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Abstract

An ordered graph G is a graph whose vertex set is a subset of
integers. The edges are interpreted as tuples (u, v) with u < v. For a
positive integer s, a matrix M ∈ Zs×4, and a vector p = (p, . . . , p) ∈
Zs we build a conflict graph by saying that edges (u, v) and (x, y)
are conflicting if M(u, v, x, y)> > p or M(x, y, u, v)> > p, where the
comparison is componentwise. This new framework generalizes many
natural concepts of ordered and unordered graphs, such as the page-
number, queue-number, band-width, interval chromatic number and
forbidden ordered matchings.

For fixed M and p, we investigate how the chromatic number of G
depends on the structure of its conflict graph. Specifically, we study the
maximum chromatic number Xcli(M,p,w) of ordered graphs G with
no w pairwise conflicting edges and the maximum chromatic number
Xind(M,p, a) of ordered graphs G with no a pairwise non-conflicting
edges. We determine Xcli(M,p,w) and Xind(M,p, a) exactly whenever
M consists of one row with entries in {−1, 0,+1} and moreover consider
several cases in which M consists of two rows or has arbitrary entries
from Z.

1 Introduction

At most how many colors are needed to properly color the vertices of a
graph if it does not contain a fixed forbidden pattern? This is certainly
one of the most important questions in graph theory and combinatorics,
where chromatic number is investigated for graphs with forbidden minors
(e.g. Four-Color-Theorem [1, 2]), forbidden subgraphs (e.g. with high girth
and high chromatic number [10] or with given clique number and maximum
degree [23]), or forbidden induced subgraphs (e.g. perfect graphs [5]), just
to name a few.

In the present paper, we investigate this question for ordered graphs,
that are graphs with vertices being integers, for which some information
on conflicting edges is given. The concept of conflicting edges is defined by
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elementary linear inequalities in terms of the edge-endpoints. This algebraic
framework captures several natural cases, such as crossing edges, nesting
edges or well-separated edges, as well as some non-trivial parameters of
unordered and ordered graphs, such as the queue-number, page-number,
degeneracy, band-width and interval chromatic number.

Ordered graphs have been mainly investigated with respect to their or-
dered extremal functions [14, 15, 20, 21], particularly in the case of interval
chromatic number two [11, 18, 22, 24], and their ordered Ramsey proper-
ties [4, 8]. The chromatic number of ordered graphs without a forbidden
pattern has received very little attention so far; the only references being [9]
and most recently [3]. But let us mention that, if the pattern is given by
a forbidden ordered subgraph H and the ordered extremal function of H
is linear, then there is a constant c(H) such that the chromatic number of
any graph without this pattern is at most c(H). In [3] it is shown that
even for some ordered paths H there are ordered graphs of arbitrarily large
chromatic number without H as an ordered subgraph.

Ordered Graphs and Conflicting Edges. All considered graphs are
finite, simple and have at least one edge. An ordered graph is a graph
G = (V,E) with V ⊂ Z, i.e., a graph whose vertices are distinct integers.
Note that here two isomorphic ordered graphs need to have exactly the
same subset of Z as their vertex set. So this definition differs from the usual
definition of ordered graphs, where only the ordering of the vertices matters
but not an embedding into Z. We consider the integers, and therefore the
vertices of G, laid out along a horizontal line ordered by increasing value
from left to right. Hence if u, v ∈ V ⊂ Z, u < v, we say that u is left
of v and v is right of u. For a fixed ordered graph G = (V,E), an edge
e ∈ E is then associated with the (ordered) tuple (u, v) where e = uv
and u < v. For a positive integer s and two vectors x, y ∈ Zs, x + y
denotes the componentwise addition, and x 6 y and x > y denote the
standard componentwise comparability of x and y. We shall abbreviate the
vector (p, . . . , p)> ∈ Zs by p. For a given injective map φ : Z → Z and an
ordered graph G we say that an ordered graph G′ is obtained from G by φ if
V (G′) = {φ(x) | x ∈ V (G)} and (φ(x), φ(y)) is an edge in G′ if and only if
(x, y) is an edge in G for any x, y ∈ Z. For example, from an ordered graph
we obtain another ordered graph by translating or scaling the vertex set.

For a matrix M ∈ Zs×4 and a parameter p ∈ Z we define the conflict
graph of G with respect to M and p, denoted by Mp(G), as follows:

V (Mp(G)) := E(G),

E(Mp(G)) := {e1e2 | e1 = (u1, v1); e2 = (u2, v2); e1, e2 ∈ E;

M(u1, v1, u2, v2)
> > p or M(u2, v2, u1, v1)

> > p}.

We say that e1, e2 ∈ E(G) are conflicting if e1e2 ∈ E(Mp(G)). Let M ′
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denote the matrix that is obtained from M by swapping the first column
with the third and the second with the fourth. Note that this operation
preserves all conflicts and non-conflicts, and hence Mp(G) = M ′p(G).

In many cases considered here the matrix M has entries in {−1, 0, 1}.
For better readability we shall use the symbols {−, 0,+} instead of {−1, 0, 1}
as the entries of M .

One advantage of this proposed abstract framework is that many natural
parameters of an (unordered) graph F can conveniently be phrased in terms
of Mp(G), where G is an ordered graph whose underlying unordered graph
is F . For example, two edges e1 = (u1, v1), e2 = (u2, v2) in an ordered graph
G are called crossing if u1 < u2 < v1 < v2. Similarly, an edge (u1, v1) is
nested under an edge (u2, v2) if u2 < u1 < v1 < v2. Then e1, e2 are crossing,
respectively nesting, if and only if e1, e2 are conflicting with respect to p = 1
and

M cross =
(− 0 + 0

0 +− 0
0 − 0 +

)
, respectively Mnest =

(
+ 0 − 0
0 − 0 +

)
,

see Figure 1 (top left and center). So, there is no pair of crossing edges in an
ordered graph G if and only if ω(M cross

1 (G)) = 1 and there is no set of w+ 1
pairwise crossing edges if and only if ω(M cross

1 (G)) 6 w, where ω(H) denotes
the clique number of graph H. The former case characterizes outerplanar
graphs and the latter case was considered by Capoyleas and Pach [7], who
showed that every n-vertex ordered graph G with ω(M cross

1 (G)) 6 w has at
most 2wn −

(
2w+1

2

)
edges. In Section 2 we give further examples of graph

parameters that can be phrased in terms of Mp(G) for appropriate M and
p.

u1 v1

M =
(− 0 + 0

0 + − 0
0 − 0 +

)
, p = 1

u2 v2 u2 v1

M =
(
+ 0 − 0
0 − 0 +

)
, p = 1

u1 v2

M = (+0−0), p > 1

u2 u1

M = (−+00), p > 1

u1 v1

M = (+−00), p 6 −1

u1 v1

M = (+00−), p > 1

v2u2 v1

> p

> p 6 −p> p

u1

Figure 1: Examples of conflicting edges (u1, v1), (u2, v2) with respect to
different matrices M and parameter p. The top-left shows crossing edges
and the top-center shows nesting edges. In the bottom-center and bottom-
right the second edge (u2, v2) is irrelevant.

In this paper, we are interested in the relation between the chromatic
number χ(G) of G and basic graph parameters of Mp(G), such as its inde-
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pendence number α(Mp(G)) and its clique number ω(Mp(G)). Specifically,
we investigate whether a high chromatic number implies the existence of a
large set of pairwise conflicting or pairwise non-conflicting edges.

Definition 1. Let p, s, a, w ∈ Z, with s, a, w > 1, and M ∈ Zs×4. Then

Xind(M,p, a) = sup{χ(G) | G ordered graph with α(Mp(G)) 6 a}
and Xcli(M,p,w) = sup{χ(G) | G ordered graph with ω(Mp(G)) 6 w}.

For example, from the discussion above we have Xcli(M
cross, 1, 1) = 3, as

outerplanar graphs are 3-colorable, and Xcli(M
cross, 1, w) 6 4w for w > 2, as

ordered graphs with no w+1 pairwise crossing edges are (4w−1)-degenerate.
For x ∈ Z, x > 1, let1 f(x) be the largest integer k with

(
k
2

)
6 x. For

any k > 2 the complete graph Kk is a k-chromatic graph with only
(
k
2

)

edges. Therefore for any M ∈ Zs×4, p ∈ Z, and k > 2, we have α(Mp(Kk)),

ω(Mp(Kk)) 6 |V (Mp(Kk))| = |E(Kk)| =
(
k
2

)
and thus

Xind(M,p, a) > f(a) and Xcli(M,p,w) > f(w). (1)

We shall prove that the lower bounds in (1) are attained for some matrices
M and parameters p. On the other hand, there is no general upper bound,
as we shall show that Xind(M,p, a) = ∞ or Xcli(M,p,w) = ∞ for some
other matrices M and parameters p.

As it turns out, instead of studying the functions Xind(M,p, a) and
Xcli(M,p,w) directly, it is often more convenient to consider their integral
inverses, i.e., we consider the functions A(M,p, k) and W (M,p, k) defined
as follows.

Definition 2. Let p, s, k ∈ Z, with s > 1, k > 2, and M ∈ Zs×4. Then

A(M,p, k) := min{α(Mp(G)) | G ordered graph with χ(G) > k}
and W (M,p, k) := min{ω(Mp(G)) | G ordered graph with χ(G) > k}.

Note that replacing the minima by maxima in Definition 2 is not inter-
esting since it is almost always easy to construct bipartite ordered graphs
with many pairwise conflicting and pairwise non-conflicting edges. By con-
sidering Mp(Kk), similar to above, one obtains the following bounds for any
M ∈ Zs×4, any p ∈ Z, and any k > 2

1 6 A(M,p, k), W (M,p, k) 6
(
k

2

)
. (2)

Since the conflict graph of an ordered graph without any edges has no ver-
tices, we exclude the case k = 1 throughout. While the functions from

1For x > 1 we have
(√

2x
2

)
< x <

(√
2x+1
2

)
. Thus f(x) =

⌊√
2x
⌋
if x <

(b√2xc+1

2

)
and

f(x) =
⌊√

2x
⌋
+ 1 otherwise.
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Definition 1 yield the smallest k such that all ordered graphs without a cer-
tain pattern P can be colored with less than k colors, the functions from
Definition 2 address the contraposition, namely whether every graph with
chromatic number at least k necessarily contains the pattern P . For ex-
ample, instead of proving Xcli(M

cross, 1, 1) 6 3, i.e., that every outerplanar
graph is 3-colorable, one can equivalently prove that W (M cross, 1, 4) > 2,
i.e., that every non-3-colorable ordered graph has a pair of crossing edges.

More generally, Xind(M,p, a) and A(M,p, k) are related by

Xind(M,p, a) = sup{k | A(M,p, k) 6 a} for fixed M,p, a, (3)

while Xcli(M,p,w) and W (M,p, k) are related by

Xcli(M,p,w) = sup{k |W (M,p, k) 6 w} for fixed M,p,w. (4)

The advantage of the functions A and W is that they can be nicely ex-
pressed as polynomial type functions of k and rational type functions of p
(see Table 1).

Our Results. For many matrices M and parameters p it turns out that
A(M,p, k) or W (M,p, k) or both attain the lower or upper bound in (2) for
all k > 2. Focusing on 1 × 4–matrices, the calculation of A(M,p, k) and
W (M,p, k) becomes non-trivial only for quite specific matrices (see first
statement in Theorem 4). We say that a matrix M ∈ Zs×4 is translation
invariant if for any vector x ∈ Z4, any p ∈ Z and any t ∈ Z we have

Mx 6 p ⇔ M(x+ t) 6 p.

Intuitively speaking, M is translation invariant, if whether or not two edges
are conflicting does not depend on the absolute coordinates of their end-
points, rather than their relative position to one another. For example,
when M is translation invariant, then for any ordered graph G and any
t ∈ Z we have Mp(G) = Mp(Gt) where Gt arises from G by shifting all
vertices t positions to the right if t > 0, respectively |t| positions to the left
if t < 0.

As M(x + t) = Mx + Mt we immediately get the following algebraic
characterization of translation invariance.

Observation 3. A matrix M ∈ Zs×4 is translation invariant if and only if
M1 = 0.

In other words, a matrix M is translation invariant if and only if in each
row of M the entries sum to 0. We give several conditions for matrices M
and parameters p under which A(M,p, k) or W (M,p, k) or both attain the
lower or upper bound in (2).
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Theorem 4. Let s, k, p ∈ Z, with s > 1, k > 2, and M ∈ Zs×4. If M
is not translation invariant, then W (M,p, k) = 1. Moreover, if M1 > 0 or
M1 < 0, then A(M,p, k) = 1.
If M = (m1 m2 m3 m4) ∈ Z1×4 is translation invariant, then each of the
following holds.

(i) If m2 +m4 > max{p, 0}, then A(M,p, k) = 1 and W (M,p, k) =
(
k
2

)
.

(ii) If m1 + m2 = m3 + m4 = 0, m2,m4 6 0 and p > m2 + m4, then
A(M,p, k) =

(
k
2

)
and W (M,p, k) = 1.

(iii) If m2+m4 > 0 or (m2+m4 = 0 and m1,m2 6= 0), then A(M,p, k) = 1.

(iv) If m2,m4 < 0, then W (M,p, k) = 1.

In all cases above we have A(M,p, k) = α(Mp(Kk)) for some ordered graph
Kk and W (M,p, k) = ω(Mp(Kk)) for some ordered graph Kk.

In case M and p do not satisfy any of the requirements of Theorem 4,
the exact behavior of A(M,p, k) and W (M,p, k) can be non-trivial. We
determine A(M,p, k) and W (M,p, k) exactly for all M ∈ {−1, 0, 1}1×4 and
p, k ∈ Z, k > 2.

Theorem 5. For all p, k ∈ Z, k > |p|+2 and matrices M ∈ {−1, 0, 1}1×4 we
have A(M,p, k) = α(Mp(Kk)) for some ordered graph Kk and W (M,p, k) =
ω(Mp(Kk)) for some ordered graph Kk.

The exact values of A(M,p, k) and W (M,p, k) are given in Table 1.

Whenever k < |p| + 2 the exact values follow from Theorem 4 or are
given in Propositions 5.1 – 5.12. Finally, we consider the 2 × 4–matrix
Mnest =

(
+ 0 − 0
0 − 0 +

)
that is related to nesting edges, see Figure 1 top middle.

Dujmović and Wood [9] give upper and lower bounds on Xcli(M
nest, 1, w)

and ask for the exact value.

Theorem 6. Let M =
(
+ 0 − 0
0 − 0 +

)
.

If p > 1, then A(M,p, k) = 2k − 3 and k
4p 6 W (M,p, k) 6

⌈
k−1
2p

⌉
for all

k > 2.

If p 6 0, then A(M,p, k) =
⌈
k−1
1−p

⌉
and W (M,p, k) = k − 1 for all k > 2.

The values and bounds for Xind(M,p, a) and Xcli(M,p,w) correspond-
ing to the results above are calculated using the identities (3) and (4) and
given in Table 2. By definition of f(x), the upper or lower bounds in (2)
translate as follows.

If A(M,p, k) = 1 for all k > 2, then Xind(M,p, a) =∞ for all a > 1.
If A(M,p, k) =

(
k
2

)
for all k > 2, then Xind(M,p, a) = f(a) for all a > 1.

If W (M,p, k) = 1 for all k > 2, then Xcli(M,p,w) =∞ for all w > 1.
If W (M,p, k) =

(
k
2

)
for all k > 2, then Xcli(M,p,w) = f(w) for all w > 1.
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M p A(M,p, k) W (M,p, k)

M1 6= 0 p ∈ Z 1 1

(0000)
p 6 0 1

(
k
2

)

p > 0
(
k
2

)
1

(+0−0)?
p 6 0 1

(
k
2

)
(−0+0)
(0+0−)

p > 0 k − 1
⌈
k−1
p

⌉
(0−0+)

(−+00)? p 6 1 1
(
k
2

)

(00−+) p > 1 1 1 +
(
k−p+1

2

)

(+−00)? p 6 0
(
k+p
2

)
1

(00+−) p > 0
(
k
2

)
1

(−+−+)?
p 6 2 1

(
k
2

)

p > 2 1 p mod 2 +
(k−d p

2 e+1

2

)

(+−+−)
p 6 −1 (1− p) mod 2 +

(k−d 1−p
2 e+1

2

)
1

p > −1
(
k
2

)
1

(+−−+)? p 6 0 1
(
k
2

)

(−++−) p > 0 1
⌈
k−1
p

⌉

(++−−)? p 6 0 1
(
k
2

)

(−−++) p > 0 1
⌈
2k−3

p

⌉

(+00−)? p 6 0
⌊
(k+p)2

4

⌋
k − 1

(0−+0) p > 0
⌊
(k+1)2

4

⌋
− 1

⌈
k−1
p+1

⌉

(−00+)? p 6 1 1
(
k
2

)

(0+−0) p > 2 1
(
k−p+2

2

)

(
+ 0 − 0
0 + 0 −

)? p 6 0 k
4(1−p) 6 · 6

⌈
k−1

2(1−p)

⌉
2k − 3

p > 0 k − 1
⌈
k−1
p

⌉

(
+ 0 − 0
0 − 0 +

) p 6 0
⌈
k−1
1−p

⌉
k − 1

p > 0 2k − 3 k
4p 6 · 6

⌈
k−1
2p

⌉

Table 1: Values of A(M,p, k) and W (M,p, k) for p, k ∈ Z, k > |p|+2 and matrices
M . The first row covers all non-translation invariant M ∈ Z1×4, rows 2nd to 11th
cover all translation-invariant M ∈ {−1, 0, 1}1×4, and the last two rows cover two
M ∈ {−1, 0, 1}2×4. Gray entries follow from Theorem 4, results in last two rows
follow from Theorem 6 and Proposition 6.1 in Section 6; remaining entries are
proven in Propositions 5.1 – 5.12 in Section 5 using the matrices marked with ?.
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M p Xind(M,p, a) Xcli(M,p,w)

M1 6= 0 p ∈ Z ∞ ∞

(0000)
p 6 0 ∞ f(w)

p > 0 f(a) ∞

(+0−0)
p 6 0 ∞ f(w)

(−0+0)
(0+0−)

p > 0 a+ 1 pw + 1.
(0−0+)

(−+00) p 6 1 ∞ f(w)

(00−+) p > 1 ∞ f(w − 1) + p− 1

(+−00) p 6 0 f(a)− p ∞
(00+−) p > 0 f(a) ∞

(−+−+)
p 6 2 ∞ f(w)

p > 2 ∞ f(w − p mod 2) +
⌈
p−2
2

⌉
(+−+−)

p 6 −1 f(a− (1− p) mod 2) +
⌈
−(p+1)

2

⌉
∞

p > −1 f(a) ∞

(+−−+) p 6 0 ∞ f(w)

(−++−) p > 0 ∞ pw + 1

(++−−) p 6 0 ∞ f(w)

(−−++) p > 0 ∞
⌊
pw+3

2

⌋

(+00−) p 6 0
⌊√

4a+ 3
⌋
− p w + 1

(0−+0) p > 0
⌊√

4a+ 7
⌋
− 1 (p+ 1)w + 1

(−00+) p 6 1 ∞ f(w)

(0+−0) p > 2 ∞ f(w) + p− 2

(
+ 0 − 0
0 + 0 −

) p 6 0 2(1− p)a+ 1 6 · 6 4(1− p)a
⌊
w+3
2

⌋

p > 0 a+ 1 pw + 1

(
+ 0 − 0
0 − 0 +

) p 6 0 (1− p)a+ 1 w + 1

p > 0
⌊
a+3
2

⌋
2pw + 1 6 · 6 4pw

Table 2: Values of Xind(M,p, a) and Xcli(M,p,w) for p, a, w ∈ Z, a, w > 1, and
matrices M . The first row covers all non-translation invariant M ∈ Z1×4, rows 2nd
to 11th cover all translation-invariant M ∈ {−1, 0, 1}1×4, and the last two rows
cover two M ∈ {−1, 0, 1}2×4. Recall that f(x) is the largest integer k such that(
k
2

)
6 x. The results follow from the results in Table 1 using the identities (3)

and (4).
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Organization of the Paper. In Section 2 we show how several graph
parameters can be phrased in terms of Mp(G) for appropriate M and p. In
Section 3 we prove Theorem 4. In Section 5 we prove Theorem 5. Here we
determine A(M,p, k) and W (M,p, k) exactly for all p, k ∈ Z, k > 2, and
all translation invariant matrices M ∈ {−1, 0, 1}1×4 in Propositions 5.1 –
5.12. Prior to that, we provide some lemmas in Section 4 which enable us to
restrict our attention to only eight such translation invariant 1×4–matrices.
In Section 6 we prove Theorem 6. Finally we give conclusions and further
questions in Section 7.

Notation. For a positive integer n we write [n] = {1, . . . , n}.

2 Relation to other graph parameters

Further examples of graph parameters that can be phrased in terms of
Mp(G) include the page-number p(F ) [19], queue-number q(F ) [13], degen-
eracy d(F ) [17], and band-width b(F ) [12,16] of a graph F . The page-number
(respectively queue-number) of F is the minimum k for which there exists a
vertex-ordering and a partition of the edges into k sets S1, . . . , Sk such that
no two edges in the same Si, i = 1, . . . , k, are crossing (respectively nesting).
Denoting by G? the underlying unordered graph of a given ordered graph
G, we have2

p(F ) = min{χ(Mp(G)) | G? = F}, for M =
(− 0 + 0

0 +− 0
0 − 0 +

)
, p = 1,

q(F ) = min{χ(Mp(G)) | G? = F}, for M =
(
+ 0 − 0
0 − 0 +

)
, p = 1.

The degeneracy (respectively band-width) of F is the smallest k for which
there exists a vertex-ordering such that every vertex has at most k neighbors
with a smaller index (respectively every edge has length at most k). Here
the length of an edge (u, v) in an ordered graph is given by v − u. In our
framework we can write degeneracy d and band-width b as

d(F ) = min{ω(Mp(G)) | G? = F}, for M =
(
0+0−
0−0+

)
, p = 0,

b(F ) = min{p > 1 | ω(Mp+1(G)) = 1, G? = F}, for M = (−+00).

Moreover, if G is an ordered graph, then its interval chromatic number
χ≺(G) is the minimum number of intervals Z can be partitioned into, so that
no two vertices in the same interval are adjacent in G [20]. As we shall prove
later (c.f. Lemma 5.10), this can be rephrased as χ≺(G) = ω(Mp(G)) + 1,
for M = (+00−) and p = 0.

2For M =
(
+ 0 − 0
0 − 0 +

)
and p > 1 we have for any G that Mp(G) is a comparability graph

with respect to the relation “nested under”, and thus ω(Mp(G)) = χ(Mp(G)).
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Let us also mention that Dujmović and Wood [9] define for k ∈ Z, k > 2,
a k-edge necklace in an ordered graph G as a set of k edges of G which are
pairwise in conflict with respect to M = (+00−) and p = 1, see Figure 1
top right. They further define the arch-number of a graph F as

an(F ) = min{ω(Mp(G)) | G? = F}, for M = (+00−), p = 1,

and prove that the largest chromatic number among all graphs F with
an(F ) 6 w equals 2w + 1. We generalize this result to any p ∈ Z (c.f.
Proposition 5.11).

3 Proof of Theorem 4

Let s, k, p ∈ Z, with s > 1, k > 2, and M ∈ Zs×4.

First of all assume that M is not translation invariant. Let G be any
ordered graph with χ(G) > k. For an integer t, let Gt denote the ordered
graph obtained from G by adding t to every vertex (so Gt contains an edge
(x+t, y+t) if and only if (x, y) is an edge in G). Clearly, we have M(x+t) =
Mx + Mt = Mx + t(M1) for any vector x ∈ Z4. Hence, since M1 6= 0,
there is a large or small enough t = t(G,M, p) such that for the first row
M (1) of M and any u1, v1, u2, v2 ∈ V (G) we have M (1)(u1, v1, u2, v2)

> < p,
i.e., the conflict graph Mp(Gt) is empty and its clique number is 1. This
implies that W (M,p, k) = 1.

If additionally M1 > 0 (respectively M1 < 0), then there is a large
(respectively small) enough t = t(G,M, p) such that Mp(Gt) is complete,
implying that A(M,p, k) = 1.

Now assume that M = (m1 m2 m3 m4) ∈ Z1×4 is translation invariant.
Consider an ordered graph G with χ(G) > k.

(i) We assume that m2 + m4 > max{p, 0}. Consider edges (u1, v1) and
(u2, v2) in G. Then v1 + v2 > u1 + u2 + 2 and thus

M(u1, v1, u2, v2)
> +M(u2, v2, u1, v1)

>

= (m1 +m3)(u1 + u2) + (m2 +m4)(v1 + v2)

> (m1 +m3)(u1 + u2) + (m2 +m4)(u1 + u2 + 2)

= (m1 +m2 +m3 +m4)(u1 + u2) + 2(m2 +m4)

= 2(m2 +m4)

> 2p.

Hence we haveM(u1, v1, u2, v2)
> > p orM(u2, v2, u1, v1)

> > p. There-
fore (u1, v1) and (u2, v2) are conflicting and Mp(G) is a complete graph
on |E(G)| vertices. This clearly implies that A(M,p, k) = 1.
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Secondly, since χ(G) > k, we have W (M,p, k) > |E(G)| >
(
k
2

)
, since

there is an edge between any two color classes in an optimal proper
coloring of G. Moreover W (M,p, k) 6 ω(Mp(Kk)) =

(
k
2

)
, see (2). This

shows that W (M,p, k) =
(
k
2

)
.

(ii) We assume that m1+m2 = m3+m4 = 0, m2,m4 6 0 and p > m2+m4.
For any edge (u, v) in G we have u+ 1 6 v and thus m2(u+ 1) > m2v
and m4(u + 1) > m4v. Hence for any two edges (u1, v1) and (u2, v2)
in G we have

M(u1, v1, u2, v2)
> =m1u1 +m2v1 +m3u2 +m4v2

6u1(m1 +m2) +m2 + u2(m3 +m4) +m4

=m2 +m4 < p.

Hence (u1, v1) and (u2, v2) are not conflicting and Mp(G) is an empty

graph on |E(G)| >
(
k
2

)
edges. Since equality is attained for G = Kk,

analogously to the first item A(M,p, k) =
(
k
2

)
and W (M,p, k) = 1.

(iii) We assume that m2 + m4 > 0 or (m2 + m4 = 0 and m1,m2 6= 0).
Fix some integer q > max{2, p} and let V = {qi | i ∈ Z, i > 1}. If
m2 +m4 = 0 and m1,m2 6= 0, then additionally ensure that q is not a
factor of m1. We claim that if V (G) ⊂ V , then Mp(G) is a complete
graph. Indeed, consider two edges (qi, qs), (qj , qt), i < s, j < t and
i 6 j. If m2 +m4 > 0, then

M(qi, qs, qj , qt)> +M(qj , qt, qi, qs)>

=m1q
i +m2q

s +m3q
j +m4q

t +m1q
j +m2q

t +m3q
i +m4q

s

= (m1 +m3)(q
i + qj) + (m2 +m4)(q

s + qt)

> (m1 +m3)(q
i + qj) + (m2 +m4)(q

i+1 + qj+1)

> (m1 +m3)(q
i + qj) + (m2 +m4)(q

i + qj + 2q)

> (m1 +m2 +m3 +m4)︸ ︷︷ ︸
=0

(qi + qj) + (m2 +m4)2q

> 2q > 2p.

Thus M(qi, qs, qj , qt)> > p or M(qj , qt, qi, qs)> > p.

If m2 + m4 = 0 and m1,m2 6= 0, then m1 = −m3 and m2 = −m4, as
M is translation invariant. Recall that q divides neither m1 nor m2.
Further recall that i 6 j, s, t and i < s, t. We have

|M(qi, qs, qj , qt)>| = |m1q
i +m2q

s +m3q
j +m4q

t|
= |m1(q

i − qj) +m2(q
s − qt)|

= qi |m1(1− qj−i) +m2(q
s−i − qt−i)|

> qi > p.
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Note that m1(1− qj−i) +m2(q
s−i − qt−i) 6= 0, since i− j = 0 implies

s 6= t (as edges qiqs and qjqt are distinct) and since q is a factor of
m2(q

s−i − qt−i) but not of m1(1 − qj−i). Hence M(qi, qs, qj , qt)> > p
or M(qj , qt, qi, qs)> = m1q

j +m2q
t +m3q

i +m4q
s = −m3q

j −m4q
t −

m1q
i −m2q

s = −M(qi, qs, qj , qt)> > p.

This shows that any two edges with endpoints in V are in conflict.
Therefore Mp(G) is a complete graph if V (G) ⊂ V . This shows that
A(M,p, k) = 1.

(iv) We assume that m2,m4 < 0. Fix some integer q > max{2,−p, (1 −
m1)/m2, (1−m3)/m4} and let V = {qi | i ∈ Z, i > 1}. We claim that
if V (G) ⊂ V , then Mp(G) is an empty graph. Indeed, for any two
edges (qi, qj) and (qs, qt), i < j, s < t, we have

M(qi, qj , qs, qt)> =m1q
i +m2q

j +m3q
s +m4q

t

= qi(m1 +m2q
j−i) + qs(m3 +m4q

t−s)

6 qi(m1 +m2q︸ ︷︷ ︸
6−1

) + qs(m3 +m4q︸ ︷︷ ︸
6−1

)

6 − qi − qs 6 −q − 1 6 p− 1.

This shows that no edges with vertices in V are in conflict. Therefore
Mp(G) is an empty graph if V (G) ⊂ V . Similarly to above we have
W (M,p, k) = 1

4 Reductions and Preliminary Lemmas

This section contains some preliminary lemmas preparing the proof of The-
orem 5 in Section 5. Let M ∈ Zs×4 and p, k ∈ Z with k > 2. We start
with some basic operations on M and p and their effect on A(M,p, k) and
W (M,p, k). The first such operation follows immediately from the definition
of conflicting edges.

Observation 7. Swapping the first column in M with the third and the
second with the fourth preserves all conflicts and non-conflicts. Hence if
M ′ denotes the resulting matrix, we have A(M ′, p, k) = A(M,p, k) and
W (M ′, p, k) = W (M,p, k).

The next lemma provides another such operation, as well as an operation
on 1 × 4–matrices that exchanges the roles of conflicts for non-conflicts.
(Later in Section 6 we prove a similar result for one specific 2× 4–matrix.)
Let us remark that for some M and p, for example for M =

(−+ 0 0
− 0 +0

)
and

p > 3, there is no matrix M̃ and integer p̃ such that for every ordered graph
G we have that Mp(G) is the complement of M̃p̃(G).
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For a matrix M let −M be the matrix obtained by multiplying every
entry by −1, and M be the matrix obtained from M by reversing the order
of its columns.

Lemma 4.1. For every matrix M ∈ Zs×4 and all integers p, k ∈ Z, k > 2
each of the following holds.

(i) A(M,p, k) = A(−M,p, k) and W (M,p, k) = W (−M,p, k).

(ii) If M = (m1 m2 m3 m4), then

A(M,p, k) = W (
(−m1−m2−m3−m4
−m3−m4−m1−m2

)
, 1− p, k)

and
W (M,p, k) = A(

(−m1−m2−m3−m4
−m3−m4−m1−m2

)
, 1− p, k).

Proof. (i) Consider for any ordered graph G the ordered graph −G ob-
tained by multiplying every vertex position by −1 (so (−x,−y) is an
edge in −G if and only if (y, x) is an edge in G). For an edge e in G
let e− be the corresponding edge in −G. Intuitively speaking, −G is
obtained from G by exchanging the meanings of left and right. Now
for any two edges e1, e2 in G, say e1 = (u1, v1) and e2 = (u2, v2), we
have

e1e2 ∈ E(Mp(G))

⇔ M(u1, v1, u2, v2)
> > p ∨M(u2, v2, u1, v1)

> > p

⇔ (−M)(−u1,−v1,−u2,−v2)> > p

∨ (−M)(−u2,−v2,−u1,−v1)> > p

⇔ (−M)(−v2,−u2,−v1,−u1)> > p

∨ (−M)(−v1,−u1,−v2,−u2)> > p

⇔ e−1 e
−
2 ∈ E(−Mp(−G)).

Thus mapping an edge e from G to e− yields an isomorphism between
Mp(G) and −Mp(−G). Since χ(G) = χ(−G) we get A(M,p, k) =
A(−M,p, k) and W (M,p, k) = W (−M,p, k).

(ii) Let e1, e2 be any two edges in a given ordered graph G. Say e1 =
(u1, v1) and e2 = (u2, v2). Then for M ′ =

(−m1−m2−m3−m4
−m3−m4−m1−m2

)
we have

e1e2 ∈ E(Mp(G))

⇔ m1u1 +m2v1 +m3u2 +m4v2 > p

∨ m1u2 +m2v2 +m3u1 +m4v1 > p

⇔ ¬
(
m1u1 +m2v1 +m3u2 +m4v2 6 p− 1

∧m1u2 +m2v2 +m3u1 +m4v1 6 p− 1
)
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⇔ ¬
(
−m1u1 −m2v1 −m3u2 −m4v2 > 1− p
∧ −m1u2 −m2v2 −m3u1 −m4v1 > 1− p

)

⇔ ¬
(−m1−m2−m3−m4
−m3−m4−m1−m2

)
(u1, v1, u2, v2)

> > 1− p

⇔ ¬
( (−m1−m2−m3−m4
−m3−m4−m1−m2

)
(u1, v1, u2, v2)

> > 1− p

∨
(−m1−m2−m3−m4
−m3−m4−m1−m2

)
(u2, v2, u1, v1)

> > 1− p
)

⇔ e1e2 6∈ E(M ′1−p(G)).

Therefore Mp(G) is the complement of M ′1−p(G). From this we get
A(M,p, k) = W (M ′, 1− p, k) and W (M,p, k) = A(M ′, 1− p, k).

We close this section with a lemma, which is needed in some of the proofs
in Section 5.

Lemma 4.2. Let k, q denote positive integers with k > q, and let G be any
ordered graph. If χ(G) > k, then there is a set S of

(
k−q+1

2

)
edges of length

at least q in G. Moreover, if k > 3, then there is an edge of length at least
q − 1 in G that is not in S.

Proof. Let G′ denote a k-critical subgraph of G with vertices v1 < · · · < vt,
for some t > k. Then G′ has minimum degree k − 1. We have that vi is a
right endpoint of at most i − 1 edges in G′ and a left endpoint of at most
q−1 edges of length at most q−1 in G′, i = 1, . . . , k−q. Note that k−q > 1.
Hence vi is left endpoint of at least k−1−(i−1)−(q−1) = k−i−q+1 edges

of length at least q. Thus there is a set S with
∑k−q

i=1 k− q− i+ 1 =
(
k−q+1

2

)

edges of length at least q in G′. Moreover, if k > 3, then v1 is either incident
to another edge of length at least q (which is not in S) or to an edge of
length q − 1.

5 Proof of Theorem 5

We prove Theorem 5 by considering all 19 translation invariant matrices
M ∈ {−1, 0, 1}1×4. Observation 7 and Lemma 4.1 (i) allow us to group
these into ten groups of equivalent matrices, corresponding to rows 2 to 11
in Table 1, and consider only one representative matrix per group (marked
with ? in the table). The first case, M = (0000) corresponding to row 2
in Table 1, can be completely handled with Theorem 4. If p 6 0, then
by Theorem 4 (i) for all k > 2 we have A(M,p, k) = α(Mp(Kk)) = 1

for some ordered graph Kk and W (M,p, k) = ω(Mp(Kk)) =
(
k
2

)
for some

ordered graph Kk. And if p > 0, then by Theorem 4 (ii) for all k > 2
we have A(M,p, k) = α(Mp(Kk)) =

(
k
2

)
for some ordered graph Kk and

W (M,p, k) = ω(Mp(Kk)) = 1 for some ordered graph Kk.
The remaining 18 translation invariant matrices in {−1, 0, 1}1×4 come

in nine groups corresponding to rows 3 to 11 in Table 1 and are handled in
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Propositions 5.1 – 5.12 below. Let us emphasize that in all cases our upper
bounds on A(M,p, k) and W (M,p, k) are attained by some ordered graph
Kk.

Proposition 5.1 (left endpoints at distance at least p, row 3 in Table 1).
Let M ∈ {(+0−0), (−0+0), (0+0−), (0−0+)}.

If p 6 0, then A(M,p, k) = 1 and W (M,p, k) =
(
k
2

)
for all k > 2.

If p > 1, then A(M,p, k) = k − 1 and W (M,p, k) =
⌈
k−1
p

⌉
for all k > 2.

Proof. ConsiderM = (+0−0). If p 6 0, thenA(M,p, k) = 1 andW (M,p, k) =(
k
2

)
for all k > 2 due to Theorem 4 (i). This leaves to consider A(M,p, k)

and W (M,p, k) in the case p > 1.
Here two edges e1, e2 are conflicting if and only if their left endpoints

differ by at least p. A clique in Mp(G) is a set of edges in G whose left
endpoints are pairwise at distance at least p. An independent set in Mp(G)
is a set of edges in G whose left endpoints are pairwise at distance at most
p− 1, i.e., all left endpoints are contained in some closed interval of length
at most p− 1.

Consider A(M,p, k) for p > 1. For any k > 2 consider G = Kk with
vertex set V = {ip | i ∈ [k]}. As any two vertices in V have distance at least
p, two edges are non-conflicting if and only if their left endpoints coincide.
Thus we have A(M,p, k) 6 α(Mp(G)) = k − 1, as certified by the edges
incident to the leftmost vertex.

Now consider any ordered graph G with χ(G) = k. Let G′ denote a
k-critical subgraph of G, i.e., G′ has minimum degree at least k − 1. Then
Mp(G

′) is an induced subgraph ofMp(G) and hence α(Mp(G)) > α(Mp(G
′)).

For a vertex v in G′ the set of all edges with left endpoint v forms an
independent set in Mp(G

′). In particular the leftmost vertex in G′ is left
endpoint of at least k− 1 edges. Hence α(Mp(G)) > α(Mp(G

′)) > k− 1. As
G was arbitrary, this shows that A(M,p, k) > k − 1.

Consider W (M,p, k) for p > 1. For any k > 2 consider G = Kk with
vertex set [k]. Recall that two edges are conflicting if their left endpoints
differ by at least p. Clearly, a largest clique in Mp(G) is formed by consider-
ing every pth vertex of G and taking one edge with this as its left endpoint.
It follows that W (M,p, k) 6 ω(Mp(G)) = d(k − 1)/pe.

Now consider any ordered graph G with χ(G) = k. Let G′ denote
a k-critical subgraph of G, i.e., G′ has minimum degree at least k − 1.
Then Mp(G

′) is a subgraph of Mp(G) and hence ω(Mp(G)) > ω(Mp(G
′)).

Consider the set F that consists of every pth edge incident to the rightmost
vertex in G′. Then F forms a clique in Mp(G

′) and hence ω(Mp(G
′)) >

d(k − 1)/pe. It follows that W (M,p, k) > ω(Mp(G)) > d(k − 1)/pe, since G
was arbitrary.
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Finally, if M ′ ∈ {(−0+0), (0+0−), (0−0+)}, then M ′ is obtained from
M = (+0−0) either by switching the first with the third and the second
with the last column or by reversing the order of columns in −M or both.
Thus W (M ′, p, k) = W (M,p, k) and A(M ′, p, k) = A(M,p, k), due to Ob-
servation 7 and Lemma 4.1 (i).

Proposition 5.2 (at least one edge of length at least p, row 4 in Table 1).
Let M ∈ {(−+00), (00−+)}.

If p 6 1, then A(M,p, k) = 1 and W (M,p, k) =
(
k
2

)
for all k > 2.

If p > 2, then A(M,p, k) = 1 for all k > 2 and W (M,p, k) = 1 for
2 6 k 6 p and W (M,p, k) = 1 +

(
k−p+1

2

)
for k > p+ 1.

Proof. Consider M = (−+00). We have A(M,p, k) = 1 for all p, k ∈ Z,

k > 2 and, if p 6 1, W (M,p, k) =
(
k
2

)
for all k > 2 due to Theorem 4 (i)

and (iii). This leaves to consider W (M,p, k) in the case p > 2.
Here two edges e1, e2 are conflicting if and only if at least one of them

has length at least p. We call edges of length at least p the long edges and
edges of length at most p − 1 the short edges. A clique in Mp(G) is a set
of edges in G, at most one of which is short, while an independent set in
Mp(G) is a set of edges in G with only short edges. Hence ω(Mp(G)) is just
the total number of long edges (plus one if there is at least one short edge),
and α(Mp(G)) is the number of short edges.

For any k > 2 consider G = Kk with a vertex set [k]. If k 6 p, then
there are no long edges. HenceW (M,p, k) 6 ω(Mp(G)) = 1, since χ(G) = k.
Therefore W (M,p, k) = 1. If k > p+ 1, then there is at least one long and
one short edge in G. There are k−` edges of length ` in this G. In particular,
since χ(G) = k, W (M,p, k) 6 ω(Mp(G)) = 1 +

∑k−1
`=p (k − `) = 1 +

(
k−p+1

2

)
.

Now consider an arbitrary ordered graph G with χ(G) = k > p+ 1. By
Lemma 4.2 there are 1+

(
k−p+1

2

)
edges such that all but one of them is long.

Hence ω(Mp(G)) > 1 +
(
k−p+1

2

)
. This shows that W (M,p, k) = 1 +

(
k−p+1

2

)
.

Finally, if M ′ = (00−+), then M ′ is obtained from M = (−+00) by
switching the first with the third and the second with the last column. Thus
W (M ′, p, k) = W (M,p, k) and A(M ′, p, k) = A(M,p, k).

Proposition 5.3 (At least one edge of length at most −p, row 5 in Table 1).

Let M ∈ {(+−00), (00+−)}.
If p > 0, then A(M,p, k) =

(
k
2

)
and W (M,p, k) = 1 for all k > 2.

If p 6 −1, then A(M,p, k) = 1 for 2 6 k 6 |p|+1 and A(M,p, k) =
(
k−|p|

2

)

for k > |p|+ 2 and W (M,p, k) = 1 for all k > 2.

Proof. consider M = (+−00). We have W (M,p, k) = 1 for all p, k ∈ Z,

k > 2 and, if p > 0, A(M,p, k) =
(
k
2

)
for all k > 2 due to Theorem 4 (ii)

and (iv). This leaves to consider A(M,p, k) in the case p 6 −1.
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Here edges (u1, v1) and (u2, v2) are conflicting if v1−u1 6 −p or v2−u2 6
−p, that is, if one of the edges has length at most −p. Let q = −p. We
call edges of length at least q+ 1 the long edges and edges of length at most
q the short edges. Then a clique in Mp(G) is a set of edges in G, at most
one of which is long, while an independent set in Mp(G) is a set of edges in
G with only long edges. Hence ω(Mp(G)) is just the total number of short
edges (plus one if there is at least one long edge), and α(Mp(G)) is the total
number of long edges.

For any k > 2 consider G = Kk with vertex set [k]. If k 6 q + 1, then
there are no long edges. Hence A(M,p, k) 6 α(Mp(G)) = 1, since χ(G) = k.
Therefore A(M,p, k) = 1. If k > q+2, then there is at least one long edge in
G. There are k−` edges of length ` in this G. In particular, since χ(G) = k,
A(M,p, k) 6 α(Mp(G)) =

∑k−1
`=q+1(k − `) =

(
k−|p|

2

)
.

Now consider an arbitrary ordered graph G with χ(G) = k > q+2. Then
there are at least

(
k−q
2

)
long edges in G due to Lemma 4.2, i.e., α(Mp(G)) >(

k−q
2

)
. This shows that A(M,p, k) =

(
k−q
2

)
.

Finally, if M ′ = (00+−), then M ′ is obtained from M = (+−00) by
switching the first with the third and the second with the last column. Thus
W (M ′, p, k) = W (M,p, k) and A(M ′, p, k) = A(M,p, k).

Proposition 5.4 (lengths sum to at least p, row 6 in Table 1).
Let M = (−+−+).

If p 6 2, then A(M,p, k) = 1 and W (M,p, k) =
(
k
2

)
for all k > 2.

If p > 3, then A(M,p, k) = 1 for all k > 2 and W (M,p, k) = 1 for

2 6 k 6
⌈p
2

⌉
and W (M,p, k) = p mod 2 +

(k−d p2e+1
2

)
for k >

⌈p
2

⌉
+ 1.

Proof. We have A(M,p, k) = 1 for all p, k ∈ Z, k > 2 and, if p 6 2,
W (M,p, k) =

(
k
2

)
for all k > 2 due to Theorem 4 (i) and (iii). This leaves

to consider W (M,p, k) in the case p > 3.
Here edges (u1, v1) and (u2, v2) are conflicting if v1 − u1 + v2 − u2 > p,

that is, if their lengths add up to at least p. Let q = dp/2e − 1. We call an
edge short if its length is at most q, and long otherwise. Then a clique in
Mp(G) could be of two kinds. Either it is a set of only long edges in G, or
there is one short edge of length ` 6 q and each remaining edge has length
at least p− `. An independent set in Mp(G) is a set of edges in G where the
lengths of any two longest edges add up to at most p− 1.

First consider G = Kk with vertex set [k]. If k 6 dp/2e, then the largest
sum of the lengths of two edges in G is k− 1 + k− 2 6 p− 1. Hence Mp(G)
is empty and, since χ(G) = k, W (M,p, k) 6 ω(Mp(G)) = 1. Therefore
W (M,p, k) = 1 in this case. Now consider k > dp/2e+1. Recall that for each
` = 1, . . . , k−1 there are exactly k−` edges of length exactly ` inG. A largest
clique in Mp(G) contains all long edges and, if p is odd, one edge of length q.
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It follows that if p is even, then ω(Mp(Kk)) =
∑k−1

`=q+1(k−`) =
(
k−q
2

)
. While

if p is odd, then ω(Mp(Kk)) = 1 +
∑k−1

`=q+1(k − `) = 1 +
(
k−q
2

)
. Altogether

this shows that W (M,p, k) 6 p mod 2 +
(
k−q
2

)
.

Now consider an arbitrary ordered graph G with χ(G) = k > dp/2e+1 >
3. By Lemma 4.2 there is a set S with 1 +

(
k−q
2

)
edges, such that one of

them, say e, has length at least q and all others are long. If p is odd, then S
is a clique in Mp(G). If p is even, then S−e is a clique in Mp(G). Therefore

ω(Mp(G)) >
(
k−q
2

)
+ p mod 2.

Hence W (M,p, k) > p mod 2 +
(
k−q
2

)
. Altogether W (M,p, k) = p mod

2 +
(
k−dp/2e+1

2

)
, if k > dp/2e+ 1, and W (M,p, k) = 1 otherwise.

Proposition 5.5 (lengths sum to at most p, row 7 in Table 1).
Let M = (+−+−).

If p 6 −1, then A(M,p, k) = 1 for 2 6 k 6
⌈
1−p
2

⌉
and A(M,p, k) =

(1 − p) mod 2 +
(k−d 1−p

2 e+1
2

)
for k >

⌈
1−p
2

⌉
+ 1 and W (M,p, k) = 1 for

all k > 2.
If p > −1, then A(M,p, k) =

(
k
2

)
and W (M,p, k) = 1 for all k > 2.

Proof. This follows immediately from Proposition 5.4 and Lemma 4.1 (ii).

Proposition 5.6 (lengths differ by at least p, row 8 in Table 1).
Let M ∈ {(+−−+), (−++−)}.

If p 6 0, then A(M,p, k) = 1 and W (M,p, k) =
(
k
2

)
for all k > 2.

If p > 1, then A(M,p, k) = 1 and W (M,p, k) =
⌈
k−1
p

⌉
for all k > 2.

Proof. Consider M = (+−−+). We have A(M,p, k) = 1 for all p, k ∈ Z,

k > 2 and, if p 6 0, W (M,p, k) =
(
k
2

)
for all k > 2 due to Theorem 4 (i)

and (iii). This leaves to consider W (M,p, k) in the case p > 1.
Here edges (u1, v1) and (u2, v2) are conflicting if (v2−u2)− (v1−u1) > p

or (v1 − u1) − (v2 − u2) > p, i.e., if their lengths differ by at least p. A
clique in Mp(G) is a set of edges in G whose lengths differ pairwise by at
least p. An independent set in Mp(G) is a set of edges in G whose lengths
differ pairwise by at most p−1, i.e., all lengths are contained in some closed
interval of length at most p− 1.

Consider G = Kk with vertex set [k]. The edges of Kk determine exactly
k− 1 different lengths 1, . . . , k− 1. As cliques in Mp(G) correspond to edge
sets in G with lengths pairwise differing by at least p, a maximum clique
in Mp(G) has size d(k − 1)/pe. Thus we have W (M,p, k) 6 ω(Mp(G)) =
d(k − 1)/pe, as desired.

Now consider an arbitrary ordered graph G with χ(G) = k. Let G′

denote a k-critical subgraph of G. Then Mp(G
′) is a subgraph of Mp(G)
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and hence ω(Mp(G)) > ω(Mp(G
′)). Let F be the set of edges incident to

the leftmost vertex v in G. All edges in F have pairwise distinct lengths,
i.e., taking the subset of F corresponding to every pth length gives a clique
in Mp(G). Hence ω(Mp(G

′)) > d(k − 1)/pe, since G′ has minimum degree
at least k − 1. As G was arbitrary, this gives W (M,p, k) > d(k − 1)/pe.

Finally, if M ′ = (−++−), then M ′ is obtained from M = (+−−+)
by switching the first with the third and the second with the last column.
Thus W (M ′, p, k) = W (M,p, k) and A(M ′, p, k) = A(M,p, k).

Proposition 5.7 (midpoints are at distance at least p/2, row 9 in Table 1).

Let M ∈ {(++−−), (−−++)}.
If p 6 0, then A(M,p, k) = 1 and W (M,p, k) =

(
k
2

)
for all k > 2.

If p > 1, then A(M,p, k) = 1 and W (M,p, k) =
⌈
2k−3
p

⌉
for all k > 2.

Proof. Consider M = (++−−). We have A(M,p, k) = 1 for all p, k ∈ Z,

k > 2 and, if p 6 0, W (M,p, k) =
(
k
2

)
for all k > 2 due to Theorem 4 (i)

and (iii). This leaves to consider W (M,p, k) in the case p > 1.
For an edge (u1, v1) we think of (u1 + v1)/2 as its midpoint. Note that

the midpoints are not necessarily integers. Then edges (u1, v1) and (u2, v2)
are conflicting if |(u1 + v1)/2− (u2 + v2)/2| > p/2, that is, if their midpoints
are of distance at least p/2. A clique in Mp(G) is a set of edges in G
whose midpoints are pairwise at distance at least p/2. An independent set
in Mp(G) is a set of edges in G whose midpoints are pairwise at distance at
most (p − 1)/2, i.e., all midpoints are contained in some closed interval of
length at most (p− 1)/2.

Consider G = Kk with vertex set [k]. The edges of G determine exactly
2k − 3 midpoints; one for each vertex that is neither the first nor the last
vertex, and one for each gap between two consecutive vertices. Consecutive
midpoints are at distance 1/2. As cliques in Mp(G) correspond to edge sets
in G with midpoints at pairwise distance at least p/2, a maximum clique

in Mp(G) has size
⌈
(2k−3)/2

p/2

⌉
= d(2k − 3)/pe. Thus we have W (M,p, k) 6

ω(Mp(G)) = d(2k − 3)/pe, as desired.

Now consider an arbitrary ordered graph G with χ(G) = k. Let G′

denote a k-critical subgraph of G. Then Mp(G
′) is a subgraph of Mp(G)

and hence ω(Mp(G)) > ω(Mp(G
′)). Let F be the set of edges incident to

the first vertex or the last vertex (or both). All edges in F have pairwise
distinct midpoints. Taking a subset of F corresponding to every pth midpoint
of edges in F gives a clique in Mp(G

′). Hence ω(Mp(G
′)) > d|F |/pe >

d(2k − 3)/pe, since G′ has minimum degree k − 1. As G was arbitrary, this
gives W (M,p, k) > d(2k − 3)/pe. Altogether W (M,p, k) = d(2k − 3)/pe.
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Finally, if M ′ = (−−++), then M ′ is obtained from M = (++−−)
by switching the first with the third and the second with the last column.
Thus W (M ′, p, k) = W (M,p, k) and A(M ′, p, k) = A(M,p, k) due to Obser-
vation 7.

For the next matrix M = (+00−) we can not rely on Theorem 4. As for
the previous matrices, there are four cases to be considered: A(M,p, k) and
W (M,p, k) for p 6 0 and p > 1. However, before we determine A(M,p, k)
and W (M,p, k), we first investigate the structure of independent sets in
Mp(G) for an ordered graph G and prove three lemmas.

A comparability graph is a graph admitting a transitive orientation of
its edges, i.e., an orientation such that for any three vertices u, v, w it holds
that if there is an edge directed from u to v and an edge directed from v to
w, then there is an edge between u and w and it is directed from u to w.
As every comparability graph is perfect, in particular its chromatic number
and clique number coincide [6].

Lemma 5.8. For M = (+00−), every p > 0, and every ordered graph G,
the graph Mp(G) is a comparability graph and hence χ(Mp(G)) = ω(Mp(G)).

Proof. Let p > 0 and G be fixed. Two edges e1, e2 of G are conflicting if
the right endpoint of one edge, say e1, lies at least p positions left of the left
endpoint of the other edge e2. In this case we orient the edge {e1, e2} in the
conflict graph Mp(G) from e1 to e2. Clearly, if e1, e2 are conflicting with e1
being at least p positions left of e2 and e2, e3 are conflicting with e2 being
at least p positions left of e3, then also e1, e3 are conflicting with e1 being at
least p positions left of e3. Hence we have defined a transitive orientation of
Mp(G), proving that Mp(G) is a comparability graph.

For an edge e = (u, v) in an ordered graph G we say that the span of e
is the closed interval [u, v] ⊆ Z.

Lemma 5.9. Let G be an ordered graph and F ⊆ E(G) be a subset of edges.

• If p > 1, then F is an independent set in Mp(G) if and only if the
following holds:

(i) There exists a closed interval [Y,X] of length at most p−1 inter-
secting the span of every edge in F , see the top-left of Figure 2.

• If p 6 0, then F is an independent set in Mp(G) if and only if one of
the following holds:

(ii) There exists a closed interval [X,Y ] of length at least |p|+ 1 that
is contained in the span of every edge in F , see the top-right of
Figure 2.
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XY
6 p− 1

p > 1 p 6 0

YX
> |p|+ 1

p 6 0

YX
6 |p|

e

x y

> |p|+ 1

Figure 2: Illustration of independent sets of edges inMp(G) forM = (+00−)
according to Lemma 5.9: condition (i) (top-left), condition (ii) (top-right)
and condition (iii) (bottom).

(iii) There exists an edge e = (x, y) in F of length at most |p| and a
closed interval [X,Y ] with X 6 y+ p− 1 and Y > x− p+ 1 that
is contained in the span of every edge in F − e, see the bottom of
Figure 2.

Proof. First note that condition (i) and (ii) can be simultaneously rephrased
as follows:

(i’) There are integers X and Y , with X−Y 6 p−1, such that every edge
in F has left endpoint at most X and right endpoint at least Y .

Assume that F satisfies condition (i’). For any edge e1 with left endpoint
u, u 6 X, and any edge e2 with right endpoint v, v > Y , we have u 6 X 6
Y + p − 1 6 v + p − 1, and hence e1 and e2 are not conflicting. Now
assume that p 6 0 and F satisfies condition (iii). As the interval [X,Y ] has
length at least |p| + 2 it follows from the previous argument that F − e is
an independent set. Moreover, for any edge e′ ∈ F − e, e′ = (u, v), we have
u 6 X 6 y + p− 1 and v > Y > x− p+ 1, i.e., e and e′ are not conflicting.
It follows that F is an independent set in Mp(G).

Now consider any independent set F of Mp(G). Let x denote the right-
most left endpoint and y the leftmost right endpoint of edges in F . First
assume that x− y 6 p− 1. Then X = y+ p− 1 > x and Y = y are integers
with X − Y = p− 1 such that every edge in F has left endpoint at most X
and right endpoint at least Y , and hence F satisfies condition (i’). Secondly,
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assume that x − y > p. Let e1 ∈ F with left endpoint x and e2 ∈ F with
right endpoint y. If e1 6= e2, then e1 and e2 are not in conflict and hence
x − y 6 p − 1, a contradiction. Therefore e1 and e2 are the same edge e.
Hence for each edge (u, v) ∈ F − e we have x− v 6 p− 1 and u− y 6 p− 1.
With X = y + p − 1 and Y = x − p + 1 we have that every edge in F − e
has left endpoint at most X and right endpoint at least Y , see the bottom
of Figure 2. Finally observe that e has length y−x 6 −p and thus this case
can happen only if p 6 −1. In particular, F and p satisfy condition (iii).

The following concept was introduced by Dujmović and Wood [9] for
p = 1. For integers p, t with p > 0 and t > 1, an unordered graph F =
(V,E) is called p-almost t-colorable if there exists a set S ⊆ V of at most
p(t − 1) vertices, such that χ(F − S) 6 t. The following result was proven
by Dujmović and Wood [9] in the special case of p = 1. Here we prove it in
general. Recall that G? is the underlying unordered graph of a given ordered
graph G

Lemma 5.10. Let M = (+00−). For any p > 0 and any graph F we have
that

min{ω(Mp(G)) | G? = F} = min{t | F is p-almost (t+ 1)-colorable}.

Proof. First assume that F is p-almost (t + 1)-colorable. We will find an
ordered graph G with G? = F , i.e., an embedding of V (F ) into Z, such
that ω(Mp(G)) 6 t. There is a set S of at most pt vertices in F such that
χ(F − S) 6 t + 1. Let C1, . . . , Ct+1 denote the color classes of a proper
coloring of F − S and let S = S1∪̇ · · · ∪̇St denote a partition of S with
disjoint sets Si of size at most p each. Set a0 = 0, ai = |Ci ∪ Si| for
1 6 i 6 t, and at+1 = |Ct+1|. For each i, 1 6 i 6 t+ 1, consider the interval
Ii = [ai−1 + 1, ai−1 + ai] ⊂ Z. We form an ordered graph G with G? = F
by bijectively mapping Ci into the first |Ci| vertices in Ii and bijectively
mapping Si into the remaining vertices in Ii, 1 6 i 6 t, and mapping the
vertices in Ct+1 bijectively into It+1. Observe that for two conflicting edges
the right endpoint of one edge is left of the left endpoint of the other edge.
Moreover an edge that has both endpoints in Ii has its right endpoint in Si,
as Ci is an independent set. Hence two edges having left endpoints in Ii are
not in conflict, since either p = 0 and Si = ∅, or the distance between the
copies of any two vertices from Si in G is at most p−1, 1 6 i 6 t. Moreover
no edge has left endpoint in It+1. Therefore a maximum clique in Mp(G)
has at most t vertices. It follows that ω(Mp(G)) 6 t, as desired.

Now assume that G is an ordered graph with G? = F and ω(Mp(G)) = t.
We shall show that F is p-almost (t+1)-colorable. By Lemma 5.8 the vertices
of Mp(G) can be split into t = ω(Mp(G)) independent sets E1, . . . , Et. If
p > 1, by Lemma 5.9 (i) there is a closed interval Ii ⊂ Z of length at most
p − 1 that intersects the span of each edge in Ei, i = 1, . . . , t. If p = 0, by
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Lemma 5.9 (ii) there is a closed interval I ′i ⊂ Z of length at least 1 that
is contained in the span of each edge in Ei, i = 1, . . . , t. Therefore we can
choose a closed interval Ii ⊂ (I ′irZ) (of length < 1) that intersects the span
of each edge in Ei, i = 1, . . . , t.

singleton color classes singleton color classes

color 1 color 2 color 3

Figure 3: A p-almost (t+ 1)-coloring for p = 5 and t = 3.

We define a coloring c of G as follows. See Figure 3 for an illustration.
Every vertex that is contained in some Ii, i = 1, . . . , t, defines a singleton
color class. Note that there are at most pt such vertices (if p = 0 the intervals
Ii contain no vertices). The remaining vertices of G are split by the intervals
Ii into at most t+ 1 consecutive sets of integers and we color all vertices in
such a set in the same color, using at most t+ 1 further colors.

The coloring c is a proper coloring of G, since a monochromatic edge e
would have a span that is disjoint from all intervals I1, . . . , It and hence e
would not be contained in any of E1, . . . , Et, a contradiction. Hence G (and
thus F ) is p-almost (t+ 1)-colorable, as desired.

Having Lemma 5.8 and 5.10, we are now ready to determine A(M,p, k)
and W (M,p, k) for M = (+00−).

Proposition 5.11 (edges at distance at least p, row 10 in Table 1).
Let M ∈ {(+00−), (0−+0)}.

If p > 1, then A(M,p, k) =
⌊
(k+1)2

4

⌋
− 1 and W (M,p, k) =

⌈
k−1
p+1

⌉
for all

k > 2.
If p 6 0, then A(M,p, k) = 1 for 2 6 k 6 |p| + 1 and A(M,p, k) =⌊
(k−|p|)2

4

⌋
for k > |p|+ 1 and W (M,p, k) = k − 1 for all k > 2.

Proof. Consider M = (+00−).
Two edges e1 = (u1, v1), e2 = (u2, v2) are in conflict if and only if

u1 − p > v2 or u2 − p > v1. If p > 1, then the spans of conflicting edges are
disjoint and at least p positions apart, see Figure 1 top right. In particular,
a clique in Mp(G) is a set of edges with pairwise disjoint spans at distance
at least p. In case p = 0, spans of conflicting edges are only interiorly
disjoint, i.e., they intersect in at most one point. If p < 0, then two edges
are conflicting if their spans become disjoint after one edge is shifted |p|+ 1
positions to the right. Note that if e1 and e2 both have length at most
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|p| − 1, then this might hold no matter which edge is shifted. Here a clique
in Mp(G) is a set of edges in which any pair of edges has disjoint spans after
shifting one edge |p|+ 1 positions right.

Consider A(M,p, k) for p > 1. Consider G = Kk with vertex set V =
{ip | i ∈ [k]}. Then for any two edges e1, e2 ∈ E with e1 = (u1, v1) and
e2 = (u2, v2) we have

u1 > v2 ⇒ u1 − p > v2.

Hence, by Lemma 5.9 (i), every independent set in Mp(G) is an edge set in
G with pairwise intersecting spans. For i = 1, . . . , k, the number of edges in
G whose span contains the vertex ip ∈ V is given by
(
k

2

)
−
(
i− 1

2

)
−
(
k − i

2

)
=
k(k − 1)− (i− 1)(i− 2)− (k − i)(k − i− 1)

2

=
−2i2 + 2i− 2 + 2ik

2
= i(k + 1− i)− 1.

Note that for n ∈ {0, 1} we have
(
n
2

)
= n(n − 1)/2 = 0. As this is max-

imized for i = d(k + 1)/2e, we conclude that A(M,p, k) 6 α(Mp(G)) =
d(k + 1)/2eb(k + 1)/2c − 1 =

⌊
(k + 1)2/4

⌋
− 1.

Now consider any ordered graph G with χ(G) = k. Let G′ denote a
k-critical subgraph of G. Then G′ has minimum degree at least k − 1.
Then Mp(G

′) is an induced subgraph of Mp(G) and hence α(Mp(G)) >
α(Mp(G

′)). Consider the set S of the d(k + 1)/2e leftmost vertices in G′

and let v be the rightmost vertex in S. Every vertex in S r v has at least
k−1−(d(k + 1)/2e−1) = b(k + 1)/2c−1 edges to the right of S. Moreover,
vertex v has at least k − 1 incident edges. In total this is a set I of at least

(⌈
k + 1

2

⌉
− 1

)(⌊
k + 1

2

⌋
− 1

)
+ k − 1 =

⌊
(k + 1)2

4

⌋
− 1

edges in G′. Choosing X = Y = v (as p > 1 we have X − Y 6 p − 1)
shows that I is an independent set by Lemma 5.9 (i). Thus α(Mp(G)) >
α(Mp(G

′)) > |I| >
⌊
(k + 1)2/4

⌋
−1. AsG was arbitrary, we get A(M,p, k) >⌊

(k + 1)2/4
⌋
− 1.

Next consider W (M,p, k) for p > 0. Consider G = Kk on vertex set [k].
Recall that a clique in Mp(G) is a set of edges in G that are pairwise at least p
positions apart of each other. Thus a largest clique C in Mp(G) is formed by
taking every (p+1)th edge of length 1 in G. As there are k−1 edges of length
1 in total, it follows that W (M,p, k) 6 ω(Mp(G)) = d(k − 1)/(p+ 1)e, as
desired.

Now fix G to be any ordered graph with χ(G) = k. Then by Lemma 5.10
we have that G is p-almost (ω(Mp(G)) + 1)-colorable. In particular, k =
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χ(G) 6 (p + 1)ω(Mp(G)) + 1, which gives ω(Mp(G)) > d(k − 1)/(p+ 1)e.
As G was arbitrary we get W (M,p, k) > d(k − 1)/(p+ 1)e.

Now consider A(M,p, k) for p 6 0. Recall that each independent set is of
one of two kinds due to Lemma 5.9 (ii) and (iii). Consider G = Kk on vertex
set [k]. If k 6 |p|+ 1, then every edge has length at most |p|. As every pair
of non-conflicting edges has an edge of length at least |p|+ 1 (c.f. Figure 2),
we have in this case that A(M,p, k) = α(Mp(G)) = 1. If k > |p| + 1, then
consider for each X = 1, . . . , k + p all edges with left endpoint at most X
and right endpoint at least Y = X − p + 1. As p 6 0 we have X < Y , see
the top-right of Figure 2. There are exactly X(k− (Y − 1)) = X(k+ p−X)
such edges and this term is maximized for X = d(k + p)/2e. Hence any
independent set of the first kind contains at most

⌊
(k + p)2/4

⌋
elements.

Finally, it is easy to see that, since k > |p| + 1, for any independent set of
the second kind one can replace the short edge by some edge of length |p|+1
to obtain an independent set of the first kind that has the same number of
edges. Together we have that A(M,p, k) 6 α(Mp(G)) =

⌊
(k + p)2/4

⌋
, as

desired.

Now consider any ordered graph G with χ(G) = k. Let G′ denote a
k-critical subgraph of G. Then G′ has minimum degree at least k− 1. Then
Mp(G

′) is an induced subgraph ofMp(G) and hence α(Mp(G)) > α(Mp(G
′)).

Consider i = d(k + p)/2e and j = d(k − p)/2e+ 1, and let X and Y be the
integers corresponding to the i-th and j-th vertex in G′ counted from the left,
respectively. Then X−Y 6 d(k + p)/2e−d(k − p)/2e−1 = p−1. The set I
of all edges in G′ with left endpoint at most X and right endpoint at least Y
is an independent set of the first kind by Lemma 5.9 (ii). As p 6 0, we have
i < j and hence I consists of at least i(k− 1− (j − 2)) = i(k− j + 1) edges,
since δ(G′) > k − 1. Thus α(Mp(G)) > α(Mp(G

′)) > |I| > i(k − j + 1) =⌊
(k + p)2/4

⌋
, and as G was arbitrary we get A(M,p, k) >

⌊
(k + p)2/4

⌋
.

Finally consider W (M,p, k) for p 6 −1. Consider G = Kk on vertex
set V = {i|p| | i = 1, . . . , k}. Then, for any two edges e1, e2 ∈ E(G) with
e1 = (u1, v1) and e2 = (u2, v2) we have

u1 − p > v2 ⇔ u1 > v2.

In particular, for G′ = Kk with vertex set [k] we have that Mp(G) is isomor-
phic to M0(G

′) and thus due to the arguments above we get W (M,p, k) 6
ω(Mp(G)) = ω(M0(G

′)) = k − 1.

Now fix G = (V,E) to be any ordered graph with χ(G) = k. As p < 0 we
clearly have for any two edges e1, e2 ∈ E with e1 = (u1, v1) and e2 = (u2, v2)
that

u1 > v2 ⇒ u1 − p > v2.

In particular, ω(Mp(G)) > ω(M0(G)) and we get ω(Mp(G)) > ω(M0(G)) >
k − 1 as before. As G was arbitrary this gives W (M,p, k) > k − 1.
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Finally, if M ′ = (0−+0), then M ′ is obtained from M = (+00−)
by switching the first with the third and the second with the last column.
Thus W (M ′, p, k) = W (M,p, k) and A(M ′, p, k) = A(M,p, k) due to Obser-
vation 7.

Proposition 5.12 (right end of one edge at least p positions to the right of
the left end of the other edge, row 11 in Table 1).
Let M ∈ {(−00+), (0+−0)}.

If p 6 1, then A(M,p, k) = 1 and W (M,p, k) =
(
k
2

)
for all k > 2.

If p > 2, then A(M,p, k) = 1 for all k > 2 and W (M,p, k) = 1 if
2 6 k 6 p and W (M,p, k) =

(
k−p+2

2

)
if k > p+ 1.

Proof. Consider M = (−00+). We have A(M,p, k) = 1 for all p, k ∈ Z,

k > 2 and, if p 6 1, W (M,p, k) =
(
k
2

)
for all k > 2 due to Theorem 4 (i)

and (iii). This leaves to consider W (M,p, k) in the case p > 2.
Here edges (u1, v1) and (u2, v2) are conflicting if v2−u1 > p or v1−u2 > p,

that is, the right endpoint of one edge is at least p steps to the right of the
left endpoint of the other edge. A clique in Mp(G) is a set of edges in G,
where pairwise the right endpoint of one edge is at least p steps to the right
of the left endpoint of the other edge.

Consider G = Kk with vertex set [k]. If k 6 p, then for any pair of
edges (u1, v1), (u2, v2) we have v2 − u1 6 k− 1 6 p− 1. Hence no edges are
conflicting and W (M,p, k) 6 ω(Mp(G)) = 1. Therefore W (M,p, k) = 1.

If k > p+1, then the set of all edges of length at least p−1 in G forms a
clique in Mp(G). We claim that this set is a largest clique in Mp(G). Indeed,
consider a clique F in Mp(G) containing an edge e = (u1, v1) of length at
most p− 2. Let e1 = (u1 − 1, v1), e2 = (u1, v1 + 1), if they exist in G. Note
that at least one of these edges exists, since k > p + 1. Then e1, e2 6∈ F ,
since they are not in conflict with e. Observe that if f = (u2, v2) ∈ F r e,
then v1 − u2 > p or v2 − u1 > p. In the first case e1 and f are conflicting
since v1 − u2 > p, and e2 and f are conflicting since v1 + 1− u2 > p. In the
second case e1 and f are conflicting since v2− (u1−1) > p, and e2 and f are
conflicting since v2−u1 > p. Thus, we can replace e in F with a longer edge,
e1 or e2, and obtain a clique with at least as many edges as F . Repeating
this as long as needed eventually yields a clique of size at least |F | with
all edges of length at least p − 1. Hence we see that the set of all edges of
length at least p− 1 in G is at least as large as any other clique in Mp(G).
Recall that there are k− ` edges of length ` in this G, ` = 1, . . . , k−1. Thus
W (M,p, k) 6 ω(Mp(G)) 6

∑k−1
`=p−1(k − `) =

(
k−p+2

2

)
.

Now consider any ordered graph G with χ(G) = k > p+1. As mentioned
above the set of all edges of length at least p − 1 in G forms a clique in
Mp(G). Hence ω(Mp(G)) >

(
k−p+2

2

)
due to Lemma 4.2. This shows that

W (M,p, k) 6
(
k−p+2

2

)
.
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Finally, if M ′ = (0+−0), then M ′ is obtained from M = (−00+)
by switching the first with the third and the second with the last column.
Thus W (M ′, p, k) = W (M,p, k) and A(M ′, p, k) = A(M,p, k) due to Obser-
vation 7.

6 Proof of Theorem 6

We shall prove later in Lemma 6.2 that for any ordered graph G and any
p ∈ Z we have that Mp(G) for M =

(
+ 0 − 0
0 + 0 −

)
is the complement of Mnest

1−p (G)

for Mnest =
(
+ 0 − 0
0 − 0 +

)
. Let us refer to Figure 1 top middle for an illustration

of Mnest. It will hence follow that A(M,p, k) = W (Mnest, 1 − p, k) and
W (M,p, k) = A(Mnest, 1 − p, k) for any p, k ∈ Z, k > 2. Thus we can
restrict ourselves in this section to the matrix M =

(
+ 0 − 0
0 + 0 −

)
instead of

Mnest =
(
+ 0 − 0
0 − 0 +

)
. The case of A(M,p, k) for p = 0 of the following result

has been considered by Dujmović and Wood [9].

Proposition 6.1 (shift by at least p, row 12 in Table 1).
Let M =

(
+ 0 − 0
0 + 0 −

)
.

If p > 1, then A(M,p, k) = k − 1 and W (M,p, k) =
⌈
k−1
p

⌉
for all k > 2.

If p 6 0, then k
4(|p|+1) 6 A(M,p, k) 6

⌈
k−1

2(|p|+1)

⌉
and W (M,p, k) = 2k − 3

for all k > 2.

Proof. If p > 0, then two edges (u1, v1) and (u2, v2) are conflicting if either
u1 − u2 > p and v1 − v2 > p, or u2 − u1 > p and v2 − v1 > p, that is, one
edge is obtained from the other by moving each vertex at least p steps to the
right. If p 6 0, then two edges (u1, v1) and (u2, v2) are conflicting if either
u2 − u1 6 |p| and v2 − v1 6 |p|, or u1 − u2 6 |p| and v1 − v2 6 |p|, that is,
one edge is obtained form the other by moving each vertex at most |p| steps
to the left or arbitrarily many steps to the right (and keeping the ordering
of the vertices within the edge). That is, the edges (u1, v1) and (u2, v2) are
not conflicting if and only if |u1 − u2| > |p| + 1, |v1 − v2| > |p| + 1 and the
edges are nested (i.e., u1 < u2 < v2 < v1 or u2 < u1 < v1 < v2).

Consider A(M,p, k) for p > 1. Consider G = Kk with vertex set {ip | i ∈
[k]}. Observe that any two edges of the same length are conflicting. Since
there are only k − 1 different lengths of edges in G we have A(M,p, k) 6
α(Mp(G)) 6 k − 1.

Now consider an arbitrary ordered graph G with χ(G) = k. The first row
of M is M ′ = (+0−0). Hence, if e1e2 ∈ E(Mp(G)), then e1e2 ∈ E(M ′p(G)).
So E(Mp(G)) is a subgraph of E(M ′p(G)), which implies α(Mp(G)) > α(M ′p(G))
and ω(Mp(G)) 6 ω(M ′p(G)). Thus with Proposition 5.1 we can conclude
that A(M,p, k) > A(M ′, p, k) > k− 1, which shows that A(M,p, k) = k− 1.

Consider W (M,p, k) for p > 1. From above we have ω(Mp(G)) 6
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ω(M ′p(G)) for M ′ = (+0−0) and any ordered graph G, which implies with
Proposition 5.1 that W (M,p, k) 6W (M ′, p, k) = d(k − 1)/pe.

For the lower bound W (M,p, k) > d(k − 1)/pe we consider the matrix
M ′′ = (+00−). For any ordered graph G and two edges e1 = (u1, v1),
e2 = (u2, v2) in G with e1e2 ∈ E(M ′′p−1(G)), say u1 − v2 > p− 1, we have

u1 − u2 > u1 − v2 + 1 > p− 1 + 1 = p

and
v1 − v2 > u1 + 1− v2 > p− 1 + 1 = p.

Hence e1e2 ∈ E(Mp(G)) and thus E(M ′′p−1(G)) is a subgraph of E(Mp(G)).
As before, we conclude with Proposition 5.11 that W (M,p, k) >W (M ′′, p−
1, k) = d(k − 1)/pe.

Consider A(M,p, k) for p 6 0 and let q = |p|. Consider G = Kk with
vertex set [k]. Suppose that F is an independent set of size i in Mp(G), i.e.,
the edges in F are pairwise nested by at least q + 1 positions. Then the
distance between the leftmost left endpoint and the rightmost left endpoint
of edges in F is at least (i − 1)(q + 1). Similarly the distance between
the rightmost right endpoint and the leftmost right endpoint is at least
(i − 1)(q + 1). Thus 2((i − 1)(q + 1) + 1) 6 k. Therefore any independent

set has size at most
⌊

k−2
2(q+1)

⌋
+ 1 =

⌈
k−1

2(q+1)

⌉
. Thus we have A(M,p, k) 6

α(Mp(G)) 6
⌈

k−1
2(q+1)

⌉
.

Now consider any ordered graph G with n vertices and α(Mp(G)) 6 a.
Let G′ be the ordered graph with vertex set [n] obtained from mapping the
ith vertex of G to i ∈ [n]. Then the vertices in G are in the same order as
their images in G′ and the distance between two vertices in G′ is at most the
distance of the corresponding preimages in G. Hence, if two edges in G′ are
not in conflict, then the two corresponding edges in G are not in conflict.
Therefore α(Mp(G

′)) 6 α(Mp(G)) 6 a.
We will show that G′ has fewer than 2a(q + 1)n edges. For every edge

(u, v) of G′ consider its midpoint (u + v)/2. The set of possible midpoints
is given by X = { i2 | i = 3, . . . , 2n − 1}. If some `x edges of G′ have the
same midpoint x ∈ X, then taking every (q + 1)st such edge (in increasing
order of their lengths) gives an independent set in Mp(G

′). It follows that
`x 6 α(Mp(G

′))(q + 1) for every midpoint x ∈ X. Since |X| = 2n − 3 and
α(Mp(G

′)) 6 a this gives

|E(G)| = |E(G′)| 6 (2n− 3)a(q + 1) < 2a(q + 1)n. (5)

IfH is an induced ordered subgraph ofG, then α(Mp(H)) 6 α(Mp(G)) 6
a. Hence H has less than 2a(q + 1)|V (H)| edges (as the arguments above
hold for any ordered graph). In particular H has a vertex of degree less
than 4a(q + 1). This shows that G is (4a(q + 1)− 1)-degenerate and hence

28



χ(G) 6 4a(q + 1). As G was arbitrary we conclude that Xind(M,p, a) 6
4a(q + 1) and using (3) we get A(M,p, k) > k

4(q+1) .

Consider W (M,p, k) for p 6 0. Dujmović and Wood [9] prove that
W (M,p, k) = 2k − 3 for p = 0.

Consider p 6 −1 and any fixed ordered graph G. Let G′ denote the
ordered graph obtained from G by multiplying every vertex by |p|+ 1, i.e.,
the order of vertices in G and G′ is the same, but in G′ vertices have pairwise
distance at least |p| + 1. Then two edges in G′ form an edge in Mp(G

′)
if and only if the corresponding edges in G form an edge in M0(G). In
particular, Mp(G

′) = M0(G). Choosing G to be an ordered graph with
χ(G) = k and ω(M0(G)) = 2k − 3 (for example G = Kk works) shows that
W (M,p, k) 6 ω(Mp(G

′)) = ω(M0(G)) = 2k − 3.
On the other hand, consider any ordered graph G and any two edges

e1 = (u1, v1) and e2 = (u2, v2) that are conflicting in M0(G), say u2−u1 6 0
and v2 − v1 6 0. Then we have u2 − u1 6 |p| and v2 − v1 6 |p|, i.e., e1 and
e2 are also conflicting in Mp(G). This shows that ω(Mp(G)) > ω(M0(G))
for any G and hence W (M,p, k) >W (M, 0, k) = 2k − 3.

Lemma 6.2. Let p ∈ Z, let G be an ordered graph and let M =
(
+ 0 − 0
0 + 0 −

)
.

Then the graph Mnest
p (G) is the complement of the graph M1−p(G).

Proof. Let e1 = (u1, v1), e2 = (u2, v2) be two edges in G. If e1e2 ∈
E(M1−p(G)), say M(u1, v1, u2, v2)

> > 1− p, then

u1 − u2 > 1− p ∧ v1 − v2 > 1− p
⇒
(
¬ u1 − u2 6 −p

)
∧
(
¬ v1 − v2 6 −p

)

⇒
(
¬ u2 − u1 > p

)
∧
(
¬ v2 − v1 > p

)

⇒ e1e2 /∈ E(Mnest
p (G)).

Similarly, if e1e2 ∈ E(Mnest
p (G)), say Mnest(u1, v1, u2, v2)

> > p, then

u1 − u2 > p ∧ v2 − v1 > p

⇒ u2 − u1 6 −p ∧ v1 − v2 6 −p
⇒
(
¬ u2 − u1 > 1− p

)
∧
(
¬ v1 − v2 > 1− p

)

⇒ e1e2 /∈ E(M1−p(G)).

Lemma 6.2 shows that for any p, k ∈ Z, k > 2, we have A(Mnest, p, k) =
W (M, 1− p, k) and W (Mnest, p, k) = A(M, 1− p, k). Therefore Theorem 6
follows from Proposition 6.1.
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7 Conclusions

In this paper we consider ordered graphs and introduce the notion of conflict-
ing pairs of edges with respect to a fixed matrix M ∈ Zs×4 and a parameter
p ∈ Z. This algebraic framework captures many interesting graph parame-
ters, such as the page-number, queue-number or interval chromatic number.
We consider the following extremal question for given M and p:

“What is the maximum chromatic number Xcli(M,p,w), respectively
Xind(M,p, a), among all ordered graphs with no set of w pairwise
conflicting edges, respectively no set of a pairwise non-conflicting edges?”

We give sufficient conditions on the pairs of matrices M and p ∈ Z under
which Xcli(M,p,w) and/or Xind(M,p, a) are as small or as large as possible
for any a, w > 1; namely when Xcli(M,p,w) = f(w) or Xcli(M,p,w) =∞,
respectively Xind(M,p, a) = f(a) or Xind(M,p, a) = ∞ (recall that for
x ∈ Z, x > 1, f(x) is the largest integer k with

(
k
2

)
6 x). Moreover, we

give exact results for all 1× 4–matrices with entries in {−1, 0, 1}. Note that
additionally to the results from Theorem 6 exact values for several 2×4–
matrices can be obtained from Theorems 4 and 5 using Lemma 4.1 (ii).

u1 v1

M =
(− 0 + 0

0 + − 0
0 − 0 +

)
, p = 1

u2 v2 u1, u2

M =

(+ 0 − 0 0 0
− 0 + 0 0 0
0 − 0 0 + 0
0 0 0 + 0 −

)
, p = 0

> 0

v1 u3 v3 v2u2 v1

M =
(
+ 0 − 0
0 − 0 +

)
, p = 1

u1 v2

Figure 4: Matrix M and parameter p corresponding to the presence of a
pair of crossing edges (left), nesting edges (middle) and a bonnet (right).

Determining Xcli(M,p,w) and Xind(M,p, a) exactly for more matrices
M and parameters p remains an interesting challenge, for example for the
“cross”-matrix in the left of Figure 4 or the “nesting”-matrix in the cen-
ter of Figure 4. In addition, several more general questions remain open.
Most noticeable, all our lower bounds are attained by complete graphs and
hence it would be interesting to find M and p for which the maximum chro-
matic number Xcli(M,p,w) or Xind(M,p, a) is not attained by any complete
graph. More specifically we have the following question.

Question 8. Are there integers s, p, t, and a matrix M ∈ Zs×4 such that
for every complete ordered graph G on k vertices we have α(Mp(G)) >
A(M,p, k) or ω(Mp(G)) > W (M,p, k)? What if s = 1 or s = 2?
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Our framework can be naturally extended to conflicts that are defined on
sets of t > 3 edges, rather than just pairs of edges, in which case one would
use matrices M ∈ Zs×2t. Then the maximum chromatic number among
all ordered graphs not containing a particular ordered graph on t edges as
an ordered subgraph is given by Xcli(M, 0, 1) for an appropriate matrix
M ∈ Zs×2t. Most recently, the authors have shown the existence of ordered
graphs of arbitrarily large chromatic number without so-called bonnets [3].
In terms of the framework here, this can be restated as Xcli(M, 0, 1) = ∞,
where M is the 4 × 6–matrix in the right of Figure 4 (where, in contrast
to [3], a triangle is considered as a bonnet). It is easy to see that for any
ordered graph G that contains a triangle we have ω(M0(G)) > 2. Therefore
the graphs that yield Xcli(M, 0, 1) = ∞ are not complete graphs (compare
with Question 8).

Another natural generalization of the framework is obtained by consider-
ing other parameters of the conflict graph. For example one may ask for the
maximum chromatic number among all ordered graphs with conflict graphs
of bounded density, bounded chromatic number or small maximum degree.
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