, 0, 1, 1, 0, 0, 0).

Q1 Q2 Q3

1

0

(1,1)

(1,0)(0,1)

(0,0)

(1,1,1)

(1,1,0) (1,0,1) (0,1,1)

(1,0,0)
(0,1,0)

(0,0,1)

(0,0,0)
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(1, . . . , 1)

(0, . . . , 0)

weight 1 (# 1’s in a binary tuple)
weight 2

weight n-1

n
(n

2)

(n
3)

(n
n
2
)

( n
n−1)

Qn−1
Qn−1

0001
1001

Qn:

Basic graph parameters and degrees

Definition. Let G = (V,E) be a graph. We define the following parameters of
G.

• The graph G is non-trivial non-trivialif it contains at least one edge, i.e., E 6= ∅.
Equivalently, G is non-trivial if G is not an empty graph.

• The order of G order, |G|, denoted by |G|, is the number of vertices ofG, i.e., |G| = |V |.
• The size of G size, ‖G‖, denoted by ‖G‖, is the number of edges of G, i.e., ‖G‖ = |E|.

Note that if the order of G is n, then the size of G is between 0 and
(
n
2

)
.

• Let S ⊆ V . The neighbourhood of S neighbourhood,
N(v)

, denoted by N(S), is the set of vertices
in V that have an adjacent vertex in S. The elements of N(S) are called
neighbours neighbourof S. Instead of N({v}) for v ∈ V we usually write N(v).

• If the vertices of G are labeled v1, . . . , vn, then there is an n × n matrix A
with entries in {0, 1}, which is called the adjacency matrix adjacency matrixand is defined
as follows:

vivj ∈ E ⇔ A[i, j] = 1

v1

v2v3 v4 A =




0 1 1 0

1 0 1 1

1 1 0 0

0 1 0 0




A graph and its adjacency matrix.

• The degree degree, d(v)of a vertex v of G, denoted by d(v) or deg(v), is the number of
edges incident to v.

v1

v2v3 v4

deg(v1) = 2, deg(v2) = 3, deg(v3) = 2, deg(v4) = 1
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• A vertex of degree 1 in G is called a leaf leaf, and a vertex of degree 0 in G is
called an isolated vertex isolated vertex.

• The degree sequence degree sequenceof G is the multiset of degrees of vertices of G, e.g. in
the example above the degree sequence is {1, 2, 2, 3}.

• The minimum degree of G minimum degree,
δ(G)

, denoted by δ(G), is the smallest vertex degree
in G (it is 1 in the example).

• The maximum degree of G maximum degree,
∆(G)

, denoted by ∆(G), is the highest vertex degree
in G (it is 3 in the example).

• The graph G is called k-regular regularfor a natural number k if all vertices have
degree k. Graphs that are 3-regular are also called cubic cubic.

• The average degree of G average degree,
d(G)

is defined as d(G) =
(∑

v∈V deg(v)
)
/|V |. Clearly,

we have δ(G) ≤ d(G) ≤ ∆(G) with equality if and only if G is k-regular for
some k.

Lemma 1 (Handshake Lemma, 1.2.1). For every graph G = (V,E) we have

2|E| =
∑

v∈V
d(v).

Corollary 2. The sum of all vertex degrees is even and therefore the number of
vertices with odd degree is even.

Subgraphs

Definition.

• A graph H = (V ′, E′) is a subgraph of G subgraph, ⊆, denoted by H ⊆ G, if V ′ ⊆ V
and E′ ⊆ E. If H is a subgraph of G, then G is called a supergraph of H supergraph, ⊇,
denoted by G ⊇ H. In particular, G1 = G2 if and only if G1 ⊆ G2 and
G1 ⊇ G2.

v1

v2v3 v4

v1

v2v3
⊆

• A subgraph H of G is called an induced subgraph induced subgraphof G if for every two
vertices u, v ∈ V (H) we have uv ∈ E(H) ⇔ uv ∈ E(G). In the example
above H is not an induced subgraph of G. Every induced subgraph of G
can be obtained by deleting vertices (and all incident edges) from G.

Examples:

v1

v2v3 v4

v1

v2v3

v1

v2 v4 v3 v4v2v3 v4

v1

• Every induced subgraph of G is uniquely defined by its vertex set. We write
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G[X] G[X]for the induced subgraph of G on vertex set X, i.e., G[X] =
(
X,
{
xy :

x, y ∈ X, xy ∈ E(G)
})

. Then G[X] is called the subgraph of G induced by
the vertex set X ⊆ V (G).

Example:

4 1

2

3 5 4 1

2

3

G G
[
{1, 2, 3, 4}

]

• If H and G are two graphs, then an (induced) copy copyof H in G is an (induced)
subgraph of G that is isomorphic to H.

• A subgraph H = (V ′, E′) of G = (V,E) is called a spanning subgraph spanning
subgraph

of G
if V ′ = V .

• A graph G = (V,E) is called bipartite bipartiteif there exists natural numbers m,n
such that G is isomorphic to a subgraph of Km,n. In this case, the vertex
set can be written as V = A∪̇B such that E ⊆ {ab | a ∈ A, b ∈ B}. The
sets A and B are called partite sets of G partite sets.

• A cycle (path, clique) cliquein G is a subgraph H of G that is a cycle (path,
complete graph).

• An independent set independent setin G is an induced subgraph H of G that is an empty
graph.

• A walk walk(of length k) is a non-empty alternating sequence v0e0v1e1 · · · ek−1vk
of vertices and edges in G such that ei = {vi, vi+1} for all i < k. If v0 = vk,
the walk is closed closed walk.

• Let A,B ⊆ V , A ∩ B = ∅. A path P in G is called an A-B-path A-B-pathif P =
v1 . . . vk, V (P ) ∩ A = {v1} and V (P ) ∩ B = {vk}. When A = {a} and
B = {b}, we simply call P an a-b-path. If G contains an a-b-path we say
that the vertices a and b are linked by a path.

• Two paths P, P ′ in G are called independent independent pathsif every vertex contained in
both P and P ′ (if any) is an endpoint of P and P ′. I.e., P and P ′ can share
only endpoints.

• A graph G is called connected connectedif any two vertices are linked by a path.

• A subgraph H of G is maximal, minimalmaximal , respectively minimal , with respect to some
property if there is no supergraph, respectively subgraph, of H with that
property.

• A maximal connected subgraph of G is called a connected component componentof G.

• A graph G is called acyclic acyclicif G does not have any cycle. Acyclic graphs are
also called forests forest.

• A graph G is called a tree treeif G is connected and acyclic.

Proposition 3. If a graph G has minimum degree δ(G) ≥ 2, then G has a path of
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length δ(G) and a cycle with at least δ(G) + 1 vertices.

Proposition 4. If a graph has a u-v-walk, then it has a u-v-path.

Proposition 5. If a graph has a closed walk of odd length, then it contains an
odd cycle.

Proposition 6. If a graph has a closed walk with a non-repeated edge, then the graph
contains a cycle.

Proposition 7. A graph is bipartite if and only if it has no cycles of odd length.

Definition. An Eulerian tour of G Eulerian touris a closed walk containing all edges of G,
each exactly once.

Theorem 8 (Eulerian Tour Condition, 1.8.1). A connected graph has an Eulerian
tour if and only if every vertex has even degree.

Lemma 9. Every tree on at least two vertices has a leaf.

Lemma 10. A tree of order n ≥ 1 has exactly n− 1 edges.

Lemma 11. Every connected graph contains a spanning tree.

Lemma 12. A connected graph on n ≥ 1 vertices and n− 1 edges is a tree.

Lemma 13. The vertices of every connected graph can be ordered (v1, . . . , vn) so that
for every i ∈ {1, . . . , n} the graph G

[
{v1, . . . , vi}

]
is connected.

Operations on graphs

Definition. Let G = (V,E) and G′ = (V ′, E′) be two graphs, U ⊆ V be a subset
of vertices of G and F ⊆

(
V
2

)
be a subset of pairs of vertices of G. Then we define

• G ∪ G′ := (V ∪ V ′, E ∪ E′) G ∪G′, G ∩G′and G ∩ G′ := (V ∩ V ′, E ∩ E′). Note that
G,G′ ⊆ G ∪ G′ and G ∩ G′ ⊆ G,G′. Sometimes, we also write G + G′ for
G ∪G′.

• G−U := G[V \U ], G−F := (V,E \F ) G− U , G− F ,
G+ F

and G+F := (V,E∪F ). If U = {u}
or F = {e} then we simply write G− u, G− e and G+ e for G−U , G− F
and G+ F , respectively.

• For an edge e = xy in G we define G ◦ e G ◦ eas the graph obtained from G by
identifying x and y and removing (if necessary) loops and multiple edges.
We say that G ◦ e arises from G by contracting the edge e contract.

10
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x
y

v3

v2

v1

v4

v5

vxyv2

v1

v3

v4

v5

• The complement of G complement, G, denoted by G or GC , is defined as the graph (V,
(
V
2

)
\

E). In particular, G+G is a complete graph, and G = (G+G)− E.

More graph parameters

Definition. Let G = (V,E) be any graph.

• The girth of G girth, g(G), denoted by g(G), is the length of a shortest cycle in G. If
G is acyclic, its girth is said to be ∞.

• The circumference circumferenceof G is the length of a longest cycle in G. If G is acyclic,
its circumference is said to be 0.

• The graph G is called Hamiltonian Hamiltonianif G has a spanning cycle, i.e., there is a
cycle in G that contains every vertex of G. In other words, G is Hamiltonian
if and only if its circumference is |V |.

• The graph G is called traceable traceableif G has a spanning path, i.e., there is a
path in G that contains every vertex of G.

• For two vertices u and v in G, the distance between u and v distance, d(u, v), denoted by
d(u, v), is the length of a shortest u-v-path in G. If no such path exists,
d(u, v) is said to be ∞.

• The diameter of G diameter,
diam(G)

, denoted by diam(G), is the maximum distance among
all pairs of vertices in G, i.e.

diam(G) = max
u,v∈V

d(u, v).

• The radius of G radius, rad(G), denoted by rad(G), is defined as

rad(G) = min
u∈V

max
v∈V

d(u, v).

• If there is a vertex ordering v1, . . . , vn of G and a d ∈ N such that

|N(vi) ∩ {vi+1, . . . , vn}| ≤ d,

for all i ∈ [n− 1] then G is called d-degenerate d-degenerate. The minimum d for which
G is d-degenerate is called the degeneracy degeneracyof G.
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v1 v2 vnv3

≤ d ≤ d ≤ d

We remark that the 1-degenerate graphs are precisely the forests.

• A proper k-edge colouring proper edge
colouring

is an assignment c′ : E → [k] of colours in [k]
to edges such that no two adjacent edges receive the same colour. The
chromatic index of G chromatic index,

χ′(G)
, or edge-chromatic number, is the minimal k such

that G has a k-edge colouring. It is denoted by χ′(G).

• A proper k-vertex colouring proper vertex
colouring

is an assignment c : V → [k] of colours in [k]
to vertices such that no two adjacent vertices receive the same colour. The
chromatic number of G chromatic

number, χ(G)
is the minimal k such that G has a k-vertex colour-

ing. It is denoted by χ(G).

Proposition 14. For any graph G = (V,E) the following are equivalent:

(i) G is a tree, that is, G is connected and acyclic.

(ii) G is connected, but for any edge e ∈ E in G the graph G − e is not
connected.

(iii) G is acyclic, but for any edge e /∈ E not in G the graph G + e has a
cycle.

(iv) G is connected and 1-degenerate.

(v) G is connected and |E| = |V | − 1.

(vi) G is acyclic and |E| = |V | − 1.

(vii) G is connected and every non-trivial subgraph of G has a vertex of
degree at most 1.

(viii) Any two vertices are joined by a unique path in G.
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4 Matchings

Definition.

• A matching matching(independent edge set) is a vertex-disjoint union of edges, i.e.,
the union of pairwise non-adjacent edges.

. . .

• A matching in G is a subgraph of G isomorphic to a matching. We denote
the size of the largest matching in G by ν(G) ν(G).

• A vertex cover in G vertex coveris a set of vertices U ⊆ V such that each edge in E
is incident to at least one vertex in U . We denote the size of the smallest
vertex cover in G by τ(G) τ(G).

U

• A k-factor of G k-factoris a k-regular spanning subgraph of G.

• A 1-factor of G is also called a perfect matching perfect matchingsince it is a matching of
largest possible size in a graph of order |V |. Clearly, G can only contain a
perfect matching if |V | is even.

Theorem 15 (Hall’s Marriage Theorem, 2.1.2). Let G be a bipartite graph with
partite sets A and B. Then G has a matching containing all vertices of A if and
only if |N(S)| ≥ |S| for all S ⊆ A.

S

N(S)

S

N(S)

A

B

bad

Theorem 16 (Tutte’s Theorem, 2.2.1). For S ⊆ V define q(S) to be the number
of odd components of G− S, i.e., the number of connected components of G− S
consisting of an odd number of vertices. A graph G has a perfect matching if and
only if q(S) ≤ |S| for all S ⊆ V .

13
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S

odd

odd

odd

|S| ≥ odd components of G− S

Corollary 17.

• Let G be bipartite with partite sets A and B such that |N(S)| ≥ |S| − d for all
S ⊆ A, and a fixed positive integer d. Then G contains a matching of size at
least |A| − d.

• A k-regular bipartite graph has a perfect matching.

• A k-regular bipartite graph has a proper k-edge coloring.

Definition. Let G = (V,E) be any graph.

• For all functions f : V → N∪{0} an f -factor of G f -factoris a spanning subgraph H
of G such that degH(v) = f(v) for all v ∈ V .

• Let f : V → N∪{0} be a function with f(v) ≤ deg(v) for all v ∈ V . We can
construct the auxiliary graph T (G, f) T (G, f)by replacing each vertex v with vertex
sets A(v)∪B(v) such that |A(v)| = deg(v) and |B(v)| = deg(v)− f(v). For
adjacent vertices u and v we place an edge between A(u) and A(v) such that
the edges between the A-sets are independent. We also insert a complete
bipartite graph between A(v) and B(v) for each vertex v.

1 v2

1

3 v1

2

3 2

∅

B(v1) A(v1) B(v2)

A(v2)

→

• Let H be a graph. An H-factor of G H-factoris a spanning subgraph of G that is
a vertex-disjoint union of copies of H, i.e., a set of copies of H in G whose
vertex sets form a partition of V .

14



H = G =

Lemma 18. Let f : V → N ∪ {0} be a function with f(v) ≤ deg(v) for all v ∈ V .
Then G has an f -factor if and only if T (G, f) has a 1-factor.

Theorem 19 (König’s Theorem, 2.1.1). Let G be bipartite. Then ν(G) = τ(G),
i.e., the size of a largest matching is the same as the size of a smallest vertex
cover.

Theorem 20 (Hajnal and Szemerédi). If G satisfies δ(G) ≥ (1− 1/k)n, where k is a
divisor of n, then G has a Kk-factor.

Theorem 21 (Alon and Yuster). Let H be a graph. If G satisfies

δ(G) ≥
(

1− 1

χ(H)

)
n,

then G contains at least
(
1− o(1)

)
· n/|V (H)| vertex-disjoint copies of H.

15
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5 Connectivity

Definition.

• For a natural number k ≥ 1, a graph G is called k-connected k-connectedif |V (G)| ≥ k+1
and for any set U of k − 1 vertices in G the graph G − U is connected. In
particular, Kn is (n− 1)-connected.

• The maximum k for which G is k-connected is called the connectivity of G connectivity, κ(G),
denoted by κ(G).

κ(

v1

v2v3 v4) = 1, κ(Cn) = 2, κ(Kn,m) = min{m,n}.
• For a natural number k ≥ 1, a graphG is called k-linked k-linkedif for any 2k distinct

vertices s1, s2, . . . , sk, t1, t2, . . . , tk there are vertex-disjoint si-ti-paths, i =
1, . . . , k.

s1

s2

s3

t1

t2

t3

s1

s2

s3

t′1 = t2

t′2 = t3

t′3 = t1

• For a graph G = (V,E) a set X ⊆ V ∪E of vertices and edges of G is called
a cut set cut setof G if G−X has more connected components than G. If a cut set
consists of a single vertex v, then v is called a cut vertex cut vertexof G; if it consists
of a single edge e, then e is called a cut edge or bridge cut edge, bridgeof G.

• For a natural number ` ≥ 1, a graph G is called `-edge-connected `-edge-connectedif G is
non-trivial and for any set F ⊆ E of fewer than ` edges in G the graph
G− F is connected.

• The edge-connectivity of G edge-connectivity,
κ′(G)

is the maximum ` such thatG is `-edge-connected.
It is denoted by κ′(G) or λ(G).

G non-trivial tree ⇒ λ(G) = 1, G cycle ⇒ λ(G) = 2.

Clearly, for every k, ` ≥ 2, if a graph is k-connected, k-linked or `-edge-connected,
then it is also (k− 1)-connected, (k− 1)-linked or (`− 1)-edge-connected, respectively.
Moreover, for a non-trivial graph is it equivalent to be 1-connected, 1-linked, 1-edge-
connected, or connected.

Lemma 22. For any connected, non-trivial graph G we have

κ(G) ≤ λ(G) ≤ δ(G).
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K100K100

A graph G with κ(G), λ(G)� δ(G).

Definition. For a subset X of vertices and edges of G and two vertex sets A,B in G
we say that X separates A and B separateif each A-B-path contains an element of X.

A B

v3
v2v1

u1 u2
u3

e1 e2

e3 e4

e5

Some sets separating A and B: {e1, e4, e5}, {e1, u2}, {u1, u3, v3}

Note that if X separates A and B, then necessarily A ∩B ⊆ X.

Theorem 23 (Menger’s Theorem, 3.3.1). For any graph G and any two vertex
sets A,B ⊆ V (G) we have

min #vertices separating A and B = max #independent A-B-paths.

Corollary 24. If a, b are vertices of G, {a, b} /∈ E(G), then

min #vertices separating a and b = max #independent a-b-paths

a b

A B

Theorem 25 (Global Version of Menger’s Theorem, 3.3.6). A graph G is k-
connected if and only if for any two vertices a, b in G there exist k independent
a-b-paths.

Note that Menger’s Theorem implies that if G is k-linked, then G is k-connected.
Moreover, Bollobás and Thomason proved in 1996 that if G is 22k-connected, then G
is k-linked.

Definition. For a graph G = (V,E) the line graph L(G) line graph L(G)of G is the graph L(G) =
(E,E′), where

E′ =

{
{e1, e2} ∈

(
E

2

)
: e1 adjacent to e2 in G

}
.
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v2
v3

v4

v1

e2
e1

e3 e4 e5

e1

e2

e3

e5
e4

A graph and its line graph.

Corollary 26. If a, b are vertices of G, then

min #edges separating a and b = max #edge-disjoint a-b-paths

a b

A
B

Moreover, a graph is k-edge-connected if and only if there are k edge-disjoint paths
between any two vertices.

Definition. Given a graph H, we call a path P an H-path H-pathif P is non-trivial (has
length at least one) and meets H exactly in its ends. In particular, the edge of
any H-path of length 1 is never an edge of H.

An ear earof H is a non-trivial non-seperating path P in H whose internal vertices
have degree 2 and whose ends have degree at least 3 each. In particular, if P is
an ear of H, then P is an H ′-path for the graph H ′ obtained from H by removing
all edges and internal vertices of P . Conversely, if both ends of an H-path P lie
in the same connected component of H, then P is an ear of H + P .

An ear-decomposition ear-decompositionof a graph G is a sequence G0 ⊆ G1 ⊆ · · · ⊆ Gk of graphs,
such that

• G0 is a cycle,

• for each i = 1, . . . , k the graph Gi arises from Gi−1 by adding a Gi−1-path
Pi, i.e., Pi is an ear of Gi, and

• Gk = G.
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Gi

Theorem 27 (3.1.1). A graph is 2-connected if and only if it has an ear-decomposition.

Lemma 28. If G is 3-connected, then there exists an edge e of G such that G ◦ e is
also 3-connected.

Theorem 29 (Tutte, 3.2.3). A graph G is 3-connected if and only if there exists
a sequence of graphs G0, G1, . . . , Gk, such that

• G0 = K4,

• for each i = 1, . . . , k the graph Gi has two adjacent vertices x′, x′′ of degree
at least 3, so that Gi−1 = Gi ◦ x′x′′, and

• Gk = G.

x
x′

x′′

y y′

y′′

Definition. Let G be a graph. A maximal connected subgraph of G without a
cut vertex is called a block blockof G. In particular, the blocks of G are exactly the
bridges and the maximal 2-connected subgraphs of G.

The block-cut-vertex graph or block graph block-cut-vertex
graph

of G is a bipartite graph H whose partite
sets are the blocks of G and the cut vertices of G, respectively. There is an edge
between a block B and a cut vertex a if and only if a ∈ B, i.e., the block contains
the cut vertex.

B1 B2 B3 B4

B5

B6

v1 v2 v3

v4

v5

B1 B2

v1 v2

...

The leaves of this graph are called block leaves block leaf.

Theorem 30. The block-cut-vertex graph of a connected graph is a tree.
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6 Planar graphs

This section deals with graph drawings. We restrict ourselves to graph drawings in
the plane R2. It is also feasible to consider graph drawings in other topological spaces,
such as the torus.

Definition.

• The straight line segment straight line
segment

between p ∈ R2 and q ∈ R2 is the set {p+λ(q−p) :
0 ≤ λ ≤ 1}.

• A homeomorphism homeomorphismis a continuous function that has a continuous inverse
function.

• Two sets A ∈ R2 and B ∈ R2 are said to be homeomorphic homeomorphicif there is a
homeomorphism f : A→ B.

• A polygon polygonis a union of finitely many line segments that is homeomorphic
to the circle S1 := {x ∈ R2 : ‖x‖ = 1}.

• An arc arcis a subset of R2 which is the union of finitely many straight line
segments and is homeomorphic to the closed unit interval [0, 1]. The images
of 0 and 1 under such a homeomorphism are the endpoints of the arc endpoint of arc. If P
is an arc with endpoints p and q, then P links them and runs between them.
The set P \ {p, q} is the interior of P interior of arc, denoted by P̊ .

• Let O ⊆ R2 be an open set. Being linked by an arc in O is an equivalence
relation on O. The corresponding equivalence classes are the regions of O region.
A closed set X ⊆ R2 is said to separate separateO if O \X has more regions than
O. The frontier frontierof a set X ⊆ R2 is the set Y of all points y ∈ R2 such
that every neighbourhood of y meets both X and R2 \X. Note that if X is
closed, its frontier lies in X, while if X is open, its frontier lies in R2 \X.

• A plane graph plane graphis a pair (V,E) of finite sets with the following properties
(the elements of V are again called vertices, those in E edges):

1. V ⊆ R2;

2. every e ∈ E is an arc between two vertices;

3. different edges have different sets of endpoints;

4. the interior of an edge contains no vertex and no point of any other
edge.

A plane graph (V,E) defines a graph G on V in a natural way. As long as
no confusion can arise, we shall use the name G of this abstract graph also
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for the plane graph (V,E), or for the point set V ∪⋃E.

• For any plane graph G, the set R2 \G is open; its regions are the faces of G faces, F (G).

• The face of G corresponding to the unbounded region is the outer face outer faceof G;
the other faces are its inner faces inner face. The set of all faces is denoted by F (G).

• The subgraph of G whose point set is the frontier of a face f is said to bound
f and is called its boundary boundary of f ,

G[f ]
; we denote it by G[f ].

• Let G be a plane graph. If one cannot add an edge to form a plane graph
G′ ) G with V (G′) = V (G), then G is called maximally plane maximally plane. If every face
in F (G) (including the outer face) is bounded by a triangle in G, then G is
called a plane triangulation triangulation.

• A planar embedding planar embeddingof an abstract graph G = (V,E) is an isomorphism
between G and a plane graph G′. The latter is called a drawing of G. We
shall not distinguish notational between the vertices of G and G′. A graph
G = (V,E) is planar planar graphif it has a planar embedding.

• A graph G = (V,E) is outerplanar outerplanar graphif it has a plane embedding such that
the boundary of the outer face contains all of the vertices V .

Theorem 31 (Fáry’s Theorem). Every planar graph has a plane embedding with
straight line segments as edges.

Lemma 32 (Jordan Curve Theorem for Polygons, 4.1.1). Let P ⊆ R2 be a polygon.
Then R2 \ P has exactly two regions. One of the regions is unbounded, the other is
bounded. Each of the two regions has P as frontier.

Lemma 33. Let P1, P2 and P3 be internally disjoint arcs that have the same end-
points. Then

1. R2 \ (P1 ∪ P2 ∪ P3) has exactly three regions with boundaries P1 ∪ P2, P1 ∪ P3

and P2 ∪ P3, respectively.

2. Let P be an arc from the interior of P1 to the interior of P3 whose interior lies
in the region of R2 \ (P1 ∪ P3) containing the interior of P2. Then P contains a
points of P2.
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P1 P2
P3

P

Lemma 34. Let G be a plane graph and e be an edge of G. Then the following hold.

• The frontier X of a face of G either contains e or is disjoint from the interior
of e.

• If e is on a cycle in G, then e is on the frontier of exactly two faces.

• If e is on no cycle in G, then e is on the frontier of exactly one face.

Lemma 35. A plane graph is maximally plane if and only if it is a triangulation.

Theorem 36 (Euler’s Formula, 4.2.9). Let G be a connected plane graph with
v vertices, e edges and f faces. Then

v − e+ f = 2.

Corollary 37. Let G = (V,E) be a plane graph. Then

• |E| ≤ 3|V | − 6 with equality exactly if G is a plane triangulation.

• |E| ≤ 2|V | − 4 if no face in F (G) is bounded by a triangle.

Lemma 38 (Pick’s Formula). Let P be a polygon with corners on the grid Z2, let A
be its area, I be the number of grid points strictly inside of P and B be the number
of grid points on the boundary of P . Then A = I +B/2− 1.

Definition. Let G and X be two graphs.

• We say that G is an MX MX, G = MX, denoted by G = MX, if V (G) can be partitioned
as {Vx | x ∈ V (X)} such that G[Vx] is connected for every x ∈ V (X) and
there is an Vx–Vy edge in G if and only if xy ∈ E(X).

• We say that X is a minor of G minor, X 4 Gif H = MX for some subgraph H of G.

G

X

G = MX

G X

G = MX

Alternatively, X is a minor of G if and only if X can be obtained from G
by successive vertex deletions, edge deletions and edge contractions.
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X

G = MX

• The graph G is a single-edge subdivision of X subdivisionif V (G) = V (X) ∪ {v}
and E(G) = E(X)−xy+xv+ vy for some edge xy ∈ E(X) and v 6∈ V (X).
We say that G is a TX TX, G = TX, denoted by G = TX, if G can be obtained from X
by a series of single-edge subdivisions.

• We say that X is a topological minor of G topological minor, if H = TX for some subgraph
H of G.

G X
G = TX

G = TK4

Theorem 39 (Kuratowski’s Theorem, 4.4.6). A graph is planar if and only if it
does not have K5 or K3,3 as topological minors.

Definition.

• Let X be a set and ≤ ⊆ X2 be a relation on X, i.e., ≤ is a subset of all
ordered pairs of elements in X. Then ≤ is a partial order partial orderif it is reflexive,
antisymmetric and transitive. A partial order is total total orderif x ≤ y or y ≤ x for
every x, y ∈ X.

• Let ≤ be a partial order on a set X. The pair (X,≤) is called a poset poset

(partially ordered set). If ≤ is clear from context, the set X itself is called
a poset. The poset dimension of (X,≤) poset dimension,

dim(X,≤)
is the smallest number d such that

there are total orders R1, . . . , Rd on X with ≤ = R1 ∩ · · · ∩Rd.
dim( ) = 1, dim(x y ) = 2 since x y = y

x ∩ x
y

• The incidence poset (V ∪ E,≤) incidence poseton a graph G = (V,E) is given by v ≤ e if
and only if e is incident to v for all v ∈ V and e ∈ E.

v1

v2

v3

v4

e1
e2

e3

e1 e2 e3

v1 v2 v3 v4

Theorem 40 (Schnyder). Let G be a graph and P be its incidence poset. Then G is
planar if and only if dim(P ) ≤ 3.
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Theorem 41 (5-Color Theorem, 5.1.2). Every planar graph is 5-colorable.

The more well-known 4-coloring theorem is much harder to prove. Interestingly, it
is one of the first theorems that has been proved using computer assistance. The
computer-generated proof uses an enormous case distinction. Some mathematicians
have philosophical problems with this approach since the resulting proof cannot be
easily verified by humans. A shorter proof is still outstanding.

Theorem 42 (4-Color Theorem, 5.1.1). Every planar graph is 4-colorable.

Definition.

• Let L(v) ⊆ N be a list of colors for each vertex v ∈ V . We say that G
is L-list-colorable L-list-colorableif there is coloring c : V → N such that c(v) ∈ L(v) for
each v ∈ V and adjacent vertices receive different colors.

• Let k ∈ N. We say that G is k-list-colorable or k-choosable k-list-colorableif G is L-list-
colorable for each list L with |L(v)| = k for all v ∈ V .

• The choosability choosability,
ch(G)

, denoted by ch(G), is the smallest k such that G is k-
choosable.

• The edge choosability edge choosability,
ch′(G)

, denoted by ch′(G), is defined analogously.

Theorem 43 (Thomassen’s 5-List Color Theorem, 5.4.2). Every planar graph is 5-
choosable.
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7 Colorings

Lemma 44 (Greedy estimate for the chromatic number).
Let G be a graph. Then χ(G) ≤ ∆(G) + 1.

Theorem 45 (Brook’s Theorem, 5.2.4). Let G be a connected graph.
Then χ(G) ≤ ∆(G) unless G is a complete graph or an odd cycle.

Definition.

• The clique number ω(G) of G clique number,
ω(G)

is the largest order of a clique in G.

• The co-clique number α(G) of G co-clique number,
α(G)

is the largest order of an independent set
in G.

• A graph G is called perfect perfect graphif χ(H) = ω(H) for each induced subgraph H
of G. For example, bipartite graphs are perfect with χ = ω = 2.

Lemma 46 (Small Coloring Results).

• χ(G) ≥ max{ω(G), n/α(G)} since each color class is an empty induced subgraph
and χ(Kk) = k.

• ‖G‖ ≥
(
χ(G)
2

)
⇔ χ(G) ≤ 1/2 +

√
2‖G‖+ 1/4 since there must be at least one

edge between any two color classes.

• The chromatic number χ(G) of G is at most one more than the length of a
longest directed path in any orientation of G.

Theorem 47 (Lovász’ Perfect Graph Theorem, 5.5.4). A graph G is perfect if and
only if its complement G is perfect.

Theorem 48 (Strong Perfect Graph Theorem, Chudnovsky, Robertson, Seymour &
Thomas, 5.5.3). A graph G is perfect if and only if it does not contain an odd cycle
on at least 5 vertices (an odd hole) or the complement of an odd hole as an induced
subgraph.

Definition. For an integer k ≥ 1 we define k-constructible k-constructiblegraphs recursively as
follows:

• Kk is k-constructible.

• If G is k-constructible and x, y ∈ V (G) are non-adjacent, then also (G+ xy)/xy
is k-constructible.

• If G1, G2 are k-constructible and there are vertices x, y1, y2 such that G1 ∩G2 =
{x}, xy1 ∈ E(G1) and xy2 ∈ E(G2), then also (G1 ∪ G2) − xy1 − xy2 + y1y2 is
k-constructible.

Theorem 49 (Hajós Theorem, 5.2.6). Let G be a graph and k ≥ 1 be an integer.
Then χ(G) ≥ k if and only if G has a k-constructible subgraph.
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Example (Mycielski’s Construction).
We can construct a family

(
Gk = (Vk, Ek)

)
k∈N of triangle-free graphs with χ(Gk) = k

as follows:

• G1 is the single-vertex graph, G2 is the single-edge graph, i.e., G1 = K1 and
G2 = K2.

• Vk+1 := Vk ∪ U ∪ {w} where Vk ∩
(
U ∪ {w}

)
= ∅, Vk = {v1, . . . , vn} and

U = {u1, . . . , un}.
• Ek+1 := Ek ∪

{
wui : i = 1, . . . , k

}
∪⋃ni=1

{
uiv : v ∈ NGk

(vi)
}

.

G1 G2 G3

Example (Tutte’s Construction). We can construct a family (Gk)k∈N of triangle-free
graphs with χ(Gk) = k as follows: G1 is the single-vertex graph. To get from Gk
to Gk+1, take an independent set U of size k(|Gk| − 1) + 1 and

( |U |
|Gk|
)

vertex-disjoint

copies of Gk. For each subset of size |Gk| in U then introduce a perfect matching to
exactly one of the copies of Gk.

G1

U

G2 G3

(3
2) · G2

Theorem 50 (König’s Theorem, 5.3.1).
Let G be a bipartite graph. Then χ′(G) = ∆(G).

Theorem 51 (Vizing’s Theorem, 5.3.2).
Let G be a graph. Then χ′(G) ∈ {∆(G),∆(G) + 1}.

Lemma 52. We have ch(Kn,n) ≥ c · log(n) for some constant c > 0. In particular,

ch
(
K(2k−1

k ),(2k−1
k )

)
≥ c · k.

Theorem 53 (Galvin’s Theorem, 5.4.4).
Let G be a bipartite graph. Then ch′(G) = χ′(G).
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8 Extremal graph theory

In this section c, c1, c2, . . . always denote unspecified constants in R>0.

Definition.

• Let n be a positive integer and H a graph. By ex(n,H) ex(n,H)we denote the
maximum size of a graph of order n that does not contain H as a subgraph;
EX(n,H) EX(n,H)is the set of such graphs.

• Let n and r be integers with 1 ≤ r ≤ n. The Turán graph T (n, r) Turán graph,
T (n, r)

is the
unique complete r-partite graph of order n whose partite sets differ by at
most 1 in size. It does not contain Kr+1. We denote ‖T (n, r)‖ by t(n, r) t(n, r).

T(5, 2) T(6, 2) T(7, 3)

• In the special case that n = r · s, for positive integers n, r, s with 1 ≤ r ≤ n,
the Turán graph T (n, r) is also denoted by Ks

r Ks
r.

Example.

• ex(n,K2) = 0, EX(n,K2) = {En}
• ex(n, P3) = bn/2c, EX(n, P3) = {bnc ·K2 + (n mod 2) · E1}

. . .H = EX(n, H)

Lemma 54 (On Turán Graphs).

• Among all r-partite graphs on n vertices the Turán graph T (n, r) has the largest
number of edges.

• We have the recursion

t(n, r) = t(n− r, r) + (n− r)(r − 1) +

(
r

2

)
.

• A Turán graph lacks a ratio of 1/r of the edges of a complete graph:

lim
n→∞

t(n, r)(
n
2

) =

(
1− 1

r

)
.

Theorem 55 (Turán’s Theorem, 7.1.1). For all integers r > 1 and n ≥ 1, any
graph G with n vertices, ex(n,Kr) edges and Kr 6⊆ G is a Tr−1(n).

In other words EX(n,Kr) = {T (n, r − 1)}.

27

http://www.flooved.com/reader/3447#186


Definition. Let X,Y ⊆ V (G) be disjoint vertex sets and ε > 0.

• We define ‖X,Y ‖ to be the number of edges between X and Y and the
density d(X,Y ) of (X, Y) density, d(X,Y )to be

d(X,Y ) :=
‖X,Y ‖
|X||Y | .

• For ε > 0 the pair (X,Y ) is an ε-regular pair ε-regular pairif we have |d(X,Y )−d(A,B)| ≤
ε for all A ⊆ X, B ⊆ Y with |A| ≥ ε|X| and |B| ≥ ε|Y |.

X YA B

• An ε-regular partition ε-regular partitionof the graph G = (V,E) is a partition of the vertex
set V = V0∪̇V1∪̇ · · · ∪̇Vk with the following properties:

1. |V0| ≤ ε|V |
2. |V1| = |V2| = · · · = |Vk|
3. All but at most εk2 of the pairs (Vi, Vj) for 1 ≤ i < j ≤ k are ε-regular.

V0
Vk

Vi

Vj

Theorem 56 (Szemerédi’s Regularity Lemma, 7.4.1). For any ε > 0 and any
integer m ≥ 1 there is an M ∈ N such that every graph of order at least m has
an ε-regular partition V0∪̇ · · · ∪̇Vk with m ≤ k ≤M .

Theorem 57 (Erdős-Stone Theorem, 7.1.2). For all integers r > s ≥ 1 and
any ε > 0 there exists an integer n0 such that every graph with n ≥ n0 vertices
and at least

tr−1(n) + εn2

edges contains Ks
r as a subgraph.

Corollary 58. Erdős-Stone together with limn→∞ t(n, r)/
(
n
2

)
= 1 − 1/r yields an
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asymptotic formula for the extremal number of any graph H on at least one edge:

lim
n→∞

ex(n,H)(
n
2

) =
χ(H)− 2

χ(H)− 1

For example, ex(n, ) ' 2/3 ·
(
n
2

)
since χ( ) = 4.

Chvátal and Szemerédi proved a more quantitative version of the Erdős-Stone theorem.

Theorem 59 (Chvátal-Szemerédi Theorem). For any ε > 0 and any integer r ≥ 3,
any graph on n vertices and at least

(
1 − 1/(r − 1) + ε

)(
n
2

)
edges contains Kt

r as a
subgraph. Here t is given by

t =
log n

500 · log(1/ε)
.

Furthermore, there is a graph G on n vertices and
(
1− (1 + ε)/(r− 1)

)(
n
2

)
edges that

does not contain Kt
r for

t =
5 · log n

log(1/ε)
,

i.e., the choice of t is asymptotically tight.

Definition. The Zarankiewicz Zarankiewicz,
z(m,n; s, t)

function z(m,n; s, t) denotes the maximum num-
ber of edges that a bipartite graph with parts of size m and n can have without
containing Ks,t.

X

Y

m

n

s

t

forbidden

Theorem 60 (Kővári-Sós-Turán Theorem).
We have the upper bound

z(m,n; s, t) ≤ (s− 1)1/t(n− t+ 1)m1−1/t + (t− 1)m

for the Zarankiewicz function. In particular,

z(n, n; t, t) ≤ c1 · n · n1−1/t + c2 · n = O(n2−1/t)

for m = n and t = s.

Corollary 61.
For t ≥ s ≥ 1 we can bound the extremal number of Kt,s using the Kővári-Sós-Turán
theorem

ex(n,Kt,s) ≤
1

2
· z(n, n; s, t) ≤ cn2−1/s.
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For t = s = 2 this bound yields

ex(n,C4) ≤ n

4
(1 +

√
4n− 3).

This bound is actually tight, i.e., ex(n,C4) = 1/2 · n3/2 · (1 + o(1)).

Lemma 62. ex(n,Kr,r) ≥ cn2−2/(r+1) for all n, r ∈ N.

Theorem 63. For all n ∈ N we have ex(n, Pk+1) ≤
(
n · (k − 1)

)
/2.

Conjecture (Hadwiger Conjecture). Let r be a natural number and G be a graph.
Then χ(G) ≥ r implies MKr ⊆ G.

For r ∈ {1, 2, 3, 4} this is easy to see. For r ∈ {5, 6} the conjecture has been proven
using the 4-color-theorem. It is still open for r ≥ 7.

Theorem 64 (Bollobás-Thomason 1998, 7.2.1). Every graph G of average degree at
least cr2 contains Kr as a topological minor.

Theorem 65 (7.2.4). Let G be a graph of minimum degree δ(G) ≥ d and girth g(G) ≥
8k + 3 for d, k ∈ N and d ≤ 3. Then G has a minor H of minimum degree δ(H) ≥
d(d− 1)k.

Theorem 66 (Thomassen’s Theorem, 7.2.5). For all r ∈ N there exists a function
f : N→ N such that every graph of minimum degree at least 3 and girth at least f(r)
has a Kr minor.

Theorem 67 (Kühn-Osthus, 7.2.6). Let r ∈ N. Then there is a constant g ∈ N such
that we have TKr ⊆ G for every graph G with δ(G) ≥ r − 1 and g(G) ≥ g.
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9 Ramsey theory

In every 2-coloring in this section we use the colors red and blue.

Definition.

• In an edge-coloring of a graph, a set of edges is

– monochromatic monochromaticif all edges have the same color,

– rainbow rainbowif no two edges have the same color,

– lexical lexicalif two edges have the same color if and only if they have the
same lower endpoint in some ordering of the vertices.

• Let k be a natural number. Then the Ramsey number R(k) ∈ N Ramsey, R(k)is the small-
est n such that every 2-edge-coloring of Kn contains a monochromatic Kk.

Color E(Kn) in 2 colors.

or

• Let k and l be natural numbers. Then the asymmetric Ramsey num-
ber R(k, l) asymmetric

Ramsey, R(k, l)
is the smallest n ∈ N such that every 2-edge-coloring of a Kn

contains a red Kk or a blue Kl.

• Let G and H be graphs. Then the graph Ramsey number R(G,H) graph Ramsey,
R(G,H)

is the
smallest n ∈ N such that every 2-edge-coloring of Kn contains a red G or a
blue H.

• Let r, l1, . . . , lk be natural numbers. Then the hypergraph Ramsey number
Rr(l1, . . . , lk) hypergraph

Ramsey,
Rr(l1, . . . , lk)

is the smallest n ∈ N such that for every k-coloring of
(
[n]
r

)

there is an i ∈ {1, . . . , k} and a V ⊆ [n] with |V | = li such that all sets
in
(
V
r

)
have color i.

• Let G and H be graphs. Then the induced Ramsey number Rind(G,H) induced Ramsey,
Rind(G,H)

is
the smallest n ∈ N such that there is a graph F on n vertices every 2-coloring
of which contains a red G or a blue H.

• For n ∈ N and a graph H, the anti-Ramsey number AR(n,H) anti-Ramsey,
AR(n,H)

is the max-
imum number of colors that an edge-coloring of Kn can have without con-
taining a rainbow copy of H.

Lemma 68.

• R(3) = 6, i.e., every 2-edge-colored K6 contains a monochromatic K3 and there
is a 2-coloring of a K5 without monochromatic K3’s.
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• Clearly, R(2, k) = R(k, 2) = k.

Theorem 69 (Ramsey Theorem, 9.1.1). For any k ∈ N we have
√

2
k ≤ R(k) ≤

4k. In particular, the Ramsey numbers, the asymmetric Ramsey numbers and
the graph Ramsey numbers are finite.

Theorem 70. For any k, l ∈ N we have R(k, l) ≤ R(k−1, l)+R(k, l−1). This implies
R(k, l) ≤

(
k+l−2
k−1

)
by induction.

Lemma 71. For any r, p, q ∈ N we have Rr(p, q) ≤ Rr−1
(
Rr(p−1, q), Rr(p, q−1)

)
+1.

Lemma 72. We have c1 · 2k ≤ R2(3, . . . , 3︸ ︷︷ ︸
k

) ≤ c2 · k! for some constants c1, c2 > 0.

Applications of Ramsey theory

Theorem 73 (Erdős-Szekeres). Any sequence of (r−1)(s−1)+1 distinct real numbers
contains an increasing subsequence of length r or a decreasing subsequence of length s.

Theorem 74 (Erdős-Szekeres). For any m ∈ N there is an N ∈ N such that every
set of at least N points in general position in R2 contains the vertex set of a convex
m-gon.

Theorem 75 (Schur). Let c : N→ [r] be a coloring of the natural numbers with r ∈ N
colors. Then there are x, y, z ∈ N of the same color with x+ y = z.

Definition. Let r ∈ N and A ∈ Zn×k.

• Matrix A is said to be r-regular r-regular matrixif there is a monochromatic solution of
Ax = 0 for any r-coloring c : N→ [r] of N.

• Matrix A fulfils the column condition column conditionif there is a partition C1∪̇ · · · ∪̇Cl of
the columns of A such that the following holds: Let si :=

∑
c∈Ci

c for i ∈ [l]
be the sum of columns in Ci. Then s1 = 0 and every si for i ∈ {2, . . . , l} is
a linear combination of the columns in C1∪̇ . . . ∪̇Ci−1.

For example, 2x1 + x2 + x3 − 4x4 fulfils the column condition since 2 + 1 +
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1− 4 = 0.

Theorem 76 (Rado). Let A ∈ Zn×k. If A fulfils the column condition, then A is
r-regular for every r ∈ N.

Lemma 77. For any s, t ∈ N with s ≥ t ≥ 1 we have R(sK2, tK2) = 2s+ t− 1.

t − 1
2s − 1

Lemma 78. For any s, t ∈ N with s ≥ t ≥ 1 and s ≥ 2 we have R(sK3, tK3) = 3s+2t.

Theorem 79 (Chvátal, Harary). Let G and H be graphs. Then R(G,H) ≥
(
χ(G)−

1
)(
c(H)− 1

)
+ 1 where c(H) is the order of the largest component of H.

Kc(h)−1 χ(G)− 1

Theorem 80 (Induced Ramsey Theorem, Deuber, Erdős, Hajnal & Pósa, 9.3.1).
We have that Rind(G,H) is finite for all graphs G and H.

Theorem 81 (Canonical Ramsey Theorem, Erdős-Rado 1950). For all k ∈ N there
is an n ∈ N such that any edge coloring of Kn with arbitrarily many colors contains a
Kk that is monochromatic, rainbow or lexical.

Theorem 82 (Chvátal-Rödl-Szemerédi-Trotter, 9.2.2). For any positive inte-
ger ∆ there exists a c ∈ N such that for every graph H with ∆(H) = ∆ we
have R(H,H) ≤ c|V (H)|.

Corollary 83. For any n-vertex graph H with maximum degree 3 we have R(H,H) ≤
cn for some constant c > 0. This number grows much slower than R(Kn,Kn) ≥

√
2
n
.

Theorem 84 (Anti-Ramsey Theorem, Erdős-Simonvits-Sós). For all n, r ∈ N we have
AR(n,Kr) =

(
n
2

)(
1− 1/(r − 2)

)(
1− o(1)

)
.
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10 Flows

Definition. Let H be an Abelian semigroup, let G = (V,E) be a multigraph and
let Ẽ := {(x, y) : xy ∈ E}.
• For f : Ẽ → H and X,Y ⊆ V we define f(X,Y ) :=

∑
(x,y)∈(X×Y )∩Ẽ f(x, y).

• A function f : Ẽ → H is a circulation on G circulationif

(C1) f(x, y) = −f(y, x) for all xy ∈ E and

(C2) f(v, V ) = 0 for all v ∈ V .

x1

x2

x3

x4

−11

1 1

x1

x2

x3

x4

11

1 1

• If H is an Abelian group, then a circulation f is also called an H-flow on G H-flow.
If f(x, y) 6= 0 for all xy ∈ E, then f is a nowhere-zero flow nowhere-zero.

1 −7

13

A nowhere-zero Z2-flow.

• For k ∈ N a k-flow k-flowis a Z-flow f such that 0 < |f(x, y)| < k for all xy ∈ E.
The flow number ϕ(G) of G flow number,

ϕ(G)
is the smallest k such that G has a k-flow.

• Let s ∈ V and t ∈ V be two distinct vertices, c : Ẽ → Z≥0 be a function

on Ẽ with non-negative integer values. Then the tuple (G, s, t, c) is called
a network with source s, sink t and capacity function c. network, source,

sink, capacity,
network flow• A network flow is a function f : Ẽ → R with the following properties for

all x, y ∈ V :

(F1) f(x, y) = −f(y, x)

(F2) f(x, V ) = 0 if x 6∈ {s, t}
(F3) f(x, y) ≤ c(x, y)
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2

7

1

3

5

x1

x2

s t

f = 2f = 2

f = 3f = 3

f = 0

For any S ⊆ V with s ∈ S and t 6∈ S the pair (S, V \ S) is called a cut cut. Its
capacity is c(S, V \ S).

The value f(s, V ) is also called the value of f value, |f |and is denoted by |f |.

Lemma 85.

• For any circulation f and X ⊆ V we have f(X,X) = 0, f(X,V ) = 0 and
f(X,V \X) = 0

• For any network flow f and cut (S, S̄) we have f(S, S̄) = f(s, V ).

Theorem 86 (Ford-Fulkerson Theorem, 6.2.2). In any network the maximum
value of a flow is the same as the minimum capacity of a cut and there is an
integral flow f : Ẽ → Z≥0 with this maximum flow value.

Theorem 87 (Tutte, 6.3.1). For every multigraph G there is a polynomial P ∈
Z[X] such that for any finite Abelian groupH the number of nowhere-zeroH-flows
on G is P

(
|H| − 1

)
.

Corollary 88. If an H-flow on G exists for some finite Abelian group H, then there
is also an H̃-flow on G for all finite Abelian groups H̃ with |H̃| = |H|. For example,
if a Z4-flow exists, then a Z2 × Z2-flow also exists.

Theorem 89 (Tutte, 6.3.3). A multigraph admits a k-flow if and only if it admits a
Zk-flow.

Theorem 90 (Tutte, 6.5.3). For a planar graph G and its dual G∗ we have χ(G) =
ϕ(G∗).

Lemma 91. A graph has a 2-flow if and only if all of its degrees are even.

Lemma 92. A cubic (3-regular) graph has a 3-flow if and only if it is bipartite.

Conjecture (Tutte’s 5-Flow Conjecture). Every bridgeless multigraph has flow num-
ber at most 5.

Theorem 93 (Seymour, 6.6.1). Every bridgeless graph has flow number at most 6.
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11 Random graphs

In this section we deal with randomly chosen graphs. We will often use the “prob-
abilistic method”, a proof method for showing existence: By proving that an object
with some desired properties can be chosen randomly (in some probability space) with
non-zero probability, we also show that such an object exists.

Definition.

• G(n, p) is the probability space on all n-vertex graphs that results from
independently deciding whether to include each of the

(
n
2

)
possible edges

with fixed probability p ∈ [0, 1]. This model is called the Erdős-Rényi
model Erdős-Rényiof random graphs.

• A property propertyP is a set of graphs, e.g. P = {G : G is k-connected}.
Let (pn) ∈ [0, 1]N be a sequence. We say that G ∈ G(n, pn) almost always almost always

has property P if Prob
(
G ∈ G(n, pn

)
∩ P) → 1 for n → ∞. If (pn) is

constant p, we also say in this case that almost all graphs in G(n, p) have
property P.

• A function f(n) : N→ [0, 1] is a threshold function threshold functionfor property P if:

– For all (pn) ∈ [0, 1]N with pn/f(n)
n→∞−→ 0 the graph G ∈ G(n, pn)

almost always does not have property P.

– For all (pn) ∈ [0, 1]N with pn/f(n)
n→∞−→ ∞ the graph G ∈ G(n, pn)

almost always has property P.

Note that not all properties P have a threshold function.

Lemma 94.

• For a given graph G on n vertices and m edges we have

Prob
(
G = G(n, p)

)
= pm(1− p)(n

2)−m.

• For all integers n ≥ k ≥ 2 we have

Prob
(
G ∈ G(n, p), α(G) ≥ k

)
≤
(
n

k

)
(1− p)(k

2)

and

Prob
(
G ∈ G(n, p), ω(G) ≥ k

)
≤
(
n

k

)
p(

k
2).
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Theorem 95 (Erdős, 11.1.3). Erdős proved the lower bound R(k, k) ≥ 2k/2 on
Ramsey numbers by applying the probabilistic method to the Erdős-Rényi model.

Lemma 96 (11.1.5). We have

Exp
(
#k-cycles in G ∈ G(n, p)

)
=
nk
2k
· pk

where nk = n · (n− 1) · · · (n− k + 1).

Theorem 97 (Erdős, 11.2.2). For any k ∈ N there is a graph H with g(H) ≥ k
and χ(H) ≥ k.

Lemma 98 (11.3.1). For all p ∈ (0, 1) and any graph H almost all graphs in G(n, p)
contain H as an induced subgraph.

Lemma 99 (11.3.4). For all p ∈ (0, 1) and ε > 0 almost all graphs G in G(n, p) fulfil

χ(G) >
log
(
1/(1− p)

)

2 + ε
· n

log n
.

Remark. Asymptotic behaviour of G(n, p) for some properties:

• pn =
√

2/n2 ⇒ G almost always has a component with > 2 vertices

• pn = 1/n ⇒ G almost always has a cycle

• pn = log n/n ⇒ G is almost always connected

• pn = (1 + ε) log n/n ⇒ G almost always has a Hamiltonian cycle

• pn = n−2/(k−1) is the threshold function for containing Kk

Lemma 100 (Lovász Local Lemma). Let A1, . . . , An be events in some proba-
bilistic space. If Prob(Ai) ≤ p ∈ (0, 1), each Ai is mutually independent from all
but at most d ∈ N Ais and ep(d+ 1) ≤ 1, then

Prob

(
n∧

i=1

Ai

)
> 0.

Lemma 101. Van-der-Waerden’s number W (k) is the smallest n such that any 2-
coloring of [n] contains a monochromatic arithmetic progression of length k. We can
prove W (k) ≥ 2k−1/(ek2) with the Lovász Local Lemma.

1 2 3 4 5 6 7 8
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12 Hamiltonian cycles

Lemma 102 (Necessary condition for the existence of a Hamiltonian cycle). If
G has a Hamiltonian cycle, then for every non-empty S ⊆ V the graph G − S
cannot have more than |S| components.

Non-hamiltonian graph.

Theorem 103 (Dirac, 10.1.1). Every graph with n ≥ 3 vertices and minimum
degree at least n/2 has a Hamiltonian cycle.

K n
2

K n
2

δ = n/2 − 1

Theorem 104. Every graph on n ≥ 3 vertices with α(G) ≤ κ(G) is Hamiltonian.

Theorem 105 (Tutte, 10.1.4). Every 4-connected planar graph is Hamiltonian.

Definition. Let G = (V,E) be a graph. The square square, G2of G, denoted by G2, is the graph
G2 := (V,E′) with E′ := {uv : u, v ∈ V, dG(u, v) ≤ 2}.

Theorem 106 (Fleischner’s Theorem, 10.3.1). If G is 2-connected, then G2 is Hamil-
tonian.

Theorem 107 (Chvátal, 10.2.1). Let 0 ≤ a1 ≤ · · · ≤ an < n be an integer
sequence with n ≥ 3. A graph with the degree sequence a1, . . . , an is Hamiltonian
if and only if ai ≤ i implies an−i ≥ n− i for all i < n/2.
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Index

=, see isomorphic
A-B-path, 9
AR(n,H), see anti-Ramsey
Cn, see cycle
En, see empty graph
F (G), see faces
G = MX, see MX
G ∩G′, 10
G ∪G′, 10
G, see graph
G+ F , 10
G− F , 10
G− U , 10
G = TX, see TX
G[X], see induced subgraph
G[f ], see boundary of f
G ◦ e, 10
G2, see square
H-factor, 14
H-flow, 34
H-path, 18
K(n, k), see Kneser graph
Ks
r , 27

Kn, see complete graph
Km,n, see complete bipartite graph
L-list-colorable, 24
MX, 22
N(v), see neighbourhood
Pn, see path
Qn, see hypercube
R(G,H), see graph Ramsey
R(k), see Ramsey
R(k, l), see asymmetric Ramsey
Rr(l1, . . . , lk), see hypergraph Ramsey
Rind(G,H), see induced Ramsey
T (G, f), 14
T (n, r), see Turán graph
TX, 23
X 4 G, see minor
∆(G), see maximum degree
EX(n,H), 27
‖G‖, see size

|G|, see order
|f |, see value
α(G), see co-clique number
ch′(G), see edge choosability
ch(G), see choosability
χ′(G), see chromatic index
χ(G), see chromatic number
deg(v), see degree
δ(G), see minimum degree
diam(G), see diameter
`-edge-connected, 16
ε-regular pair, 28
ε-regular partition, 28
ex(n,H), 27
κ′(G), see edge-connectivity
κ(G), see connectivity
λ(G), see edge-connectivity
ν(G), see matching
ω(G), see clique number
G, see complement
dim(X,≤), see poset dimension
rad(G), see radius
', see isomorphic
⊆, see subgraph
⊇, see supergraph
τ(G), see vertex cover
ϕ(G), see flow number
d-degenerate, 11
d(G), see average degree
d(X,Y ), see density
d(u, v), see distance
d(v), see degree
f -factor, 14
g(G), see girth
k-connected, 16
k-constructible, 25
k-factor, 13
k-flow, 34
k-linked, 16
k-list-colorable, see k-list-colorable
r-regular matrix, 32
t(n, r), 27
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z(m,n; s, t), see Zarankiewicz

acyclic, 9
adjacency matrix, 7
adjacent, 4
almost always, 36
anti-Ramsey, 31
arc, 4, 20
asymmetric Ramsey, 31
average degree, 8

bipartite, 9
block, 19
block leaf, 19
block-cut-vertex graph, 19
boundary of f , 21
bridge, see cut edge

capacity, 34
choosability, 24
chromatic index, 12
chromatic number, 12
circulation, 34
circumference, 11
clique, 9
clique number, 25
closed walk, 9
co-clique number, 25
column condition, 32
complement, 11
complete r-partite, 6
complete bipartite graph, 5
complete graph, 5
component, 9
connected, 9
connected component, see component
connectivity, 16
contract, 10
copy, 9
cubic, 8
cut, 35
cut edge, 16
cut set, 16
cut vertex, 16
cycle, 5

degeneracy, 11
degree, 7
degree sequence, 8
density, 28
diameter, 11
directed graph, 4
distance, 11

ear, 18
ear-decomposition, 18
edge, 4
edge choosability, 24
edge-connectivity, 16
empty graph, 5
endpoint of arc, 20
Erdős-Rényi, 36
Eulerian tour, 10

faces, 21
factor, see k-factor
flow number, 34
forest, 9
frontier, 20

girth, 11
graph, 4
graph Ramsey, 31

Hamiltonian, 11
homeomorphic, 20
homeomorphism, 20
hypercube, 6
hypergraph, 4
hypergraph Ramsey, 31

incidence poset, 23
incident, 4
independent paths, 9
independent set, 9
induced copy, see copy
induced Ramsey, 31
induced subgraph, 8
inner face, 21
interior of arc, 20
isolated vertex, 8
isomorphic, 4
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Kneser graph, 6

leaf, 8
lexical, 31
line graph L(G), 17

matching, 13
maximal, 9
maximally plane, 21
maximum degree, 8
minimal, 9
minimum degree, 8
minor, 22
monochromatic, 31
multigraph, 4

neighbour, 7
neighbourhood, 7
network, 34
network flow, 34
non-trivial, 7
nowhere-zero, 34

order, 7
outer face, 21
outerplanar graph, 21

partial order, 23
partite sets, 9
path, 5
perfect graph, 25
perfect matching, 13
Petersen graph, 6
planar embedding, 21
planar graph, 21
plane graph, 20
polygon, 20
poset, 23
poset dimension, 23
proper edge colouring, 12
proper vertex colouring, 12
property, 36

radius, 11
rainbow, 31
Ramsey, 31

region, 20
regular, 8

separate, 17, 20
sink, 34
size, 7
source, 34
spanning subgraph, 9
square, 38
straight line segment, 20
subdivision, 23
subgraph, 8
supergraph, 8

threshold function, 36
topological minor, 23
total order, 23
traceable, 11
tree, 9
triangle, 5
triangulation, 21
Turán graph, 27

unlabeled graph, 5

value, 35
vertex, 4
vertex cover, 13

walk, 9

Zarankiewicz, 29
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