The k-strong induced arboricity of a graph

Maria Axenovich, Daniel Gonçalves, Jonathan Rollin, Torsten Ueckerdt

July 15, 2016

Abstract

The induced arboricity of a graph G is the smallest number of induced forests covering the edges of G. This is a well-defined parameter bounded from above by the number of edges of G when each forest in a cover consists of exactly one edge. Not all edges of a graph necessarily belong to induced forests with larger components. For $k \geq 1$, we call an edge k-valid if it is contained in an induced tree on k edges. The k-strong induced arboricity of G, denoted by $f_k(G)$, is the smallest number of induced forests with components of sizes at least k that cover all k-valid edges in G. This parameter is highly non-monotone. However, we prove that for any proper minor-closed graph class C, and more generally for any class of bounded expansion, and any $k \geq 1$, the maximum value of $f_k(G)$ for $G \in C$ is bounded from above by a constant depending only on C and k.

We prove that $f_2(G) \leq 3 \left(\frac{t+1}{3} \right)$ for any graph G of tree-width t and that $f_k(G) \leq (2k)^d$ for any graph of tree-depth d. In addition, we prove that $f_2(G) \leq 310$ when G is planar, which implies that the maximum adjacent closed vertex-distinguishing chromatic number of planar graphs is constant.

1 Introduction

Let $G = (V,E)$ be a simple, finite and undirected graph. An induced forest in G is an acyclic induced subgraph of G. A cover of $X \subseteq V \cup E$, is a set of subgraphs of G whose union contains every element of X. It is certainly one of the most classical problems in graph theory to cover the vertex set V or the edge set E of G with as few as possible subgraphs from a specific class, such as independent sets [26], stars [2], paths [1], forests [17], planar graphs [16], interval graphs [15], or graphs of tree-width t [10], just to name a few. Extensive research on graph covers has been devoted to the following two graph parameters: The vertex arboricity of G is the minimum t such that V can be covered with t induced forests [17]. The arboricity of G, denoted as $a(G)$, is the minimum t such that E can be covered with t forests [17]. Nash-Williams [17] proved that the arboricity of a graph G is given by $\max\{\frac{|E(H)|}{|V(H)|} - 1\}$ where the maximum is taken over all subgraphs H of G.

Here, we define the induced arboricity $f_1(G)$ of G to be the minimum t such that E can be covered with t induced forests. Moreover, we introduce the k-strong induced arboricity $f_k(G)$, where we additionally require that each connected component of the induced forests has at least k edges. More precisely, for $k \geq 1$, let a k-strong forest of G be an induced forest F in G, each of whose connected components consists of at least k edges. Hence, a 1-strong forest is one that has no isolated vertices and a 2-strong forest is one that has neither K_1-nor K_2-components. As isolated vertices in a forest do not help to cover the edges of G, these can be easily omitted. Thus for the induced arboricity of G as defined above it suffices to consider induced forests where every component has at least one edge.
However, note that for $k \geq 2$ we possibly can not cover $E(G)$ with k-strong forests, for example when G is a clique or when $|E(G)| < k$. An edge $e \in E(G)$ is defined to be k-valid, $k \geq 1$, if there exists a k-strong forest in G containing e. Of course, every edge is 1-valid. When k is fixed and clear from context, we write valid instead of k-valid. By removing a leaf in an induced tree, one obtains an induced tree with exactly one edge less. Thus an edge e is k-valid if and only if it belongs to an induced tree with exactly k edges. We call such a tree a witness tree for e.

We define the k-strong induced arboricity of G, denoted by $f_k(G)$, as the smallest number of induced k-strong forests covering all k-valid edges of G. The main result of this paper shows that for well-behaved classes of graphs, such as for example minor-closed families, the parameter f_k is bounded from above by a constant independent of the order of the graph. Recall that a graph class C is called minor-closed if for each $G \in C$ any graph H obtained from G by deleting edges or vertices, or by contracting edges is contained in C.

To define such graph families, we define the tree-depth and tree-width and follow the notions used by Nešetřil and Ossona de Mendez [20, 21], see also [12].

Tree-width: For a positive integer t, a t-tree is a graph obtained from a union of copies G_1, \ldots, G_q of K_{t+1}, called bags, such that for any $j = 2, \ldots, q$ we have that the set $V(G_j) \cap (V(G_1) \cup \cdots \cup V(G_{j-1}))$ has size t and is contained in $V(G_i)$ for some $i \in \{1, \ldots, j-1\}$. I.e., a t-tree is a graph obtained by starting with K_{t+1} and “adding” cliques (bags) on $t+1$ vertices one at a time, by identifying t vertices of the new clique with some t vertices of some previously added clique. A graph G has tree-width t and we write $\text{tw}(G) = t$, if t is the smallest integer such that G is a subgraph of a t-tree. Note that the graphs of tree-width 1 are the forests on at least one edge.

Tree-depth: The transitive closure of a rooted tree T with a root r is the graph obtained from T by adding every edge uv such that v is on the u-r-path of T. A rooted tree has depth d if the largest number of vertices on a path to the root is d. Now, a graph G has tree-depth d, denoted by $\text{td}(G) = d$, if d is the smallest integer such that each connected component of G is a subgraph of the transitive closure of a rooted tree of depth d.

Tree-depth coloring: A p-tree-depth coloring of a graph G is a vertex coloring such that each set of p' color classes, $p' \leq p$, induces a subgraph of G with tree-depth at most p'. So a 1-tree-depth coloring is exactly a proper coloring of G, while a 2-tree-depth coloring is a proper coloring of G in which any two color classes induce a star forest (a graph of tree-depth at most 2). Let $\chi_p(G)$ be the minimum number of colors needed in a p-tree-depth coloring of G. Then $\chi(G) = \chi_1(G)$ and $\chi_p(G) \leq \text{td}(G)$ for any $p \geq 1$ [21].

Bounded Expansion: A class C of graphs is of bounded expansion if for each positive integer p there is a constant $a_p = a(p, C)$ such that for each $G \in C$ we have $\chi_p(G) \leq a_p$.

Theorem 1. Let C be a class of graphs that is of bounded expansion. Then for each positive integer k there is a constant $b_k = b(k, C)$ such that for each $G \in C$ we have $f_k(G) \leq b_k$.

Building on work of DeVos et al. [9], Nešetřil and Ossona de Mendez [20, 21] proved that several classes of graphs are of bounded expansion, such as minor-closed classes, classes of graphs with an excluded topological minor, or classes of graphs of bounded tree-width or tree-depth. This implies the following.
Corollary 2. Let k be a positive integer and let \mathcal{C} be one of the following classes: a minor-closed class of graphs that is not the class of all graphs, a class of graphs with no topological minor isomorphic to a given fixed graph, or a class of graphs of tree-width or tree-depth at most t, for some fixed t. Then there is a constant $c = c(k, \mathcal{C})$ such that $f_k(G) \leq c$ for any $G \in \mathcal{C}$.

Theorem 1 states that bounded expansion implies for each k the existence of a constant upper bound on the parameter f_k. We show in Theorem 3(iii) that the converse statement is not true. While the k-strong induced arboricity is bounded by a constant on the families of graphs listed above, it is a highly non-monotone and unbounded parameter in general. We also show in Theorem 3(i),(ii) some relations between the parameters $f_k(G)$, $\tw(G)$, $\td(G)$, $a(G)$, and the acyclic chromatic number $\chi_{\text{acyc}}(G)$. Recall that the acyclic chromatic number of a graph G is the smallest number of colors in a proper coloring of G in which any two color classes induce a forest. Note that the arboricity of G is at most $f_1(G)$.

Theorem 3. (i) There exists a constant $c > 0$ such that for each graph G we have $c \log(\chi_{\text{acyc}}(G)) \leq f_1(G) \leq (\chi_{\text{acyc}}(G))^2$.

(ii) For any integers $k \geq 2$, $n \geq 3$, and for each item below there is graph G satisfying the listed conditions:

(a) $a(G) = 2$ and $f_1(G) \geq n$,
(b) $f_k(G) \leq 3$ and $f_{k+1}(G) \geq n$,
(c) $f_k(G) \geq n$ and $f_{k+1}(G) = 0$,
(d) G has an induced subgraph H such that $f_k(G) = 3$ and $f_k(H) \geq k$,
(e) $\tw(G) = 2$ and $f_k(G) \geq k$,
(f) $\td(G) = 3$ and $f_k(G) \geq k - 1$.

(iii) There is a class \mathcal{C} of graphs that is not of bounded expansion such that for each $G \in \mathcal{C}$ and each $k \geq 1$ we have $f_k(G) \leq 2$.

Theorem 1 provides the existence of constants bounding $f_k(G)$ for graphs G from special classes. Next, we give more specific bounds on these constants. Clearly, if $\tw(G) \leq 1$, then $f_k(G) \leq 1$ for every k. However, already for graphs G of tree-width 2 finding the largest possible value of $f_k(G)$ for $k \geq 2$ is non-trivial. We show, in particular that $f_1(G) \leq \left(\tw(G) + 1\right)^2$ for any graph G, which is best-possible, since for $\tw(K_{t+1}) = t$ and $f_1(K_{t+1}) = \left(\binom{t+1}{2}\right)$, and that $f_2(G) \leq 3\left(\tw(G) + 1\right)$ for any graph G, which is best-possible when $\tw(G) = 2$, as certified by G being K_3 with a pendant edge at each vertex.

Theorem 4. For every graph G of tree-width $t \geq 2$, we have that $f_1(G) \leq \left(\binom{t+1}{2}\right)$ and $f_2(G) \leq 3\left(\binom{t+1}{2}\right)$.

Nešetřil and Ossona de Mendez [19] prove that for each minor-closed class \mathcal{C} of graphs that is not the class of all graphs there is a constant x such that each graph in \mathcal{C} has acyclic chromatic number at most x. We show how to bound f_2 in terms of x.

Theorem 5. For every minor-closed class of graphs \mathcal{C} whose members have acyclic chromatic number at most x, we have that for every $G \in \mathcal{C}$,

$$f_2(G) \leq \begin{cases} \left(\binom{x}{2}\right)(3\left(\binom{x}{2}\right) + 1), & \text{if } x \leq 9, \\ \left(\binom{x}{2}\right)(12x + 1), & \text{if } x \geq 9. \end{cases}$$
Using Borodin’s result that each planar graph has acyclic chromatic number at most 5 [7], Theorem 5 implies the following.

Corollary 6. For every planar graph \(G \), \(f_2(G) \leq 310 \).

This result answers an open question about vertex-distinguishing numbers of graphs. Given a graph \(G \), an assignment of positive integers to its vertices is called distinguishing if the sum of the labels in the closed neighborhood of any vertex \(v \) differs from such this sum in the closed neighborhood of any of the neighboring vertices \(u \) of \(v \), unless \(N[u] = N[v] \). I.e., the labeling distinguishes between adjacent vertices. The smallest positive integer \(\ell \) such that there is a distinguishing labeling of \(G \) with labels in \(\{1, \ldots, \ell\} \) is called adjacent closed vertex-distinguishing number of \(G \), denoted \(\text{dis}[G] \). While for an analogous notion \(\text{dis}(G) \) with open neighborhoods considered instead of closed neighborhoods, it is known that there is a constant \(c \) such that \(\text{dis}(G) \leq c \) for any planar graph \(G \), as noted by Norine, see [4], it was not known whether \(\text{dis}[G] \) is bounded by a universal constant for all planar graphs. In [3] it was shown that if \(f_2(G) \leq x \) then \(\text{dis}[G] \) is bounded from above by some product of \(x \) pairwise co-prime numbers. Thus, Corollary 6 implies the following.

Corollary 7. There is an absolute constant \(c \) such that for any planar graph \(G \), the adjacent closed distinguishing number \(\text{dis}[G] \leq c \).

The tree-depth is somehow a more restrictive variant of the tree-width. We have tw\((G) \leq \text{td}(G) - 1 \) for any graph \(G \), but when \(G \) is a graph of tree-depth \(d \), the longest path in \(G \) has at most \(2^d - 1 \) vertices. In particular, even graphs of tree-width 1 can have arbitrarily large tree-depth [21]. The next theorem shows that the parameter \(f_k \) is bounded for graphs of tree-depth \(d \) by a polynomial in \(d \) as well as a polynomial in \(k \).

Theorem 8. For all positive integers \(k, d \) and any graph \(G \) of tree-depth \(d \), \(f_k(G) \leq (2k)^d \). If \(d \geq k + 1 \) then \(f_k(G) \leq (2k)^{k+1}(\frac{d}{k+1})^d \). Moreover \(f_1(G) \leq (\frac{d}{2})^d \).

Organization of the paper: We prove Theorem 3 in Section 2. We consider graphs of bounded tree-width in Section 3 and prove Theorem 4 in that section. The proofs of the bounds on \(f_k \) in terms of the acyclic chromatic number and the proof of Theorem 5 are given in Section 4. Graphs of bounded tree-depth, and more general classes of graphs, are considered in Section 5, where we prove Theorems 8. We prove the main Theorem 1 in Section 6. Finally we summarize our results, state some open questions and discuss other variants of the strong induced arboricity in Section 7.

2 General inequalities

In this section we prove the general properties of the parameter \(f_k \) listed in Theorem 3.

Proof of Theorem 3(i). For the first inequality, consider a covering of \(E(G) \) with \(x = f_1(G) \) induced forests \(F_1, \ldots, F_x \) and for each forest a proper 2-coloring of its vertices. Let \(c_1, \ldots, c_x \) be colorings of \(V(G) \) in colors \(\{0, 1, 2\} \) such that \(c_i(v) = 0 \) if \(v \not\in V(F_i) \), \(c_i(v) = 1 \) if \(v \) is from the first color class of \(F_i \), and \(c_i(v) = 2 \) if \(v \) is from the second color class of \(F_i \). Let a coloring \(c \) of \(V(G) \) be defined as \(c(v) = (c_1(v), \ldots, c_x(v)) \), \(v \in V(G) \). To see that \(c \) is an acyclic coloring assume that two color classes \((a_1, \ldots, a_{x_1}), (b_1, \ldots, b_{x_2}) \) induce a cycle \(C \). Let \(e \) be an edge of \(C \). It is in some \(F_i \) and hence \(\{a_i, b_i\} = \{1, 2\} \). Thus the \(i^{th} \) coordinate of \(c \) in the cycle \(C \) alternates between 1 and 2. This implies that all edges of \(C \) belong to \(F_i \), a contradiction since \(F_i \) is acyclic. For similar reasons \(c \) is proper. Thus \(c \) is an acyclic coloring.
For the second inequality, consider an acyclic proper coloring of G using $\chi_{\text{acyc}}(G)$ colors. For every pair of colors c_1, c_2 the subgraph of G induced by the vertices of color c_1 or c_2 is an induced forest in G. Moreover, every edge of G is contained in exactly one such induced forest. Hence, by removing all isolated vertices from each such forest, we get $f_1(G) \leq \chi_{\text{acyc}}^2$.

Proof of Theorem 3(ii.a). Let $R^{-1}(t)$ denote the smallest number of colors needed to color $E(K_t)$ without monochromatic triangles. By Ramsey’s Theorem [23, 25] we have $R^{-1}(t) \to \infty$ as $t \to \infty$. Choose t sufficiently large such that $R^{-1}(t) \geq n^2$. Since $n \geq 3$, clearly $t \geq 3$.

Let G be the graph obtained from K_t by subdividing each edge once. For an edge e in K_t let e_1 and e_2 denote the two corresponding edges in G. Split G into two subgraphs G_1 and G_2 where G_i contains all edges e_i, $e \in E(K_t)$, $i = 1, 2$. Then $E(G) = E(G_1) \cup E(G_2)$ and, for $i = 1, 2$, each component of G_i is a star with center at an original vertex of K_t. Therefore $a(G) \leq 2$ and as $t \geq 3$, we have $a(G) = 2$.

Let $N = f_1(G)$ and consider induced forests F_1, \ldots, F_N covering all edges of G. We consider the following edge-coloring of K_t. If there is an i, $1 \leq i \leq N$, with $e_1, e_2 \in E(F_i)$, then color the edge e with color i (choose an arbitrary such i). Otherwise there are i and j, $1 \leq i < j \leq N$, with $e_1, e_2 \in E(F_i) \cup E(F_j)$, $i \neq j$, and we color the edge e with color (i, j) (choose an arbitrary such pair). This coloring uses at most $N + \left(\begin{smallmatrix} 3 \\ 2 \end{smallmatrix}\right) = \binom{N+1}{2}$ colors. We claim that there are no monochromatic triangles under this coloring. Indeed there is no triangle in color i, $1 \leq i \leq N$, since F_i contains no cycle, and there is no triangle in color (i, j), $1 \leq i < j \leq N$, since F_i and F_j are induced. Therefore $f_1(G) = \binom{N+1}{2} \geq R^{-1}(t) \geq n^2$. This shows that $f_1(G) \geq n$, since $\binom{n}{2} < n^2$.

Proof of Theorem 3(ii.b). Like in the proof of part (ii.a), let $R^{-1}(t)$ denote the smallest number of colors needed to color $E(K_t)$ without monochromatic triangles. By Ramsey’s Theorem [23, 25] we have $R^{-1}(t) \to \infty$ as $t \to \infty$. Choose t sufficiently large such that $R^{-1}(t) \geq n^2$ and, additionally, $t \geq 2k + 2$.

Let G be obtained from K_t by subdividing each edge twice and choosing for each original edge of K_t one of its subdivision vertices and adding $k - 1$ pendant edges to this vertex, see Figure 1 (left part) when $k = 2$. Observe that all edges of G are k-valid and $(k + 1)$-valid.

First we shall show that $f_k(G) \leq 3$ by finding 3 k-strong forests covering all edges of G. For an edge e in K_t let e_1, e_2, e_3 denote the subdividing edges in G, with e_2 the middle one. Let T_1 be the subgraph consisting of all edges e_2, $e \in E(K_t)$, and all edges adjacent to e_2 different from e_1 and e_3 (the pendant edges). Then T_1 is an induced forest and each component of T_1 is a star on k edges. Since $t \geq 2k + 2$, we can choose an orientation of K_t such that each vertex has out-degree and in-degree at least k. Indeed, if t is odd we find such an orientation by following an Eulerian walk, if t is even, we find such an orientation of K_{t-1} as before and orient the edges incident to the remaining vertex x such that at least k of these edges are in-edges at x and at least k of them are out-edges at x. For each edge $e = uv$ in K_t that is oriented from u to v put the edge in $\{e_1, e_3\}$ that is incident to u into T_2 and the other edge from $\{e_1, e_3\}$ into T_3. Then T_2 and T_3 are induced forests and each component of T_2 and T_3 is a star on at least k edges. Moreover each edge of G is contained in $E(T_1) \cup E(T_2) \cup E(T_3)$. Therefore $f_k(G) \leq 3$.

Next, we prove that $f_{k+1}(G) \geq n$. Let $N = f_{k+1}(G)$ and consider $(k + 1)$-strong forests F_1, \ldots, F_N covering all edges of G. For each edge e of K_t, if F_i contains e_2, then it contains either e_1 or e_3 as well, since each component of F_i has at least $k + 1$ edges. We consider the following edge-coloring of K_t. If there is an i, $1 \leq i \leq N$, such that $e_1, e_2, e_3 \in E(F_i)$, then color the edge e with i (choose an arbitrary such i). Otherwise there are distinct i, j, $1 \leq i, j \leq N$, such that, without loss of generality, $e_1, e_2 \in E(F_i)$ and $e_3 \in E(F_j)$. In this
Proof of Theorem 3(ii.c).
Consider the graph G formed by taking the union of a clique on $n+1$ vertices and a path of length $k-1$ that shares an endpoint with the clique. Then we see that all edges of G incident to the path are k-valid. However, no two edges of the clique could be in the same induced forest, thus $f_k(G) \geq n$. On the other hand, since each induced tree in G contains at most one edge from the clique, it could have at most k edges. Thus there are no $(k+1)$-valid edges and $f_{k+1}(G) = 0$.

Proof of Theorem 3(ii.d) and (ii.e).
Consider the graph G shown in Figure 2. We see from Figure 2 that G is covered by three large induced trees (a bold, a solid, and a dashed path) and thus $f_k(G) \leq 3$. Let H be its induced subgraph formed by the bold vertices shown in the Figure 2. We see that H is formed by a path u_1, u_2, \ldots, u_{2k} and independent vertices $w_1, w_2, \ldots, w_{2k-1}$ such that w_i is adjacent to u_i and u_{i+1}. Then consider the matching in H formed by the edges $u_iw_i, k \leq i \leq 2k-1$, and an induced tree T_i in H of size k containing $u_iw_i, k \leq i \leq 2k-1$. We see that the trees T_k, \ldots, T_{2k-1} are distinct and their pairwise union induces a triangle in H. Thus no two of them can belong to the same k-strong forest in H. Hence $f_k(H) \geq k$. This proves Theorem 3(ii.d). In addition, $tw(H) = 2$. This proves Theorem 3(ii.e) (where H plays the role of G from the Theorem).

Proof of Theorem 3(ii.f).
Consider the graph G shown in the Figure 3. Then $td(G) = 3$. Hence $f_{k+1}(H) \geq k$. This proves Theorem 3(ii.f).
Consider the complete bipartite graph $K_{n,n}$ obtained from $K_{n,n}$ by subdividing every edge once.

Figure 4: Two maximum induced trees T_1, T_2 covering all edges of the graph G_n ($n = 4$) obtained from $K_{n,n}$ by subdividing every edge once.

(look at the cut vertex as a root of the underlying tree) and $f_k(G) = k - 1$.

Proof of Theorem 3(iii). Consider the complete bipartite graph $K_{n,n}$ and let G_n be the graph obtained from $K_{n,n}$ by subdividing each edge once. We claim that for any positive integers k and n we have $f_k(G_n) \leq 2$, and moreover that the graph class $C = \{G_n \mid n \in \mathbb{N}\}$ is not of bounded expansion. For the latter, we shall show that for each integer a there is an n such that $\chi_3(G_n) > a$. We consider an arbitrary vertex coloring c of G_n with a colors. Color an edge e of $K_{n,n}$ with the set of colors assigned to the three corresponding vertices in G_n. This coloring uses at most $\binom{n}{3} \leq 2^n$ colors and hence, for sufficiently large n, contains a monochromatic path on at least 5 vertices in some color C. So the subgraph of G_n induced by vertices colored with colors from C contains a path on at least $9 > 2^3$ vertices. Since such a path has tree-depth greater than 3 and since $|C| \leq 3$, c is not a 3-tree-depth coloring. Since e was arbitrary, $\chi_3(G_n) > a$ for sufficiently large n. Hence C is not of bounded expansion.

Next we prove that, for any integers $k, n \geq 1$ we have $f_k(G_n) \leq 2$. To this end, we construct two maximum induced trees in G_n covering all edges of G_n. Clearly, $|V(G_n)| = 2n + n^2$ and we claim that a largest induced tree in G_n contains exactly $n + 1 + n^2 = |V(G_n)| - (n - 1)$ vertices. Let $X(G_n)$ denote the smallest number of vertices in G_n whose deletion makes the graph acyclic. (That is, $X(G_n)$ denotes the size of a minimum feedback vertex set [11].) We shall prove by induction on n that $X(G_n) \geq n - 1$. In fact, for $n = 1$, G_n is a tree itself and thus $X(G_1) = 0$. For $n \geq 2$, consider an 8-cycle in G_n consisting of four original vertices v_1, v_2, v_3, v_4 of $K_{n,n}$, v_1, v_2 from one bipartition class and v_3, v_4 from the other, and the four subdivision vertices corresponding to the four edges v_1v_3, v_1v_4, v_2v_3, and v_2v_4 in $K_{n,n}$. At least one of these eight vertices has to be deleted to make the graph acyclic, say it is one of v_1, v_3, or the vertex x subdividing edge v_1v_3. Then $G_n - \{v_1, v_2, x\}$ is isomorphic to G_{n-1} and thus at least $X(G_{n-1})$ further vertices have to be deleted. Hence by induction we get $X(G_n) \geq X(G_{n-1}) + 1 \geq (n - 2) + 1 = n - 1$, as desired. Thus any induced tree in G_n has at most $n^2 + 2n - (n - 1)$ vertices.

On the other hand, one obtains a maximum induced tree T_1 by deleting $n - 1$ original vertices of $K_{n,n}$ that belong to the same bipartition class, see Figure 4. Deleting $n - 1$ vertices from the other bipartition class gives symmetrically a maximum induced tree T_2. Finally, observe that T_1 and T_2 together cover all edges of G_n, which certifies that $f_k(G_n) \leq 2$ for $k \leq n + 1 + n^2$. For $k > n + 1 + n^2$ no edge of G_n is k-valid and thus $f_k(G_n) = 0$.

3 Graphs of bounded tree-width

We start with a list of properties of graphs of tree-width 2. Then we shall prove that $f_2(G) \leq 3$ for any graph G of tree-width 2. This is the main part of the proof. Then, we shall do an easy reduction argument to express the upper bound from Theorem 4 on $f_2(G)$ for graphs G of larger tree-width.
3.1 Properties of graphs with tree-width 2 and observations

Consider any fixed graph \(G \) of tree-width 2. Firstly, \(G \) contains no subdivision of \(K_4 \) [5]. (In fact, this property characterizes tree-width 2 graphs.) Moreover, it is well-known (see for example [24]) that as long as \(|V(G)| \geq 3 \), there is a 2-tree \(H \) with \(G \subseteq H \) and \(V(H) = V(G) \).

Let us fix such a 2-tree \(H \). Every edge of \(H \) is in at least one triangle of \(H \). Consider the partition \(E(H) = E_{\text{in}}(H) \cup E_{\text{out}}(H) \) of the edges of \(H \), where \(E_{\text{out}}(H) \) consists of those edges that are contained in only one triangle of \(H \), called the outer edges of \(H \). Respectively, \(E_{\text{in}}(H) \) consists of those edges that are contained in at least two triangles of \(H \), called the inner edges of \(H \). Note, if \(H \) is outerplanar, every edge is in at most two triangles, and our definition corresponds to the usual partition into outer and inner edges of an outerplanar embedding of \(H \).

The following two statements can be easily proved by induction on \(|V(H)| \). Indeed, both statements hold with “if and only if” and are maintained in the construction sequence of the 2-tree \(H \).

\((P1)\)
If \(v \in V(H) \) is incident to two outer edges in the same triangle of \(H \), then \(\deg_H(v) = 2 \).

\((P2)\)
If \(uw \in E_{\text{in}}(H) \), then \(H - \{u, w\} \) is disconnected.

It is easy to see that for any 2-connected graph \(F \) with \(|V(F)| \geq 4 \) and for any two vertices \(u, w \in V(F) \) we have the following:

\((P3)\)
For every connected component \(K \) of \(F - \{u, w\} \) we have \(N(u) \cap V(K) \neq \emptyset \) and \(N(w) \cap V(K) \neq \emptyset \).

\((P4)\)
The graph \(F - \{u, w\} \) is connected if and only if the graph \(F' \) obtained from \(F \) by identifying \(u \) and \(w \) into a single vertex is 2-connected.

Now if \(G \) is a 2-connected graph of tree-width 2 and \(H \) is a 2-tree with \(G \subseteq H \) and \(V(H) = V(G) \), then we have the following properties.

\((P5)\)
\(E_{\text{out}}(H) \subseteq E(G) \)

\((P6)\)
For every \(e \in E_{\text{out}}(H) \) the graph \(G/e \) obtained from \(G \) by contracting edge \(e \) is 2-connected.

To see \((P5)\), consider any edge \(e = uw \) in \(E_{\text{out}}(H) \). As \(G \) is 2-connected, there exists a cycle \(C \) in \(G \) through \(u \) and \(w \). If \(e \in E(C) \) then \(e \in E(G) \) and we are done. Otherwise, in \(H \), edge \(e \) is a chord of cycle \(C \), splitting it into two cycles \(C_1 \) and \(C_2 \). As \(H \) is a chordal graph, \(C_1 \) and \(C_2 \) are triangulated, i.e., \(e \) is contained in a triangle with vertices in \(C_1 \) and another triangle with vertices in \(C_2 \). Thus \(e \in E_{\text{in}}(H) \), a contradiction to \(e \in E_{\text{out}}(H) \).

To see \((P6)\), consider any outer edge \(e = uw \) of \(H \). By \((P4)\) we have that \(G/e \) is 2-connected if \(G - \{u, w\} \) is connected. Assume for the sake of contradiction that \(G - \{u, w\} \) is disconnected and let \(K_1, K_2 \) be two connected components of \(G - \{u, w\} \). Then by \((P3)\) for \(i = 1, 2 \) we have \(N(u) \cap V(K_i) \neq \emptyset \) and \(N(w) \cap V(K_i) \neq \emptyset \). Hence we can find a cycle \(C \) in \(H \) for which \(e = uw \) is a chord by going from \(u \) to \(w \) through \(K_1 \) and from \(w \) to \(u \) through \(K_2 \). As before, it follows that \(e \in E_{\text{in}}(H) \), a contradiction to \(e \in E_{\text{out}}(H) \). Hence, \(G/e \) is 2-connected.

Finally, let us characterize the edges of \(G \) that are not 2-valid. An edge \(uw \) of \(G \) is called a twin edge if \(N[u] = N[v] \), i.e., if the closed neighborhoods of \(u \) and \(v \) coincide. Observe that twin edges are exactly the edges that are not 2-valid.
(P7) If G is 2-connected, $\text{tw}(G) = 2$, and xy is a twin edge in G, then G is a 2-tree consisting of r triangles, $r \geq 1$, all sharing the common edge xy.

To prove (P7), let H be a 2-tree with $G \subseteq H$ and $V(H) = V(G)$. Consider the set $S = N(x) - y = N(y) - x$. As G is 2-connected, we have $|S| \geq 1$. We claim that for each $w \in S$ the edges xw and yw are outer edges. Indeed, if $xw \in E_{in}(H)$, then by (P2) the graph $H - \{x, w\}$ and therefore also the graph $G - \{x, w\}$ is disconnected. Let K be a connected component of $G - \{x, w\}$ which does not contain y. By (P3) we have $N(x) \cap V(K) \neq \emptyset$, as G is 2-connected. This is a contradiction to $N(x) - y = N(y) - x$. Thus for every $w \in S$ we have $xw \in E_{out}(H)$ and symmetrically $yw \in E_{out}(H)$. It follows from (P1) that $\deg_H(w) = 2$ and hence $\deg_G(w) = 2$. Thus $V(G) = S \cup \{x, y\}$, as desired.

3.2 Special decomposition of tree-width 2 graphs

Theorem 9. Let $G = (V, E)$ be a connected non-empty graph of tree-width at most 2, different from C_4. Then there exists a coloring $c : V \rightarrow \{1, 2, 3\}$ such that each of the following holds:

1. For each $i \in \{1, 2, 3\}$ the set $V_i = \{v \in V \mid c(v) \neq i\}$ induces a forest F_i in G.

2. For each $i \in \{1, 2, 3\}$ there is no K_1-component in F_i.

3. For each $i \in \{1, 2, 3\}$ every K_2-component of F_i is a twin edge.

Proof. We call a coloring $c : V \rightarrow \{1, 2, 3\}$ good if it satisfies (1)–(3). We shall prove the existence of a good coloring by induction on $|V|$, the number of vertices in G. We distinguish the cases whether G is 2-connected or not.

Case 1: G is not 2-connected. If G is a single edge uv, then a desired coloring is given by $c(u) = c(v) = 1$. Otherwise G has at least two blocks. Consider a leaf block B in the block-cutvertex-tree of G and the unique cut vertex v of G in this block. Consider the graphs $G_1 = B$ and $G_2 = G - (B - v)$, see Figure 5. We define colorings c_1 and c_2 for G_1 and G_2, respectively, as follows. For $i \in \{1, 2\}$, if $G_i \neq C_4$, then we apply induction to G_i and obtain a coloring c_i of G_i satisfying (1)–(3). On the other hand, if $G_i = C_4$, then we take the coloring c_i shown in the left of Figure 6, in which the cut vertex v is incident to the only K_2-component. Note that this coloring satisfies (1) and (2).

$$
\text{Figure 5: Splitting at cut vertex } v.
$$

Without loss of generality we have $c_1(v) = c_2(v) = 1$ and hence c_1 and c_2 can be combined into a coloring c of G by setting $c(x) = c_i(x)$ whenever $x \in V(G_i)$, $i = 1, 2$. Clearly, this coloring c satisfies (1) and (2).

If xy is a K_2-component of F_i in G for some $i \in \{1, 2, 3\}$, with $v \neq x, y$, then xy is also a K_2-component of the corresponding forest in G_1 or G_2, say in G_1. In particular, $G_1 \neq C_4$, since $v \neq x, y$. So c_1 satisfies (3) and xy is a twin edge in G_1 and thus also in G, as desired. On the other hand, if xy is an edge of F_i in G for some $i \in \{1, 2, 3\}$, say with $x = v$ and $y \in V(G_1)$, then v is incident to another edge of F_i in G_2, since c_2 satisfies (2). Thus xy is not a K_2-component of F_i.

In any case, c satisfies (3) and hence c is a good coloring.
Case 2: \(G \) is 2-connected. Recall that by (P5) we have \(E_{\text{out}}(H) \subseteq E(G) \), i.e., every outer edge is an edge of \(G \). An outer edge \(e \) is called contractible if \(e \) is in no triangle of \(G \). If \(G \) has a contractible edge \(e \), then we shall consider the smaller graph \(G/e \) obtained by contracting \(e \). If \(G/e \) has a twin edge, we shall give a good coloring \(c \) of \(G \) directly, otherwise we obtain a good coloring \(c \) by induction. On the other hand, if \(G \) has no contractible edges, we shall give a good coloring \(c \) directly.

Case 2A: There exists a contractible edge \(e \) in \(G \). Let \(e = uv \) be contractible. Consider the graphs \(G' = G/e \) and \(H' = H/e \) obtained from \(G \) and \(H \) by contracting edge \(e \) into a single vertex \(v \). As \(e \in E_{\text{out}}(H) \) and \(H \neq K_3 \) (otherwise \(e \) would be in a triangle of \(G \)), we have that \(H' \) is a 2-tree. In particular, \(\text{tw}(G') \leq 2 \). Moreover, by (P6) \(G' \) is also 2-connected. Finally, as \(e \) is not in a triangle in \(G \), we have that \(|E(G)| = |E(G') \cup \{e\}| \).

If \(G' = C_4 \) then \(G = C_5 \) and it is easy to check that coloring the vertices around the cycle by 1, 1, 2, 2, 3 gives a coloring \(c \) satisfying (1), (2) and (3).

If \(G' \) has a twin edge \(xy \), then by (P7) we have that \(G' = H' \) and \(G' \) consists of \(r \) triangles, \(r \geq 1 \), all sharing the common edge \(xy \). Since the contractible edge \(e \) lies in no triangle of \(G \) and \(G \neq C_4 \), we have that \(G' \) is not a triangle and thus in fact \(r \geq 2 \).

Now if \(v = y \) (the case \(v = x \) being symmetric), then \(G \) looks like in Figure 6 (middle) and a good coloring of \(G \) is given by \(c(x) = 1, c(u) = c(w) = 2 \) and \(c(z) = 3 \) for every \(z \in S \). On the other hand, if \(v \in S \), then without loss of generality \(ux \in E(G) \) and \(wy \in E(G) \), and \(G \) looks like in Figure 6 (right side). A good coloring of \(G \) is given by \(c(x) = c(w) = 1, c(y) = 2 \), and \(c(z) = 3 \) for every \(z \in (S \cup w) - v \). In both cases it is easy to check that \(c \) satisfies (1), (2) and (3).

![Figure 6: Left: A coloring of \(C_4 \) satisfying (1) and (2) and with one \(K_2 \)-component (in \(F_3 \)). Middle and right: Good colorings when the graph obtained by contracting edge \(uv \) has a twin edge.](image)

Figure 7: The case that \(G \) has a contractible edge \(e = uw \).

So finally we may assume that \(G' \neq C_4 \) and \(G' \) has no twin edge. Applying induction to \(G' \), we obtain a good coloring \(c' \) of \(V(G') = V - \{u, w\} + v \) with corresponding induced forests \(F'_1, F'_2 \) and \(F'_3 \) in \(G' \). We define a coloring \(c : V \to \{1, 2, 3\} \) by \(c(x) = c'(x) \) for each \(x \in V' - v \) and \(c(u) = c(w) = c'(v) \), see Figure 7.

Say \(c'(v) = 1 \). Now \(c \) satisfies (1) as \(F_1 = F'_1 \), and \(F'_2, F'_3 \) are obtained from \(F_2, F_3 \), respectively, by contracting the edge \(uw \), that is not in a triangle in \(G \). Thus, since \(F'_1 \) had no \(K_1 \) or \(K_2 \)-components, so does \(F_1 \). This shows that \(c \) is a good coloring.
Case 2B: There are no contractible edges in G. In this case we define the coloring $c : V \to \{1, 2, 3\}$ to be some proper 3-coloring of H. To prove that c satisfies (1), assume for the sake of contradiction that there is a cycle in F_i for some $i \in \{1, 2, 3\}$, i.e., a cycle using the two colors in $\{1, 2, 3\} - \{i\}$. Since H is chordal, a shortest such cycle would be a 2-colored triangle, which contradicts c being a proper coloring.

To prove that the coloring c satisfies (2) and (3), we define for any vertex $x \in V$ a trail around x to be a sequence s_1, \ldots, s_r of r distinct neighbors of x, such that x, s_i, s_{i+1} form a triangle in H for $i = 1, \ldots, r - 1$ and $x s_i \in E_{\text{out}}(H)$. Note that $x s_i \in E_{\text{in}}(H)$ for $i = 2, \ldots, r - 2$. Moreover, for any triangle x, y, z in H we can greedily construct a trail around x whose first elements are $s_1 = y$ and $s_2 = z$. Indeed, having constructed s_1, \ldots, s_i then either $x s_i \in E_{\text{out}}(H)$ and we are done, or $x s_i \in E_{\text{in}}(H)$ and x, s_i have another common neighbor s_{i+1} in H different from s_{i-1}. Moreover, $s_{i+1} \neq s_j$ for $j = 1, \ldots, i - 2$, as otherwise the subgraph of H induced by $\{x, s_j, \ldots, s_i\}$ would contain a subdivision of K_4, a contradiction to $\text{tw}(H) = 2$. See Figure 8.

![Figure 8: An example of a trail s_1, \ldots, s_5 around x.](image)

Now we shall show that c satisfies (2) by proving that any vertex x of G, say $c(x) = 1$, has a neighbor in G of color 2 and a neighbor in G of color 3. As G is connected, x is adjacent to some vertex y, say $c(y) = 2$. The edge $x y$ is in a triangle in H and its third vertex z has color 3. Consider a trail s_1, \ldots, s_r around x starting with $s_1 = y$, $s_2 = z$. Note that $c(s_i) = 2$ if i is odd and $c(s_i) = 3$ if i is even. Hence, if r is even, then as $x s_r \in E_{\text{out}}(H) \subseteq E(G)$, we have that s_r is a neighbor of x of color 3, as desired.

Otherwise r is odd, $r \geq 3$, and $x s_{r-1} \notin E(G)$. In particular $x s_r \in E_{\text{out}}(H)$ is in only one triangle of H, namely x, s_{r-1}, s_r, and in no triangle of G. Hence $x s_r$ is contractible, contradicting the assumptions of Case 2B. This shows that c satisfies (2).

Finally, to show that c satisfies (3), consider any edge $x y$ of G, say $c(x) = 1$ and $c(y) = 2$. If every trail around x starting with $s_1 = y$ and every trail around y starting with $s_1 = x$ has length $r = 2$, then $x y$ is a twin edge. Otherwise, consider a longer such trail, say s_1, \ldots, s_r is a trail around x with $s_1 = y$ and $r \geq 3$. As before, note that $x s_r \in E_{\text{out}}(H)$ is an edge in G and $c(s_i) = 2$ if i is odd and $c(s_i) = 3$ if i is even. If $x s_i \in E(G)$ for some odd $i \geq 3$, we are done. Otherwise r is even, and $x s_{r-1} \notin E(G)$. As before, it follows that $x s_r$ is contractible, contradicting the assumptions of Case 2B. Hence c also satisfies (3), which completes the proof. \hfill \Box

3.3 Proof of Theorem 4

Let G have tree-width t, then $G \subseteq H$ for some t-tree H. Then $\chi(H) = t + 1$. Consider a proper coloring of H and assume that there is a cycle using two colors. Let C be the shortest such cycle. Since H is chordal, C is a triangle. This is impossible since there are no 2-colored triangles in a proper coloring. Thus $\chi_{\text{acyc}}(H) = t + 1$ and therefore $\chi_{\text{acyc}}(G) \leq t + 1$. Theorem 3(i) immediately implies that $f_1(G) \leq \left\lfloor \frac{t + 1}{2} \right\rfloor$.

Next we shall consider $f_2(G)$, where G is a graph of tree-width t. If $t = 2$ and $G = C_4$, we see that each edge in G is 2-valid and two edge disjoint paths on 2 edges each form two induced forests covering all the edges, so $f_2(C_4) = 2$. If $t = 2$ and $G \neq C_4$ is connected then
\[f_2(G) \leq 3 = 3^{(t+1)} \] by Theorem 9. If \(t = 2 \) and \(G \) is not connected, then each component \(G' \) of \(G \) has tree-width at most 2 and thus satisfies \(f_2(G') \leq 3 \) as argued above. Picking one 2-strong forest from each component of \(G \) and taking their union yields a 2-strong forest of \(G \) and hence \(f_2(G) \leq 3 \).

Now, let \(t \geq 3 \). Given a graph \(G \) of tree-width \(t \geq 3 \), let \(H \) be a \(t \)-tree that contains \(G \). It is well-known [9], that any proper \((t + 1)\)-coloring of \(H \) has the property that any set of \(p + 1 \) colors, \(p = 1, \ldots, t \), induces a \(p \)-tree. We hence have a \((t + 1)\)-coloring of \(G \) such that each of the \(x = \binom{t+1}{3} \) sets of 3 colors induces a graph of tree-width at most 2. Call these graphs \(G_1, \ldots, G_x \). As each 2-valid edge has a witness tree induced by 3 vertices, each witness tree is contained in \(G_i \), for some \(i \in \{1, \ldots, x \} \). So each 2-valid edge is 2-valid in some \(G_i \). Since \(\mathrm{tw}(G_i) \leq 2 \), \(f_2(G_i) \leq 3 \), and so the 2-valid edges of \(G_i \) can be covered by 3 2-strong forests, \(i = 1, \ldots, x \). Hence the 2-valid edges of all \(G_i \)'s and thus the 2-valid edges of \(G \) can be covered with \(3x = 3^{(t+1)} \) 2-strong forests.

\[\square \]

4 Minor-closed classes of graphs with bounded acyclic chromatic number

Lemma 10. Let \(F \) be a graph and let \(M \) be a matching in \(F \). Let \(F_M \) be the graph obtained by contracting the edges of \(M \).

- If \(F_M \) is a forest, then \(\mathrm{tw}(F) \leq 3 \). Moreover, if \(M \) is an induced matching, then \(\mathrm{tw}(F) \leq 2 \).
- Let \(c \) be an acyclic coloring of \(F_M \) with colors \(1, \ldots, m \). If \(e \) is a 2-valid edge of \(F \) contained in \(M \) then \(e \) is 2-valid in some subgraph \(F_{a,b} \) of \(F \), where \(F_{a,b} \) is obtained by “uncontracting” the subgraph of \(F_M \) induced by colors \(a \) and \(b \), \(a, b \in \{1, \ldots, m\} \).

Proof. First assume that \(T = F_M \) is a tree. We prove the first item by induction on the number of edges in \(F_M \). If \(T \) has only one edge, then \(F \) has at most 4 vertices (at most 3 if \(M \) is induced) and it is thus a subgraph of \(K_4 \) (respectively \(K_5 \)), that is a 3-tree (respectively 2-tree). Hence \(\mathrm{tw}(F) \leq 3 \) (respectively \(\mathrm{tw}(F) \leq 2 \)).

For a vertex \(y \) of \(T \), let \(X_y \) be the inverse image of \(y \) under contraction, i.e., a set of at most two vertices in \(F \). Suppose that \(T \) has at least 2 edges and \(vw \) is an edge incident to a leaf \(v \). Let \(F' = F - X_v \), \(M' \) be the edge set of \(M - v \) and \(T' \) be the graph obtained by contracting the edges of \(M' \) in \(F' \). Then we see that \(T' = T - v \) is a tree. By induction, \(F' \) is a subgraph of a \((p + 1)\)-tree \(H' \), \(p \in \{1, 2\} \). Consider a bag \(B_v \) in \(H' \) containing \(X_v \). We have that \(|X_v|, |X_u| \in \{1, 2\} \) and the vertices of \(X_v \) are adjacent only to some vertices in \(X_u \subseteq B \). Moreover, if \(M \) is induced then at most one of \(X_u \), \(X_v \) can be of size 2.

If \(H' \) is a 3-tree, then the bags are cliques on 4 vertices. If \(|X_v| = 1 \), add a bag \(B_v \) to \(H' \) that consists of \(X_v \), the neighbors of \(X_v \) in \(F \) (there are at most 2), and at most two extra vertices from \(B \) if needed to make \(B_v \) of size 4. If \(|X_v| = 2 \), let \(X_v = \{v', v''\} \). First add a bag \(B_1 \) to \(H' \) that consists of \(v' \), the neighbors of \(X_v \) in \(B \), and at most two extra vertices from \(B \). Then add a bag \(B_2 \) to \(H' \) that consists of \(v', v'' \), the neighbors of \(v'' \) in \(B \), and at most one extra vertex from \(B \). In both cases this gives a 3-tree that contains \(F \).

1. If \(M \) is induced and \(H' \) is a 2-tree, we have that either \(X_v \) or \(X_u \) is of size 1. If \(|X_v| = 1 \), add a bag consisting of \(X_v \), the neighbors of \(X_v \) in \(F \) (there are at most 2) and an extra vertex from \(B \) if necessary. If \(|X_v| = 2 \), then \(|X_u| = 1 \), so there is only vertex \(w \) in \(F \) that is adjacent to some vertex in \(X_v \), \(w \in B \). Then let \(X_v = \{v', v''\} \). First add a bag with vertices \(w, v', v' \), where \(w' \) is in \(B \) and then add a bag with vertices \(w, v', v \). In both cases this gives a 2-tree that contains \(F \). This proves the first item of the Lemma if \(F_M \) is a tree.
If F_M is a forest, then each component T' of F_M is obtained from some component F' of F by contracting the edges of $M \cap E(F')$. Moreover if M is induced in F, then $M \cap E(F')$ is induced in F'. By the arguments above each component of F has tree-width at most 3 (respectively 2 if M is induced), and hence $\text{tw}(F) \leq 3$ (respectively $\text{tw}(F) \leq 2$ if M is induced).

To see the second item of the Lemma, consider a witness tree of $e = xy$ with vertices x, y, z. Then x and y got contracted to a vertex of color, say a, in F_M and z either got contracted or stayed as it is and got some color b under coloring c of F_M. So, $x, y, z \in V(F_{a, b})$. Since x, y, and z induce a tree in F, they induce a tree in $F_{a, b}$ since $F_{a, b}$ is an induced subgraph of F.

4.1 Proof of Theorem 5

Given a graph $G \in \mathcal{C}$, consider an acyclic coloring c of G with x colors. For each of the $\binom{x}{2}$ many pairs of colors $\{i,j\}$, $i \neq j$, we split the forest induced by these colors into the 2-strong forest $F_{i,j}$, and the induced matching $M_{i,j}$, which respectively gather the components with at least two edges and the ones with only one edge. Each edge of G belongs to either $F_{i,j}$ or $M_{i,j}$ for some i, j. Let E be the set of edges that do not belong to any of $F_{i,j}$’s. Thus each $e \in E$ is in $M_{i,j}$, for some i, j. We see that the $\binom{x}{2}$ 2-strong forests $F_{i,j}$ cover all 2-valid edges of G that are not in E. Next, we shall show two different approaches how to cover the 2-valid edges of G that are in E.

Consider fixed i, j, $1 \leq i < j \leq x$, and let $M = M_{i,j}$. Let G_M be the graph obtained from contracting the edges of M in G. Then G_M is again in the class \mathcal{C} and thus has acyclic chromatic number at most x. Consider an acyclic coloring c' of G_M and the graph $H_{a,b}$ induced by two distinct color classes a and b in G_M. Consider $G_{a,b} = G_{a,b}(M)$, the graph obtained from $H_{a,b}$ by uncontracting M. Then, since $H_{a,b}$ is an induced subgraph of G_M, $G_{a,b}$ is an induced subgraph of G and $H_{a,b}$ is obtained from $G_{a,b}$ by contracting the edges of M in $G_{a,b}$. Thus, since $H_{a,b}$ is a forest and $M \cap E(G_{a,b})$ is an induced matching in $G_{a,b}$, by Lemma 10 applied with $F = G_{a,b}$, we have $\text{tw}(G_{a,b}) \leq 2$. Thus by Theorem 4, the 2-valid edges of $G_{a,b}$ are covered by three 2-strong forests. By the second item of Lemma 10, applied with $F = G$, each 2-valid edge of G that is in M is 2-valid in some $G_{a,b}$. Each 2-valid edge of G from E belongs to some matching $M = M_{i,j}$ and thus is 2-valid in some $G_{a,b}(M)$. There are altogether $\binom{x}{2}$ such M’s and for each at most $\binom{x}{2}$ graphs $G_{a,b}(M)$, each contributing three covering forests. We see that all 2-valid edges of G from E are covered by at most $3\binom{x}{2}$ 2-strong forests in G.

To see another way to deal with the edges in E consider the subgraph G' of G formed by these edges. Since each vertex of color i under coloring c is incident to at most one vertex in each $M_{i,j}$, $1 \leq j \leq x$, $j \neq i$, the maximum degree of G' is at most $x - 1$. Therefore the edge set of G' can be decomposed into x matchings by Vizing’s theorem. Let M be one such a matching. Let G_M be obtained from G by contracting M. Again, $G_M \in \mathcal{C}$. Let c' be an acyclic coloring of G_M with at most x colors and let $H_{a,b}$ be the induced forest formed by some color classes a and b. Further, let $G_{a,b}$ be a graph obtained by uncontracting M in $H_{a,b}$. By Lemma 10 applied with $F = G_{a,b}$, $\text{tw}(G_{a,b}) \leq 3$. Thus by Theorem 4, the 2-valid edges of $G_{a,b}$, can be covered by twelve 2-strong forests. By the second item of Lemma 10 applied with $F = G$, each 2-valid edge of G that is in M is 2-valid in some $G_{a,b}$. Therefore, all 2-valid edges of G from E are covered by at most $12\binom{x}{2}$ 2-strong forests.

So, the 2-valid edges from E are covered by at most $\min\{12\binom{x}{2}, 3\binom{x}{2}\}$ 2-strong forests. Recall that the remaining 2-valid edges that are in $F_{i,j}$’s are covered by at most $\binom{x}{2}$ 2-strong forests. The theorem follows.
5 Graphs of bounded tree-depth

Recall that G has tree-depth at most d if and only if there exists a rooted forest F of depth d such that G is a subgraph of the closure of F. When F consists of only one tree and $V(G) = V(F)$ we call such a tree an underlying tree of G. In particular any connected graph of tree-depth at most d has an underlying tree of depth at most d. Let $TD(d)$ denote the set of all graphs of tree-depth at most d having an underlying tree of depth d and let $TD^*(d) \subseteq TD(d)$ be the set of all graphs G in $TD(d)$ some of whose underlying trees of depth d have the root of degree 1. When we talk about a graph G of tree-depth at most d, we usually associate a fixed underlying tree T with root r to it. Let $f_k(d) = \max\{f_k(G) \mid td(G) \leq d\}$. We shall inductively show that this function is well-defined and is bounded by $(2k)^d$ from above.

Lemma 11. Let $G \in TD^*(d)$ with underlying tree T of depth at most d having a root r of degree 1 that is adjacent to a vertex x in T. Then $G - r, G - x \in TD(d - 1)$.

Proof. It suffices to observe that $G - r, G - x$ are graphs of tree-depth at most d with underlying trees obtained by removing r from T, or removing r in T and renaming x with r, respectively. The roots of these trees are x and r, respectively. \hfill \Box

An edge e is almost k-valid in a graph $G \in TD(d)$ with associated root r if it is not k-valid in G but there is an induced path in G containing r and e. Note that, for example, if both endpoints of e are adjacent to r, then there is no such induced path. Let $g_k(d)$ and $g^*_k(d)$ be the the maximum number of almost k-valid edges in a graph $G \in TD(d)$, respectively $G \in TD^*(d)$.

Lemma 12. For all positive integers k, d, with $d \geq 2$, we have $g_k(d) \leq (2k)^{d-1} - 1$ and $g^*_k(d) \leq 2(2k)^{d-2} - 1$.

Proof. For a fixed k we prove the claim by induction on d. If $d = 2$, then any $G \in TD(d)$ is a subgraph of a star. Therefore either all edges form a k-strong forest or G has at most $k - 1$ edges and thus each edge is almost k-valid. Hence $g_k(2) = k - 1$ for any $k \geq 1$. $g^*_k(2) = 0$, and $g^*_k(2) = 1$ for $k \geq 2$.

Now suppose that $d \geq 3$ and that the statement of the Lemma is true for smaller values of d. We consider $g^*_k(d)$ first. Let $G \in TD^*(d)$, r be the root of the underlying tree T of G, and x be the unique neighbor of r in T. Let A be the set of almost k-valid edges e in G such that there is an induced path in G containing e, r, and not containing x. Let B be the set of all remaining almost k-valid edges in G. Each edge in A is almost k-valid in $G - x$. Similarly each edge in $B \setminus \{rx\}$ is almost k-valid in $G - r$ (here the underlying tree is as in Lemma 11). Note that rx might or might not be an edge of G and if it is an edge, it is k-valid or almost k-valid.

Since $G - r, G - x \in TD(d - 1)$ by Lemma 11, we conclude that $|A|, |B \setminus \{rx\}| \leq g_k(d - 1)$. Inductively we obtain $|A| + |B| \leq 2 \cdot ((2k)^{d-2} - 1) + 1 = 2 \cdot (2k)^{d-2} - 1$. Since $G \in TD^*(d)$ was arbitrary we have that $g^*_k(d) \leq 2 \cdot (2k)^{d-2} - 1$.

Now consider $g_k(d)$ for $d \geq 3$. Let $G \in TD(d)$ and let r be the root of the underlying tree T of G. Let x_1, \ldots, x_t be the neighbors of r in T and let $G_i, 1 \leq i \leq t$, be the subgraph of G induced by ith branch of T, i.e., by r, x_i, and all descendants of x_i in T. Assume that each of G_1, \ldots, G_s has an edge incident to r and other G_i’s do not have such an edge. Then, in particular, each almost k-valid edge of G is in some G_i, $i = 1, \ldots, s$.

Assume first that $s \geq k$. There is a star S of size s with center r and edges being from distinct G_i’s. If e is an edge contained in some induced path P in G_i where r is an endpoint,
then there is an induced tree in G formed by P and all edges of S except perhaps for the edge from G_i. So any such edge is k-valid and there are no almost k-valid edges in G.

Now assume that $s \leq k - 1$. Any almost k-valid edge $e \in E(G)$ is almost k-valid in G_i, for some $i \in [s]$. There are at most $g_k^i(d)$ almost k-valid edges in $E(G_i)$, $i = 1, \ldots, s$. Therefore the total number of almost k-valid edges in G is at most $s \cdot g_k^i(d) \leq (k-1) g_k^i(d) \leq (k-1)(2^{d-1}k^{d-2} - 1) \leq 2^{d-1}k^{d-1} - 1$.

Since $G \in TD(d)$ was arbitrary we have that $g_k(d) \leq (2k)^{d-1} - 1$. \hfill \Box

5.1 Proof of Theorem 8

Let G be a graph of tree-depth d. First of all consider the case $k = 1$. It is well-known (see [6, 21]) that any graph of tree-depth at most d has tree-width at most $d - 1$. Hence if $td(G) \leq d$, then by Theorem 4 we have $f_1(G) \leq \binom{d}{2}$. On the other hand K_d is of tree-depth d and $f_1(K_d) = \binom{d}{2}$, so the above bound is tight.

For the rest of the proof assume that $k \geq 2$. We prove that $f_k(G) \leq (2k)^d$ for any graph of tree-depth d. First we prove this claim for $G \in TD(d)$ by induction on d, then we deduce the general case. Recall that $G \in TD(d)$ if and only if G has an underlying tree of depth d.

If $d = 1$, then any graph in $TD(d)$ has no edges. If $d = 2$, then any $G \in TD(d)$ is a subgraph of a star. If G has at least k edges then G is a k-strong forest itself. If G has less than k edges, there are no k-valid edges. Hence $f_k(G) \leq 1$.

Now suppose that $d \geq 3$ and assume that $f_k(G) \leq (2k)^d$ for any $G \in TD(d')$ and $d' < d$. Let r denote the root of the underlying tree T of G. Let x_1, \ldots, x_t be the neighbors of r in T and let G_i, $1 \leq i \leq t$ be the subgraph of G induced by ith branch of T, i.e., by r, x_i, and all descendants of x_i in T. Then $G_i \in TD(d')$, where in the corresponding underlying tree r is the root and x_i is its unique neighbor, $i = 1, \ldots, t$. Here the underlying trees for subgraphs are defined as in Lemma 11.

Let E be the set of k-valid edges in G. We shall split E into sets S_1, \ldots, S_5 and shall show that each of these sets is covered by a desired number of k-strong forests, see Figure 9.

- Let $S_1 = \{rx_i : i = 1, \ldots, t\} \cap E$.
- Let S_2 be the set of edges from $E \setminus S_1$ that are k-valid in $G_i - r$ for some $i \in \{1, \ldots, t\}$.
- Let S_3 be the set of edges from $E \setminus \{S_1 \cup S_2\}$ that are k-valid in $G_i - x_i$ for some $i \in \{1, \ldots, t\}$.
- Let S_4 be the set of edges from $E \setminus \{S_1 \cup S_2 \cup S_3\}$ that are k-valid in G_i for some $i \in \{1, \ldots, t\}$.
- Let $S_5 = E - \{S_1 \cup S_2 \cup S_3 \cup S_4\}$.

I.e., $S_2, S_3, \text{ and } S_4$ consist of k-valid edges in some G_i, with witness trees not containing r, not containing x_i, and containing both r and x_i, respectively. Each edge in S_5 is not k-valid in any G_i, but it is almost k-valid in some G_i. In the following, we say that a family of forests is a good cover of an edge set if these covering forests are k-strong.

Claim. There exists a good cover F_1 of S_1 of size at most $k - 1$.

Proof of Claim. If $|S_1| < k$, for each $e \in S_1$ pick a k-strong forest in G containing e and let F_1 be the set of all these forests. If $|S_1| \geq k$, then let F_1 consist of one forest that is the induced star with edge set S_1. \hfill \triangle
Claim. There exists a good cover F_2 of S_2 of size at most $f_k(d-1)$.

Proof of Claim. Let $i \in \{1, \ldots, t\}$. By Lemma 11 we have that $G_i - r \in TD(d-1)$. Hence we have $f_k(G_i - r) \leq f_k(d-1)$. Let A_i denote a good cover of $S_i \cap E(G_i - r)$ of size at most $f_k(d-1)$ with forests contained in $G_i - r$. We shall combine the forests from A_1, \ldots, A_t into a new family F_2 of at most $f_k(d-1)$ k-strong forests of G. Any union $F_1 \cup \cdots \cup F_i$, where $F_i \in A_i$, is a k-strong forest in G because none of these forests contain r and thus there are no edges between F_i and F_j for $1 \leq i < j \leq t$. So, let each forest from F_2 be a union of at most one forest from each A_i. We see that we can form such a family of size at most max $\{|A_i| : 1 \leq i \leq t\}$. Thus F_2 is a family of at most $f_k(d-1)$ k-strong forests of G. Since each edge $e \in S_2$ is k-valid in some $G_i - r$, the set F_2 is a good cover of S_2.

Claim. There exists a good cover F_3 of S_3 of size at most $f_k(d-1)$.

Proof of Claim. Let $i \in \{1, \ldots, t\}$. By Lemma 11 we have that $G_i - x_i \in TD(d-1)$. Hence we have $f_k(G_i - x_i) \leq f_k(d-1)$. Let A_i denote a good cover of $S_i \cap E(G_i - x_i)$ consisting of at most $f_k(d-1)$ forests in $G_i - x_i$. Similarly as in the claim before, any union $F_1 \cup \cdots \cup F_i$, where $F_i \in A_i$, is a k-strong induced forest in G because all of these forests contain r as $S_2 \cap S_3 = \emptyset$. Let each forest in F_3 be a union of at most one forest from each of A_i, $i = 1, \ldots, t$. It is clear that one can build such a family with at most max $\{|A_i| : 1 \leq i \leq t\}$ forests. So, F_3 consists of at most $f_k(d-1)$ k-strong forests of G. Since each edge $e \in S_3$ is k-valid in some $G_i - x_i$, the set F_3 is a good cover of S_3.

Claim. There exists a good cover F_4 of S_4 of size at most $2g_k(d-1)$.

Proof of Claim. Let $i \in \{1, \ldots, t\}$ and let $e \in S_4$. Then e is k-valid in G_i. Since e is not k-valid in $G_i - r$ and not k-valid in $G_i - x_i$, this means that each witness tree of e in G_i contains both r and x_i. Every such witness tree contains a path containing e, x_i, and not r, or a path containing e, r, and not x_i. This path is induced and thus (as $e \notin S_i$) e is almost k-valid in either $G_i - r$ or $G_i - x_i$, respectively. Hence, $|S_4 \cap G_i| \leq 2g_k(d-1)$ by the definition of $g_k(d-1)$, since $G_i - r, G_i - x_i \in TD(d-1)$ by Lemma 11.

For each edge e in $S_4 \cap G_i$, we pick one witness tree of e that is contained in G_i. Let A_i denote the set of these at most $2g_k(d-1)$ induced k-strong forests. As all induced forests in A_1, \ldots, A_t contain the root r, we can again, as in the previous claim, form a set F_4 of at most $2g_k(d-1)$ k-strong forests in G covering S_4.

Claim. There exists a good cover F_5 of S_5 of size at most $(k-1)g_k(d)$.

Proof of Claim. Note that S_5 consists of those edges whose witness trees all contain edges from at least two different G_i’s. Without loss of generality assume that each of G_1, \ldots, G_s
have an edge incident to \(r \) and the other \(G_i \)'s do not have such an edge. Then each \(e \in S_i \) is in \(G_i \) for some \(i \in \{1, \ldots, s\} \) and moreover \(e \) is almost \(k \)-valid in this \(G_i \). Hence

\[
|E(G_i) \cap S_i| \leq g_k^*(d) \quad \text{for all } i, 1 \leq i \leq s, \text{ and } |E(G_i) \cap S_i| = 0 \quad \text{for all } i, s < i < t.
\]

If \(s \leq k - 1 \), then \(|S_i| \leq (k - 1) g_k^*(d) \). In this case we let each forest in \(F \) consists of one witness tree for each \(e \in S_i \).

If \(s \geq k \), then for all \(i \in \{1, \ldots, s\} \) and all \(j, 1 \leq j \leq g_k^*(d) \), we pick (not necessarily distinct) induced paths \(P_i^j \) in \(G_i \) starting with \(r \) such that each edge in \(S_i \) is contained in some path \(P_i^j \). Such a path containing \(e \in S_i \) exists, since \(e \) is almost \(k \)-valid in some \(G_i \).

As \(s \geq k \), the union of paths \(P_i^j \cup \cdots \cup P_i^{j+1} \) forms a \(k \)-strong induced forest in \(G \) for each \(j \), \(1 \leq j \leq g_k^*(d) \). Moreover each edge in \(S_i \) is contained in one of these forests. Hence \(F_5 = \{ P_i^1 \cup \cdots \cup P_i^{j+1} | 1 \leq j \leq g_k^*(d) \} \) is a good cover of \(S_i \) as desired.

From the above claims we get that \(F = F_1 \cup F_2 \cup F_3 \cup F_4 \cup F_5 \) is a good cover of all \(k \)-valid edges in \(G \), since \(S_1 \cup S_2 \cup S_3 \cup S_4 \cup S_5 \) contains all \(k \)-valid edges of \(G \). Moreover, with the above claims, induction, Lemma 12 and \(k \geq 2 \) we get

\[
|F| \leq |F_1| + |F_2| + |F_3| + |F_4| + |F_5| \leq k - 1 + 2 f_k(d - 1) + 2 g_k(d - 1) + (k - 1) g_k^*(d)
\]

\[
\leq k - 1 + 2 \cdot (2k)^{-d - 1} + 2 \cdot ((2k)^{-d - 2} - 1) + (k - 1)(2(2k)^{-d - 2} - 1)
\]

\[
\leq (2k)^{-d - 2}(2k + 2(2k - 1)) = (2k)^{-d - 2} 6k \leq (2k)^{-d - 2} 4k^2 = (2k)^{-d},
\]

which proves that \(f_k(G) \leq (2k)^d \) for \(G \in T \mathcal{D}(d) \).

Now if \(G \) has tree-depth at most \(d \) then each component of \(G \) is in \(T \mathcal{D}(d) \). By the previous arguments all \(k \)-valid edges of such a component can be covered by at most \((2k)^d \) \(k \)-strong forest. A union of one such forest from each component is a \(k \)-strong forest in \(G \). Hence we can form at most \((2k)^d \) \(k \)-strong forests covering all \(k \)-valid edges of \(G \). Thus \(f_k(G) \leq (2k)^d \) for each graph \(G \) of tree-depth at most \(d \).

Finally we shall prove that \(f_k(G) \leq (2k)^{k + 1}{d \choose k+1} \), for \(d \geq k + 1 \) and a graph \(G \) with \(\text{td}(G) \leq d \). Let \(H \) be a maximal tree-depth \(d \) supergraph of \(G \) on the same set of vertices. It is known [20, 21], that there is a proper \(d \)-coloring of \(H \) (a so called \(d \)-centered coloring) such that any set of \(p \) colors, \(p \leq d \), induces a tree-depth \(p \) graph. We hence have a \(d \)-coloring of \(G \) such that each of the \({d \choose k+1}\) subsets of \((k+1) \) colors induces a graph of tree-depth \(k + 1 \). As each \(k \)-valid edge has a witness tree induced by \(k + 1 \) vertices, each witness tree belongs to one of these \({d \choose k+1}\) graphs. So each \(k \)-valid edge of \(G \) is \(k \)-valid in (at least) one of these graphs. Thus the total number of \(k \)-strong forests covering \(k \)-valid edges of \(G \) is at most \({d \choose k+1}(2k)^{k+1} \), where the bound \((2k)^{k+1} \) comes from the first part of the theorem when \(d = k + 1 \).

\[
6 \quad \text{Proof of Theorem 1}
\]

Recall that \(\chi_p(G) \) is the smallest integer \(q \) such that \(G \) admits a vertex coloring with \(q \) colors such that for each \(p' \leq p \) each \(p' \)-set of colors induces a subgraph of \(G \) of tree-depth at most \(p' \). Since \(G \) is of bounded expansion there is a sequence of integers \(a_1, a_2, \ldots \), that for any graph \(G \in \mathcal{C} \) and any \(p \), \(\chi_p(G) \leq a_p \).

Let \(G \in \mathcal{C} \). Note that \(\chi(D, G) \leq \chi(G) \) and hence Theorem 3(i) gives \(f_1(G) \leq (\chi_d(G))^2 \). Thus we can take \(b_1 = \binom{d}{2} \). For \(k \geq 2 \), consider a \((k+1)-\text{tree-depth coloring of } G \) with \(\chi_{k+1}(G) \leq a_{k+1} \). Colors. For each of the \(\chi_{k+1}(G) \) subgraphs \(H \) induced by \(k+1 \) colors, consider a cover of the \(k \)-valid edges in \(H \) with \(f_k(H) \) \(k \)-strong forests. Note that each \(k \)-valid edge of \(G \) is \(k \)-valid in at least one of these graphs. Indeed, a witness tree of an edge
is induced by \(k + 1\) vertices, that are colored with at most \(k + 1\) different colors, hence \(e\) is \(k\)-valid in a graph \(H\) induced by these colors. Then the union \(\mathcal{F}\) of all these forests is a cover of all \(k\)-valid edges in \(G\). Finally observe that each \(H\) has tree-depth at most \(k + 1\), and thus we have \(f_k(H) \leq (2k)^{k+1}\) by Theorem 8. Hence \(|\mathcal{F}| \leq \binom{n}{k+1}(2k)^{k+1}\), and we can take \(b_k = \binom{n}{k+1}(2k)^{k+1}\).

7 Conclusions

In this paper we introduce the \(k\)-strong induced arboricity \(f_k(G)\) of a graph \(G\) to be the smallest number of \(k\)-strong forests covering the \(k\)-valid edges of \(G\), where a forest is \(k\)-strong if all its components have size at least \(k\) and an edge is \(k\)-valid if it belongs to an induced tree on \(k\) edges. For \(k \in \mathbb{N}\), call a class \(\mathcal{C}\) of graphs \(f_k\)-bounded, if there is a constant \(c = c(\mathcal{C}, k)\) such that \(f_k(G) \leq c\) for each \(G \in \mathcal{C}\), and let us say that \(\mathcal{C}\) is \(f\)-bounded if \(\mathcal{C}\) is \(f_k\)-bounded for each \(k \in \mathbb{N}\).

We show that this new graph parameter \(f_k\) is non-monotone as a function of \(k\) and, for \(k \geq 2\), as a function of \(G\) using induced subgraph partial ordering. Indeed, there exist classes of graphs \(\mathcal{C}_k\) and \(\mathcal{C}_k'\), \(k \geq 2\), such that \(\mathcal{C}_k\) is \(f_k\)-bounded but not \(f_{k+1}\)-bounded, while \(\mathcal{C}_k'\) is \(f_{k+1}\)-bounded but not \(f_k\)-bounded. Nevertheless, \(f_k\) behaves nicely for so-called graph classes of bounded expansion, in particular for minor-closed families. Our main result is that every class \(\mathcal{C}\) of bounded expansion is \(f\)-bounded. This implies, in particular, that the adjacent closed vertex-distinguishing number for planar graphs is bounded by a constant. Additionally, we find upper and lower bounds on \(f_1(G)\), the induced arboricity, and study the relation between \(f_1\) and the well-known notions of arboricity and acyclic chromatic number.

It remains open to improve the lower and upper bounds on \(f_k\) for a given graph class. For example, for planar graphs the maximum value for \(f_1\) is between 6 (as certified by \(K_4\)) and 10 (following from \(f_1(G) \leq \binom{n}{2}\) and Borodin’s result on the acyclic chromatic number of planar graphs [7]). For graphs \(G\) of tree-width \(t\), we provide explicit universal upper bounds on \(f_1(G)\) and \(f_2(G)\) in Theorem 4. For \(k \geq 3\) Theorem 1 states the existence of a constant upper bound. Using \(f_k(G) \leq \binom{n}{k+1}(2k)^{k+1}\) from the proof of Theorem 1 and \(\chi_p(G) \leq t^p + 1\) for \(G\) of tree-width \(t\) [20], we conclude that \(f_k(G) \leq \binom{n}{k+1}(2k)^{k+1}\) for any integer \(k\) and any graph \(G\) of tree-width \(t\). This upper bound is most likely far from the actual value, and improving its order of magnitude seems to be an interesting challenge.

A natural generalization of the \(k\)-strong induced arboricity would be the following: For a set \(S \subseteq \mathbb{N}\) of natural numbers and a graph \(G\) define \(f_S(G)\) to be the minimum number of induced forests in \(G\) such that for all \(s \in S\) each \(s\)-valid edge in \(G\) lies in a component of size at least \(s\) of some of the forests. Clearly, we have \(f_k(G) = f_{\{k\}}(G)\) and for \(T \subseteq S\) we have \(f_T(G) \leq f_S(G)\). In particular considering \(S = \{1, \ldots, k\}\) gives a parameter similar to the \(p\)-tree-depth chromatic number \(\chi_p(G)\) as defined by Nešetřil and Ossona de Mendez [21]. As before, we say that a graph class \(\mathcal{C}\) is \(f_S\)-bounded if there is a constant \(c = c(\mathcal{C}, S)\) such that \(f_S(G) \leq c\) for all \(G \in \mathcal{C}\). It follows from our results, that for any finite set \(S \subseteq \mathbb{N}\) any class \(\mathcal{C}\) of bounded expansion is \(f_S\)-bounded. On the other hand, the examples in Theorem 3 show that the class of tree-width 2 graphs is not \(f_{\{2\}}\)-bounded, even the class of tree-depth 3 graphs, and the graphs of maximum degree at most 4. It is interesting to identify non-trivial graph classes that are \(f_{\mathbb{N}}\)-bounded. For example, one can show that \(f_{\{2\}}(G) \leq 4\), whenever \(G = P_n \times P_m\) is a grid graph. In Theorem 3 (iii) we present a graph class \(\mathcal{C}\) that is not of bounded expansion, for which \(f_{\mathbb{N}}(G) \leq 2\) for each \(G \in \mathcal{C}\).

Finally, let us mention the concept of nowhere dense classes of graphs, which is defined
in terms of so-called excluded shallow minors [22], see also [8, 13, 14, 18, 27]. Each class of bounded expansion is nowhere dense, but not the other way round [22]. Similarly, each class of bounded expansion is f-bounded (by Theorem 1), but not the other way round (by Theorem 3 (iii)). In fact, nowhere dense classes of graphs and f-bounded classes of graphs are two different extensions of classes of graphs of bounded expansion. For $n \in \mathbb{N}$, let G_n be a graph with girth, minimum degree and chromatic number at least n. Moreover let $C_1 = \{G_n \mid n \in \mathbb{N}\}$, let C_2 be the class of 3-subdivisions of all graphs in C_1, and let C_3 denote the class of all 1-subdivisions of $K_{n,n}$, $n \in \mathbb{N}$ (the class from the proof of Theorem 3 (iii)). Then it is easy to check that C_1 is nowhere dense, but not f-bounded (in fact not f_k-bounded for any $k \in \mathbb{N}$), and hence not of bounded expansion, C_2 is nowhere dense and f-bounded, but not of bounded expansion, and C_3 is f-bounded, but not nowhere dense, and hence not of bounded expansion.

References

