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Abstract. For a fixed graph H on k vertices, and a graph G on at least k vertices, we write G −→ H

if in any vertex-coloring of G with k colors, there is an induced subgraph isomorphic to H whose
vertices have distinct colors. In other words, if G −→ H then a totally multicolored induced copy of
H is unavoidable in any vertex-coloring of G with k colors. In this paper, we show that, with a few
notable exceptions, for any graph H on k vertices and for any graph G which is not isomorphic to H ,
G 6−→ H . We explicitly describe all exceptional cases. This determines the induced vertex-anti-Ramsey
number for all graphs and shows that totally multicolored induced subgraphs are, in most cases, easily
avoidable.

1. Introduction

Let G = (V,E) be a graph. Let c : V (G) → [k] be a vertex-coloring of G. We say that G is
monochromatic under c if all vertices have the same color and we say that G is rainbow or totally
multicolored under c if all vertices of G have distinct colors. The existence of a graph forcing an
induced monochromatic subgraph isomorphic to H is well known. The following bounds are due to
Brown and Rödl:

Theorem 1 (Vertex-Induced Graph Ramsey Theorem [5]). For all graphs H, and all positive integers
t there exists a graph Rt(H) such that if the vertices of Rt(H) are colored with t colors, then there is
an induced subgraph of Rt(H) isomorphic to H which is monochromatic. Let the order of Rt(H) with
smallest number of vertices be rmono(t,H). Then there are constants C1 = C1(t), C2 = C2(t) such that
C1k

2 ≤ max{rmono(t,H) : |V (H)| = k} ≤ C2k
2 log2 k.

Theorem 1 is one of numerous vertex-Ramsey results investigating the existence of induced
monochromatic subgraphs, including the studies of Folkman numbers such as in [15], [4] and oth-
ers. There are also “canonical”-type theorems claiming the existence of monochromatic or rainbow
substructures (see, for example, a general survey paper by Deuber [12]). The paper of Eaton and Rödl
provides the following specific result for vertex-colorings of graphs.

Theorem 2 (Vertex-Induced Canonical Graph Ramsey Theorem [13]). For all graphs H, there is a
graph Rcan(H) such that if Rcan(H) is vertex-colored then there is an induced subgraph of Rcan(H)
isomorphic to G which is either monochromatic or rainbow. Let the order of such a graph with the
smallest number of vertices be rcan(H). There are constants c1, c2 such that c1k

3 ≤ max{rcan(H) :
|V (H)| = k} ≤ c2k

4 log k.

In this paper, we study the existence of totally multicolored induced subgraphs isomorphic to a
fixed graph H, in any coloring of a graph G using exactly k = |V (H)| colors. We call a coloring
of vertices, with k nonempty color classes, a k-coloring. Whereas the induced-vertex Ramsey theory
minimizes the order of a graph that forces a desired induced monochromatic graph, it is clear that for
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the multicolored case a similar goal is trivially achieved by the graph H itself. What is not clear is
whether it is possible to construct an arbitrarily large graph G with the property that any k-coloring
of V (G) induces a rainbow H.

Definition 1. Let G and H be two graphs. We say “G arrows H” and write G −→ H if for any coloring
of the vertices of G with exactly |V (H)| colors, there is an induced rainbow subgraph isomorphic to
H. Let

f(H) = max{|V (G)| : G −→ H},

if such a max exists. If not, we write f(H) = ∞.

It follows from the definition that if f(H) = ∞ then for any n0 ∈ N there is n > n0 and a graph
G on n vertices such that any k-coloring of vertices of G produces a rainbow induced copy of H. The
function f was first investigated by the first author in [2].

Theorem 3 ([2]). Let H be a graph on k vertices. If H or its complement is (1) a complete graph, (2)
a star or (3) a disjoint union of two adjacent edges and an isolated vertex, then f(H) = ∞; otherwise
f(H) ≤ 4k − 2.

We improve the bound on f(H) to the best possible bound on graphs H for which f(H) < ∞.

Theorem 4. Let H be a graph on k vertices. If H or its complement is (1) a complete graph, (2) a
star or (3) a disjoint union of two adjacent edges and an isolated vertex, then f(H) = ∞; otherwise
f(H) ≤ k + 2 if k is even and f(H) ≤ k + 1 if k is odd.

What we prove in this paper is stronger. First, we find f(H) for all graphs H. Second, we are able
to explicitly classify almost all pairs (G,H) for which G −→ H. We describe some classes of graphs
and state our main result in the following section.

2. Main Result

Let Kn, En, Sn, Cn, Pn be a complete graph, an empty graph, a star, a cycle and a path on n
vertices, respectively. Let H1 + H2 denote the vertex-disjoint union of graphs H1 and H2. We
denote Λ = P3 + K1. If H is a graph, let H denote its complement. Let P and Θ be the Petersen
and Hoffman-Singleton graphs, respectively; see Wolfram Mathworld ([16] and [17], respectively) for
beautiful pictures. Let P ′ and Θ′ be the graphs obtained by deleting two nonadjacent vertices from
P and Θ, respectively. In the proof of Lemma 7, we establish that both P and Θ are edge-transitive,
thus P ′ and Θ′ are well-defined. For ℓ ≥ 3, let Mℓ denote a matching with ℓ edges; let M ′

ℓ denote the
graph obtained by deleting two nonadjacent vertices from Mℓ. We say that a graph is trivial if it is
either complete or empty.

Let kH denote the vertex-disjoint union of k copies of graph H. We write H ≈ H ′ if H is isomorphic
to H ′ and we say that H ∈ {H1,H2, . . .} if there exists an integer i for which H ≈ Hi. We write G− v
to denote the subgraph of G induced by the vertex set V (G) \ {v}. A graph is vertex-transitive if, for
every distinct v1, v2 ∈ V (G), there is an automorphism, ϕ, of G such that ϕ(v1) = v2.

We define several classes of graphs in order to prove the main theorem.
Let C denote the class of connected graphs on at least three vertices.
Let P ′

3 denote the set of graphs G = (V,E) such that there is a nontrivial vertex-partition V =
V1 ∪ V2 ∪ V3, with (a) Vi 6= ∅, for all i = 1, 2, 3, (b) the tripartite subgraph of G obtained by deleting
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all edges with both endpoints in Vi, i = 1, 2, 3 is a vertex disjoint union of complete tripartite graphs
and bipartite graphs, each with vertices in only two of the parts V1, V2, V3; see Figure 1. Let P3 be
the set of all graphs on at least 4 vertices which are not in P ′

3.

Figure 1. A graph from class P ′

3.
Figure 2. Graph G(3) which
arrows Λ.

Let L = {G(m) : m ≥ 1}, where G(m) = (V,E), V = {v(i, j) : 1 ≤ i ≤ 7, 1 ≤ j ≤ m},
E = {v(i, j)v(i + 1, k) : 1 ≤ j, k ≤ m, j 6= k, 1 ≤ i ≤ 7} ∪ {v(i, j)v(i + 3, j) : 1 ≤ j ≤ m, 1 ≤ i ≤ 7},
addition is taken modulo 7, see Figure 2 for an illustration.

Let T denote the set of graphs T such that (a) neither T nor T is complete or a star, and (b)
either T is vertex-transitive or there exists a vertex, v of degree 0 or |V (T )| − 1 such that T − v is
vertex-transitive. If T ∈ T , denote T ′ to be the graph that is obtained from T by deleting a vertex w
that is neither of degree 0 nor of degree |V (T )| − 1. Let T ′ = {T ′ : T ∈ T }. Note that, given T ′ ∈ T ′,
the corresponding graph T ∈ T is unique.

Let F∞ =
{

Kk,Kk : k ≥ 2
}

∪
{

Sk, Sk : k ≥ 3
}

∪ {Λ,Λ}. As we see in Theorem 3, H ∈ F∞ iff

f(H) = ∞. Observe (see also [2]) that G −→ H if and only if G −→ H. In order to classify all graphs
G which arrow H, we introduce the following notation

Arrow(H) = {G : G −→ H,G 6≈ H}.

Theorem 5 (Main Theorem).

• Arrow(Λ) ⊇ L,

Arrow(Kk) =

{

C if k = 2,

{Kn : n > k} if k ≥ 3,

Arrow(Sk) =

{

P3 if k = 3,

{Sn : n > k} if k ≥ 4,

• Arrow(P ′) = {P}, Arrow(Θ′) = {Θ},
Arrow(M ′

ℓ) = {Mℓ,Mℓ−1 + K1}, ℓ ≥ 3,

• Arrow(T ′) = {T}, if T ′ ∈ T ′ and T ′ 6≈ M ′

ℓ, ℓ ≥ 3,
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• If H,H 6∈ F∞ ∪ {P ′,Θ′} ∪ T ′, then Arrow(H) = ∅.

Corollary 6. Let H be a graph on k vertices. Then

f(H) =



















∞, H ∈ F∞,

k + 2, H ∈ {P ′,Θ′, P ′,Θ′} ∪ {M ′

ℓ,M
′

ℓ : ℓ ≥ 3, k = 2ℓ − 2},

k + 1, H ∈ {T ′ : T ′ ∈ T ′} \ {M ′

ℓ,M
′

ℓ : ℓ ≥ 3, k = 2ℓ − 2},

k, otherwise.

Remark. We wish to observe that a graph H for which f(H) = k + 2 only occurs for even values
of k, k ≥ 4 and is, up to complementation, uniquely defined by k except in the cases of k = 8 and
k = 48. If k ∈ {8, 48}, then there are two such complementary pairs of graphs H.

This paper is structured as follows: In Section 3 we state without proofs all of the lemmas and
supplementary results. In Section 4, we prove the main theorem. In Section 5 we prove all the lemmas
from Section 3.

The main technical tool of the proof is the fact that in most cases we can assume that the degree
sequence of the graph H is consecutive. Using this, it is possible to show that f(H) ≤ |V (H)| + c for
some absolute constant c and for all H such that f(H) < ∞. We prove several additional cited lemmas
which provide a delicate analysis allowing one to get an exact result for ALL graphs, in particular for
ones with small maximum degree.

3. Definitions, Lemmas and supplementary results

Let G be a graph on n vertices and v ∈ V (G). The degree of v is denoted deg(v) and the codegree
of v, n − 1 − deg(v), is denoted codeg(v). When the choice of a graph is ambiguous, we shall denote
the degree of a vertex v in graph G by deg(G, v). If vertices u and v are adjacent, we write u ∼ v,
otherwise we write u 6∼ v. For subsets of vertices X and Y , we write X ∼ Y if x ∼ y for all x ∈ X,
y ∈ Y ; we write X 6∼ Y if x 6∼ y for all x ∈ X, y ∈ Y . For a vertex x 6∈ Y , we write x ∼ Y if
{x} ∼ Y and x 6∼ Y if {x} 6∼ Y . For a subset S of vertices of a graph G, let G[S] be the subgraph
induced by S in G. The neighborhood of a vertex v is denoted N(v), and the closed neighborhood of
v, N [v] = N(v)∪{v}. We shall write e(G) to denote the number of edges in a graph G. The subset of
vertices of degree i in a graph G is Gi. The minimum and maximum degrees of a graph G are denoted
by δ(G) and ∆(G), respectively. For all other standard definitions and notations, see [18].

We say the degree sequence of a graph H is consecutive if, for every i ∈ {δ(H), . . . ,∆(H)}, there
exists a v ∈ V (H) such that deg(v) = i. The following definition is important and used throughout
the paper.

Definition 2. For a graph H on k vertices, let the deck of H, denoted deck(H), be the set of all
induced subgraphs of H on k−1 vertices. We say that a graph F is in the deck of H if it is isomorphic
to a graph from the deck of H. The graph G on n vertices is said to be bounded by a graph H on
k vertices if both ∆(G) = ∆(H) and δ(G) = n − k + δ(H).

For S ⊆ V (G), if G[S] ≈ H, we say (to avoid lengthy notation), that S induces H in G and we
shall label the vertices in S as the corresponding vertices of H.
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We use the following characterization of regular graphs of diameter 2.

Theorem 7 (Hoffman-Singleton, [11]). If G is a diameter 2 graph which is ∆-regular, then ∆ ∈
{2, 3, 7, 57}. Moreover, if ∆ = 2, G is the 5-cycle; if ∆ = 3, then G is the Petersen graph; and if
∆ = 7, G is the Hoffman-Singleton graph. It is not known if such a graph exists for ∆ = 57.

Note that if a 57-regular graph of diameter 2 exists, it is called a (57, 2)-Moore graph.
One of our tools is the following theorem of Akiyama, Exoo and Harary [1], later strengthened by

Bosák [6].

Theorem 8 (Bosák’s theorem). Let G be a graph on n vertices such that all induced subgraphs of G
on t vertices have the same size. If 2 ≤ t ≤ n−2 then G is either a complete graph or an empty graph.

In all of the lemmas below we assume that

|V (G)| = n, |V (H)| = k, ∆ = ∆(H), and δ = δ(H).

Lemma 1. If G −→ H, then the following holds:

(1) If ∆ ≤ k − 3, then ∆(G) = ∆.

(2) If 2 ≤ δ ≤ ∆ ≤ k − 3, then n ≤ k + ∆ − δ with equality iff ∆(G) = δ(G).

Lemma 2. If H is a graph on k ≥ 3 vertices and G is a graph on n ≥ k + 2 vertices such that
G −→ H, then either H or its complement is a star or the degree sequence of H is consecutive.

The Deck Lemma is an important auxiliary lemma that is used throughout this paper.

Lemma 3 (Deck lemma). Let G −→ H. For any set U ⊂ V (G) with |U | = k− 1, G[U ] is in the deck
of H. Consequently, e(H) − ∆ ≤ e(G[U ]) ≤ e(H) − δ.

Lemma 4. If f(H) > k and H has consecutive degrees, then ∆ ≤ δ + 3.

Observe that Lemmas 1, 2 and 4 immediately imply that f(H) ≤ |V (H)|+ 3 if 2 ≤ δ ≤ ∆ ≤ k − 3.
The remaining lemmas allow us to deal with the cases where δ < 2 or ∆ > k − 3 and to prove exact
results.

Lemmas 5 and 6 address the cases where f(H) = ∞ and f(H) = k + 1.

Lemma 5. Arrow(Kk) =

{

C, k = 2,

{Kn : n > k}, k ≥ 3;
Arrow(Sk) =

{

P3, k = 3,

{Sn : n > k}, k ≥ 4.

Lemma 6. {(G,H) : G −→ H, |V (G)| = k + 1} = {(T, T ′) : T ∈ T }.

Lemmas 7 and 8 allow us to deal with the case where n ≥ k + 2 and G is regular or almost regular.

Lemma 7. Assume that k ≥ 3. Let Q be the set of pairs (G,H) such that |V (G)| ≥ k + 2, G −→ H,
G is bounded by H, H 6∈ F∞, H has consecutive degrees and G is d-regular for some d ≥ 2. Then
Q =

{

(P,P ′), (P ,P ′), (Θ,Θ′), (Θ,Θ′)
}

.

Lemma 8. Let |V (G)| = k + 2 and let G be bounded by H. If ∆ − δ = 3 and ∆(G) − δ(G) = 1, then
G 6−→ H.

The following is a technical lemma used in the proof of the Main Theorem and Lemma 12.
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Lemma 9. If |V (G)| ≥ k + 2, G −→ H, δ = 1, and δ(G) < n − k + δ, then ∆ ≤ δ + 2 = 3.
Furthermore, if equality holds, then |H3| = 1, H3 ∼ H2, and there is an S ⊆ V (G) and v ∈ V (G) \ S
such that G[S] ≈ H, |N(v) ∩ S| = 1 and v 6∼ H3 ∪ H2.

Finally, the following lemmas treat the case when ∆ = ∆(H) ∈ {1, 2, 3}.

Lemma 10. Let ∆ = 1, H 6∈ F∞ and |V (G)| ≥ k + 2. Then G −→ H implies that k is even and
(G,H) = (Mk/2+1,M

′

k/2+1
).

Lemma 11. Let ∆ = 2, H 6∈ F∞, |V (G)| ≥ k + 2 and δ(G) < n − k + δ. Then, G 6−→ H.

Lemma 12. Let ∆ = 3, H 6∈ F∞, |V (G)| ≥ k + 2 and δ(G) < n − k + δ. Then, G 6−→ H.

4. PROOF of the MAIN THEOREM

Let H be a graph on k vertices. Recall that F∞ =
{

Kk,Kk : k ≥ 2
}

∪
{

Sk, Sk : k ≥ 3
}

∪
{

Λ,Λ
}

. If
H ∈ F∞, then the theorem follows from Lemma 5 and [2].

Let G −→ H, |V (G)| > k and H 6∈ F∞. We shall describe all such graphs G on n vertices.
If n = k + 1, then Lemma 6 claims that H ≈ T ′ ∈ T ′ and G ≈ T . Note that M ′

ℓ ∈ T ′ for all ℓ ≥ 3.
If T ′ = M ′

ℓ, then T = Mℓ−1 + K1. Therefore we may assume that n ≥ k + 2 and H 6∈ F∞. By Lemma
2, the degree sequence of H is consecutive.

CASE 1. G is bounded by H.

Recall that G being bounded by H means that ∆(G) = ∆ and δ(G) = n − k + δ. By Lemma 4,
∆ ≤ δ + 3. Lemma 1 gives that n ≤ k + 3.

First, suppose G is ∆-regular. If ∆ ≥ 2, then by Lemma 7, G ∈
{

P,P ,Θ,Θ
}

and n = k + 2. If
∆ ≤ 1, then G is a matching. Lemma 10 covers this case and gives that H ≈ M ′

k/2+1
.

Second, suppose G is not regular, then

n − k + δ = δ(G) < ∆(G) = ∆.

Since ∆ − δ ≤ 3, Lemma 1 implies that n − k < 3. The fact that n ≥ k + 2, implies that n = k + 2.
Applying Lemma 1 again, we see that ∆− δ = 3 and δ(G) = (n− k) + δ = 2 + (∆− 3) = ∆− 1. Thus
∆(G) − δ(G) = 1. By Lemma 8, G 6−→ H, a contradiction.

CASE 2. G is not bounded by H.

By Lemma 1, if G −→ H and G is not bounded by H, then either δ(H) ≤ 1 (in the case where
δ(G) < n − k + δ) or ∆(H) ≥ k − 2 (in the case where ∆(G) > ∆). Using the fact that G −→ H iff
G −→ H, we will assume, without loss of generality, that δ(G) < n − k + δ and δ ≤ 1.

Using Lemma 9 (when δ = 1) and Lemma 4 (when δ = 0), we have that ∆ ≤ 3. Since ∆ ∈ {1, 2, 3},
Lemmas 10, 11, 12 give that (G,H) = (Mℓ,M

′

ℓ).

Summarizing CASES 1 and 2, we see that if n ≥ k + 2 and H 6∈ F∞, then n = k + 2 and H or H
is in {M ′

k/2+1
, P ′,Θ′}. Lemma 10 and the fact that M ′

ℓ ∈ T ′ for all ℓ ≥ 3 give that Arrow (M ′

ℓ) =

{Mℓ,Mℓ−1 + K1}. Lemma 7 gives that Arrow(P ′) = {P} and Arrow(Θ′) = {Θ}.
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This concludes the proof of Theorem 5.

5. Proofs of Lemmas

5.1. Proof of Lemma 1.

(1) Since G −→ H, ∆(G) ≥ ∆. Let ∆ ≤ k − 3. Suppose there exists a vertex v ∈ V (G) such that
deg(v) > ∆. Color N(v) with the first ∆ + 1 + a colors, where a is the largest integer such that both
∆ + 1 + a ≤ deg(v) and ∆ + 1 + a ≤ k − 1. Color v with color k and color the rest of the vertices (if
such exist) with the remaining colors (or color these vertices with color 1 if no colors remain). Any
S ⊆ V (G) that induces a rainbow copy of H has a vertex, namely v, of degree greater than ∆, a
contradiction.

(2) By Part (1), ∆(G) = ∆. We have that ∆(H) = k − 1 − δ(H) ≤ k − 3. Hence,
n − 1 − δ(G) = ∆(G) = ∆(H) = k − 1 − δ. So, δ(G) = n − k + δ and ∆ = ∆(G) ≥ δ(G) = n − k + δ.
Thus, n ≤ k + ∆ − δ with equality if and only if ∆(G) = δ(G). �

5.2. Proof of Lemma 2.

Let H have the property that there is an i, δ(H) < i < ∆(H) such that there is no w ∈ V (H) with
deg(w) = i. Let Li(H) = {v ∈ V (H) : deg(v) < i}, and Ui(H) = {v ∈ V (H) : deg(v) > i}. Let
Li(G) = {v ∈ V (G) : deg(v) < i}, and let Ui(G) = {v ∈ V (G) : deg(v) > n − k + i}. Since G −→ H,
we may assume that H ⊆ G.

Claim 1. V (H) = Li(H) ∪ Ui(H) and V (G) = Li(G) ∪ Ui(G).
The first statement of the claim follows from our assumption on H. Assume that there is a vertex

v ∈ V (G) with i ≤ deg(v) ≤ n−k+i. Color v with one color, N(v) with i other colors and V (G)\N [v]
with the remaining k− i−1 colors. Any induced rainbow subgraph H ′ of G on k vertices must contain
v and exactly i of its neighbors. Thus H ′ can not be isomorphic to H; i.e., G 6−→ H, a contradiction.
This proves Claim 1.

Claim 2. Ui(H) ⊆ Ui(G) and Li(H) ⊆ Li(G).
If there is a vertex w ∈ Ui(H)∩Li(G), then deg(G,w) ≤ i−1 < i+1 ≤ deg(H,w), a contradiction.

If there is a vertex w ∈ Li(H) ∩ Ui(G), then deg(H,w) ≤ i − 1, deg(G,w) ≥ n − k + i + 1. Thus,
codeg(H,w) ≥ k − i and codeg(G,w) ≤ k − i− 2, a contradiction since codeg(G,u) ≥ codeg(H,u) for
all u ∈ V (H). This proves Claim 2.

Assume first that |Ui(H)| = |Ui(G)| = 1 and consider an arbitrary (k− 1)-subset U ⊆ Li(G). Color
the vertices of U with k − 1 colors and color the rest of V (G) with the remaining color. The induced
copy of H must contain the member of Ui(G) and so U ∪ Ui(G) must induce H. We may conclude
that all (k − 1)-subsets of Li(G) are isomorphic. Since |Li(G)| = n − 1 ≥ k + 1, Bosák’s theorem
implies that Li(G) induces a trivial subgraph. Given that U ∪ Ui(G) must induce H for any such U
and the degree sequence is not consecutive, both G and H must be stars.

Now assume that |Ui(G)| ≥ 2 and |Ui(H)| = 1. Color as many vertices of Ui(G) with distinct colors
as possible (at least two, at most k − 1) and color the rest with the remaining colors. Under this



8 MARIA AXENOVICH AND RYAN MARTIN

coloring, any rainbow subgraph on k vertices will have at least 2 vertices in Ui(G), a contradiction to
Claim 2.

Thus, we may assume that |Ui(H)| ≥ 2 and a complementary argument implies that |Li(H)| ≥ 2.
Since n ≥ k + 2, it is the case that either |Ui(G)| > |Ui(H)| or |Li(G)| > |Li(H)|. Without loss
of generality, assume the former. We know that |Ui(H)| = k − |Li(H)| ≤ k − 2. Color Ui(G) with
|Ui(H)| + 1 ≤ k − 1 colors and Li(G) with the remaining colors. Under this coloring, any rainbow
subgraph of G will have more than |Ui(H)| vertices in Ui(G), a contradiction to Claim 2. �

5.3. Proof of Lemma 3.

Consider a (k − 1)-subset U ⊆ V (G). Color its vertices with k − 1 distinct colors and color the rest
of the vertices with the remaining color. Since there is a rainbow copy of H in this coloring, and its
vertices must contain U , G[U ] must be in the deck of H. Since each (k − 1)-vertex induced subgraph
of H has at least e(H)−∆ and at most e(H)−δ edges, the second statement of the lemma follows. �

5.4. An important auxiliary lemma.

Recall that Hd = {w ∈ V (H) : deg(H,w) = d}.

Lemma 13. Let H be a graph on k vertices with consecutive degrees and let G be a graph on n ≥ k+1
vertices such that G −→ H. Furthermore, let S = {y1, y2, . . . , yk} ⊆ V (G) such that G[S] ≈ H. Let
deg(G[S], y1) ≤ deg(G[S], y2) ≤ · · · ≤ deg(G[S], yk). Each of the following is true:

(1) For any v ∈ V (G) \ S, |N(v) ∩ (S \ {yk, yk−1})| ≥ ∆ − 2. If equality holds, then |H∆| = 1
and H∆ ∼ H∆−1. If H∆ ⊇ {yk, yk−1} and yk 6∼ yk−1 then for any v ∈ V (G) \ S, |N(v) ∩ (S \
{yk, yk−1})| ≥ ∆.

(2) For any v ∈ V (G) \ S, |N(v) ∩ (S \ {y1, y2})| ≤ δ + 1. If equality holds, then |Hδ| = 1
and Hδ 6∼ Hδ+1. Moreover, if Hδ ⊇ {y1, y2} and y1 ∼ y2 then for any v ∈ V (G) \ S,
|N(v) ∩ (S \ {yk, yk−1})| ≤ δ − 1.

(3) There is a vertex v ∈ V (G) \ S such that either {v} ∪ S \ {yk} induces H or {v} ∪ S \ {y1}
induces H.

Proof.
(1) Let U = {v} ∪ S \ {yk, yk−1}. Using the Deck Lemma and counting edges incident to yk and

yk−1, we have e(H) − ∆ ≤ e(G[U ]) ≤ e(H) − ∆ − (∆ − 1) + 1 + |N(v) ∩ (S \ {yk, yk−1})|. It follows
that

|N(v) ∩ (S \ {yk, yk−1})| ≥ ∆ − 2.

If yk 6∼ yk−1 and both yk and yk−1 are of degree ∆, then |N(v) ∩ (S \ {yk, yk−1})| ≥ ∆.

(2) Let U = {v} ∪S \ {y1, y2}. Then e(H)− δ ≥ e(U) ≥ e(H)− δ− (δ + 1) + |N(v)∩ (S \ {y1, y2})|.
Thus, all the statements in this part hold similarly to part (1).

(3) Rainbow color S \ {y1, yk} with colors {1, . . . , k − 2}, both of the vertices in {y1, yk} with color
k − 1 and V (G) \ S with color k. Regardless of which vertex of color k − 1 is chosen, the statement
holds. �
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5.5. Proof of Lemma 4.

Let G −→ H, |V (G)| > k, S ⊆ V (G) and G[S] ≈ H. Lemma 13 part (3) implies two cases:

CASE 1. There is a v ∈ V (G) \ S so that S ∪ {v} \ {yk} induces H.
Consequently, |N(v) ∩ S| ≥ ∆ and, in particular, ∆ − 2 ≤ |N(v) ∩ (S \ {y1, y2})| ≤ δ + 1. The last

inequality follows from Lemma 13 part (2).

CASE 2. There is a v ∈ V (G) \ S so that S ∪ {v} \ {y1} induces H.
Consequently, |N(v)∩S| ≤ δ +1 and δ +1 ≥ |N(v) ∩ (S \ {yk, yk−1})| ≥ ∆− 2. The last inequality

follows from Lemma 13 part (1).

In both cases ∆ − δ ≤ 3. �

5.6. Proof of Lemma 5.

If H = K2 and G is disconnected, then color the vertices in one component of G with color 1 and all
other vertices with color 2. Thus G 6−→ K2. On the other hand, if G 6−→ K2, then there is a partition
of V (G) = V1 ∪ V2 such that V1 6∼ V2.

If H = Kk, k ≥ 3 and G 6= Kn, n > k, then G 6−→ H follows from the Deck Lemma since G has two
nonadjacent vertices or n < k. On the other hand, it is obvious that Kn −→ Kk, for all n ≥ k.

Let H = Sk for k ≥ 4. Then by the Deck Lemma, we see that G has no induced subgraph iso-
morphic to P3 and no K3. Thus G has no induced P3, and therefore G is a vertex disjoint union of
cliques, which implies that G is a complete multipartite graph. Since G has no K3, G is a complete
bipartite graph. If both parts of G contain at least 2 vertices, color the vertices in these parts with
disjoint sets of colors such that each part uses at least two colors. Then any rainbow k-subgraph is
a complete bipartite graph with at least two vertices in each part, a contradiction. So, we conclude
that G has only one vertex in one of the parts, thus G is a star.

Let H = P3. It is easy to see that if G 6∈ P3, then the tri-partition V1, V2, V3 of V (G) as in the
definition of P ′

3 witnesses that G 6−→ P3 by coloring V1, V2, V3 each with distinct colors. Suppose there
is a coloring of V (G) with no rainbow copy of P3. Let the color classes be V1, V2, V3. Let G′ be a
tripartite subgraph of G with parts V1, V2, V3 which is obtained from G by deleting all edges with
both endpoints in Vi, i = 1, 2, 3. Consider a connected component Q of G′ with vertices in all three
parts V1, V2, V3. We claim that this component is a complete tripartite graph. To see this, consider
the maximal complete tripartite subgraph Q′ of Q. It is clear that Q has a path with one vertex in
each of V1, V2, V3. This path must induce a triangle; so Q 6= ∅. If Q′ 6= Q, then there is a vertex
v ∈ V (Q) \ V (Q′) such that v is adjacent to a vertex in Q′. Without loss of generality assume that
v ∈ V1, then v must be adjacent to all vertices of Q′ in V2 and V3. Thus Q′ ∪ {v} is a complete
tripartite graph larger than Q′, a contradiction. So, Q′ = Q and Q is a complete tripartite graph.
Therefore, each component of G′ either has vertices in only two parts or is a complete tripartite graph,
so G 6∈ P3. �
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5.7. Proof of Lemma 6.

Let G −→ H and n = k + 1. Any coloring of V (G) with k colors assigns the same color to some two
vertices. Thus, for any u, v ∈ V (G), either G − u or G − v is isomorphic to H. As an immediate
consequence, for at least n− 1 vertices in G, the vertex degrees have the same value d = e(G)− e(H).
As a result, there are only three possibilities:

CASE 1. G − w ≈ H for all w ∈ V (G).
In particular, G−u ≈ G−v for all u, v ∈ V (G). Then, G is regular. Since an isomorphism from G−u

and G−v can be extended to an automorphism of G mapping u to v, we see that G is vertex-transitive.

CASE 2. There is exactly one vertex, v, such that G − v 6≈ H and deg(G, v) = d′ /∈ {0, n − 1}.
As before, we have that for some d, deg(G,w) = d for all w ∈ V (G) \ {v}. If d′ > d, then the

deletion of a w ∈ V (G) \ N [v] gives exactly one vertex of degree d′ and the rest of degree d or d − 1,
but the deletion of a neighbor of v does not, a contradiction. Similarly, if d′ < d, then the deletion of
a w ∈ N(v) gives exactly one vertex of degree d′ − 1 but the deletion of a nonneighbor of v does not,
a contradiction. Thus d′ = d.

Let w ∼ v, w′ 6∼ v. Let ϕ be an isomorphism from G − w to G − w′. Then, ϕ maps vertices of
degree d − 1 in G − w, which correspond to the neighbors of w, to vertices of degree d − 1 of G − w′,
which correspond to the neighbors of w′. In particular, ϕ maps v to some vertex x 6= v. As before,
we can extend ϕ to an automorphism of G by mapping w to w′. The existence of this automorphism
implies that G − v ≈ G − x, and we can apply CASE 1.

CASE 3. There is exactly one vertex, v ∈ V (G) such that G − v 6≈ H and deg(G, v) ∈ {0, n − 1}.
Assume without loss of generality that deg(G, v) = 0. Then G − v − u ≈ G − v − w for all

u,w ∈ V (G − v). As in CASE 1, G − v is vertex transitive.

The above implies that if G −→ H, |V (G)| = k +1 then (G,H) = (T, T ′) for some T ∈ T . Now, let
T ′ ∈ T ′. We need to show that T −→ T ′. Let |V (T ′)| = k. If we color the vertices of T with k colors
then exactly two vertices, say u and v get the same color and the rest are totally multicolored. So, if
T is vertex-transitive, then T −{u} ≈ T ′ and it is rainbow; if T is a union of a vertex transitive graph
and an isolated vertex w, then without loss of generality u 6= w and T − {u} ≈ T ′ and it is rainbow;
if T has a vertex of degree k, the result follows from the previous case by considering T . �

5.8. Proof of Lemma 7.

Since G is bounded by H,

(1) n − k + δ = δ(G) = ∆(G) = ∆.

By Lemma 4, ∆ − δ ≤ 3. Therefore, either n − k = 2 or n − k = 3.

CASE 1. n − k = 3.
In this case, inequality (1) becomes

3 + δ = δ(G) = ∆(G) = ∆ ≤ δ + 3.
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Thus, all the inequalities are equalities, so δ = ∆ − 3. This implies that k ≥ 4. If k = 4, then
∆ = 3, δ = 0, and the fact that the degrees are consecutive implies that H ≈ Λ, a contradiction to
the assumption that H 6∈ F∞. Thus, we can assume that k ≥ 5.

Let G[S] ≈ H. Let y, y′, w,w′ be vertices in S with degrees ∆ − 3,∆ − 2,∆ − 1,∆, respectively, in
G[S]. The fact that G is ∆-regular gives that y, y′, w,w′ are adjacent to 3, 2, 1, 0 vertices, respectively,
in V (G) \ S. Note that y, y′ and some two vertices in V (G) \ S span C4 in G and w,w′ and some two
vertices in V (G) \ S span C4 in G.

Let U be a set of vertices in G spanning a C4. Color all vertices of U with color 1 and rainbow
color the remaining vertices with colors {2, . . . , k}. Under this coloring, there is a rainbow copy of H
containing exactly one vertex of U . Thus, the set of vertices outside of this copy of H spans at least
2 edges. As a result, e(H) ≥ e(G) − 3∆ + 2.

Let U ′ be a set of vertices spanning C4 in G. Color all vertices of U ′ with color 1 and rainbow
color the remaining vertices with colors {2, . . . , k}. Under this coloring, there is a rainbow copy of H
containing exactly one vertex of U ′. Thus, the set of vertices outside of this copy of H spans at most
1 edge. As a result, e(H) ≤ e(G) − 3∆ + 1, a contradiction to the bound of e(H) ≥ e(G) − 3∆ + 2,
derived above.

CASE 2. n − k = 2.
In this case, inequality (1) becomes

(2) 2 + δ = δ(G) = ∆(G) = ∆.

Thus δ = ∆ − 2. Let G[S] ≈ H.
If n ≤ 5, then k ≤ 3 so H ∈ F∞. Thus, we may assume that n ≥ 6. By Ramsey’s theorem, either

G contains a K3 or G contains K3. Without loss of generality, assume that G contains K3.

Claim 1. For any copy of H in G, the two vertices outside of it are not adjacent and e(H) = e(G)−2∆.
By coloring the vertices of some copy of K3 with the color 1 and rainbow coloring the rest of V (G)

with colors {2, . . . , k}, it is clear that e(H) = e(G) − 2∆. If there are two adjacent vertices outside of
a copy of H in G then e(H) = e(G) − 2∆ + 1, a contradiction.

Claim 2. G has diameter 2.
If G has diameter greater than 2, then either there are two vertices at a distance 3 in G or G is

disconnected. If G is disconnected, then color two vertices in one component with color 1 and two
vertices in the other component with color 2 and rainbow color the remaining vertices with colors
{3, . . . , k}. No matter which vertices are chosen, any rainbow graph on k vertices, under this coloring,
has all vertices of degree ∆ or ∆ − 1.

If G is connected and of diameter at least 3, then let u and v be vertices at distance exactly 3 and
(u, x, y, v) be a shortest u-v-path. Color u and y with color 1, color v and x with color 2, and rainbow
color the remaining vertices with colors {3, . . . , k}. Under this coloring, a rainbow copy of H must
contain x and y; otherwise, there is an edge outside of a copy of H, contradicting Claim 1. Therefore,
u and v are outside of H. But u and v do not have a common neighbor, so H has only vertices of
degree ∆ and ∆ − 1.

This contradicts the fact that δ = ∆ − 2.
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Claim 3. G has no K3 and no C4.
Assume there is a triangle in G. Coloring its vertices with color 1 and the remaining vertices with

colors {2, . . . , k} would contradict Claim 1. If G has a C4, color its independent sets with colors 1 and
2, respectively, and the remaining vertices with colors {3, . . . , k}. Under this coloring, any rainbow
k-vertex graph has e(G) − 2∆ + 1 edges, another contradiction to Claim 1.

Claim 4. For any two nonadjacent vertices u and v, G − u − v ≈ H.
Color u, v and their common neighbor (which exists by Claim 2 and is unique by Claim 3) with

color 1 and rainbow color the remaining vertices with colors {2, . . . , k}. Claim 1 implies that G−u−v
must induce a copy of H.

Claim 5. G is vertex-transitive.
Let v, v′ ∈ V (G), let x and y be neighbors of v and let x′ and y′ be neighbors of v′. There is an

isomorphism ϕ : (G−x− y) → (G−x′ − y′) that sends v to v′, since v, v′ are the unique degree ∆− 2
vertices in the respective copies of H. To show that the map ϕ can be extended to an isomorphism of
G itself, we will verify, without loss of generality, that x′ is adjacent to every vertex of ϕ(N(x)) and
y′ is adjacent to every vertex of ϕ(N(y)).

First, note that y and every vertex in N(x)\{v} have exactly one common neighbor. This neighbor,
however, cannot be v or x because G has no K3. Moreover, such neighbors are different for each distinct
member of N(x)\{v} because otherwise that vertex and two of its neighbors would form a C4 with x.

Therefore, there is an induced matching between N(x) \ {v} and N(y) \ {v}.
Let a ∈ N(x) \ {v}. Without loss of generality, suppose ϕ(a) ∈ N(x′). Let b be any vertex in

N(y) \ {v}. If b ∼ a, then ϕ(b) ∈ N(y′) because G has no K3. If b 6∼ a, then a and b have a com-
mon neighbor in G − x − y, so ϕ(b) ∈ N(y′) because G has no C4. Therefore, we can conclude that
ϕ(N(y)) = N(y′) and symmetrically, ϕ(N(x)) = N(x′), extending ϕ to an isomorphism of G.

Claim 6. If G −→ H, G contains no K3 and n ≥ 6, then G ≈ P or G ≈ Θ.
Since G is regular with diameter 2 and girth 5, the Hoffman-Singleton theorem (Theorem 7) gives

that the only possibilities for G are C5, P , Θ or a (57, 2)-Moore graph, if it exists. Since n ≥ 6, G 6= C5.
According to an unpublished proof due to Graham Higman, printed in Section 3.7 of Cameron [7], if
a (57, 2)-Moore graph exists, then it cannot be vertex-transitive. So, only P and Θ remain.

Claim 7. P and Θ are edge-transitive.
Using the definition of the Petersen graph as a Kneser graph (see Section 1.6 of Godsil and Royle,

[8]), it is easy to see that P is edge-transitive.
Now, we shall show that Θ is edge-transitive. Hafner [10] gives that the automorphism group of

Θ is of order 50 × 7! and the stabilizer of a vertex w is S7, the symmetric group that permutes the
neighbors of w. Take any pair of nonadjacent vertices x and y. Let v be their common neighbor. Any
automorphism which fixes {x, y} also fixes v. So, the subgroup of automorphisms which fix {x, y} is
of order at most 2× 5!. By the orbit-stabilizer theorem (see Section 2.2 of [8]), the orbit of a nonedge
{x, y} is of size at least 50×7!

2×5!
= 1050. The number of nonedges in Θ is 1050, hence Θ is edge-transitive.

Putting all of the claims together, if the vertices of G ∈ {P,Θ} are colored with n − 2 colors, then
either one color class is of size 3 or two color classes are each of size 2. There is a pair of nonadjacent
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vertices that can be deleted so that each vertex that remains is of a different color. In the first coloring,
this is because G has no K3; in the second, because G has no C4.

Since G is edge-transitive, the deletion of any nonadjacent vertices produces a graph isomorphic to
P ′ or Θ′, respectively. By adding the complementary cases, the Lemma follows. �

5.9. Proof of Lemma 8.

Let n = k + 2, ∆ − δ = 3, ∆(G) − δ(G) = 1. Let S be a set of vertices that induces H and let
∆ = deg(G[S], yk) ≥ · · · ≥ deg(G[S], y1) = δ. By Lemma 13, part (3), there are two possibilities,
CASE 1 and CASE 2:

CASE 1. There is a v0 ∈ V (G) \ S such that G [{v0} ∪ S \ {yk}] ≈ H.
Let {v1} = V (G) \ (S ∪ {v0}). Since |N(v0) ∩ (S \ {yk})| = ∆ and ∆ = ∆(G), it is the case that

v1 6∼ v0. Color {v0} ∪ S \ {y1, y2} with colors {1, . . . , k − 1} and color {y1, y2, v1} with color k. In
the rainbow copy of H, v1 must be chosen; otherwise the resulting rainbow subgraph has at least
e(H) − (δ + 1) + (∆ − 1) > e(H) edges.

So, U := V (G) \ {y1, y2} induces H. Count the number of edges in the subgraph induced by U :

e(G[U ]) = e(H) ≥ e(H) − |S ∩ N(y2)| − |S ∩ N(y1)| + (deg(G, v0) − 2) + (deg(G, v1) − 2)

≥ e(H) − (∆ − 2) − (∆ − 3) + deg(G, v0) + deg(G, v1) − 4(3)

= e(H) − 2∆ + 5 + ∆ + deg(G, v1) − 4

= e(H) − ∆ + 1 + deg(G, v1).

So, deg(G, v1) ≤ ∆−1 but this must occur with equality because δ(G) = ∆−1. Since deg(G, v0) = ∆,
deg(G, v1) = ∆ − 1, v0 6∼ v1, we have that

(4) e(H) = e(G) − 2∆ + 1.

If there are three vertices of degree ∆ − 1 in G, then color each of them with color k and rainbow
color the remaining vertices with colors {1, . . . , k−1}. Any rainbow colored graph on k vertices under
this coloring would have at least e(G)− 2∆ + 2 edges, a contradiction to (4). Thus, there are at most
two vertices of degree ∆ − 1 in G.

Because deg(G, v1) = ∆ − 1, equality holds in (3) and, in particular, |S ∩ N(y1)| = ∆ − 3. Since
δ(G) = ∆ − 1, we have that y1 ∼ {v0, v1} and deg(G, y1) = ∆ − 1. Thus, v1 and y1 are the only
vertices of degree ∆ − 1 in G. The vertex y2 has degree ∆ in G but the equality in (3) gives that
y1 6∼ y2 and |S ∩N(y2)| = ∆− 2. So, y2 ∼ {v0, v1}. Putting all of this information together, we arrive
at the fact that {v0, y2, v1, y1} forms an induced copy of C4 with v0 6∼ v1 and y1 6∼ y2.

If we rainbow color S \ {y2, y1} with colors {1, . . . , k − 2} and color the vertices in {y2, y1} with
color k− 1 and {v0, v1} with color k, then the only possibility for a rainbow graph with e(G)− 2∆+1
edges in this coloring is U ′ := V (G) \ {v0, y2}. Since G −→ H, the graph induced by U ′ must be
isomorphic to H. Let w be a vertex of degree ∆ − 3 in U ′, then deg(G,w) = ∆ − 1. This forces w
to be either v1 or y1. However, both v1 and y1 have exactly one neighbor among {v0, y2}, giving that
deg(G[U ′], v1) = deg(G[U ′], y1) = ∆ − 2, a contradiction.

CASE 2. There is a v1 ∈ V (G) \ S such that G [{v1} ∪ S \ {y1}] ≈ H.
Consider G and H. We have that G −→ H and G is bounded by H. Observe that y1 in an induced
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copy of H in G corresponds to yk in the same set of vertices, which induce a copy of H in G. Thus
we have CASE 1 for G and H, resulting in contradiction. �

5.10. Proof of Lemma 9.

Recall that δ = 1. Suppose v is a vertex such that deg(G, v) = δ(G) < n− k + δ. Then codeg(G, v) ≥
n − (n − k + δ) = k − δ = k − 1. Color k − 1 non-neighbors of v with distinct colors, color the rest of
the graph with the remaining colors. Let S induce a rainbow copy of H in G in this coloring.

Suppose v ∈ S. Since k− 1 non-neighbors of v must be in S, we see that H would contain a vertex
(namely, v) with at least k − 1 non-neighbors, and thus having degree 0, a contradiction. As a result,
v 6∈ S.

Label the vertices of S so that ∆ = deg(G[S], yk) ≥ · · · ≥ deg(G[S], y1) = δ. Let U = {v} ∪ S \
{yk, yk−1}. Using Lemma 3, we have that e(G[U ]) ≥ e(H) − ∆. On the other hand, we know that v
has at least k − 1 non-neighbors in S, and so it has at most one neighbor in S.

As a result, e(G[U ]) ≤ e(H) − ∆ − (∆ − 1) + 1 + 1 and e(G[U ]) ≥ e(H) − ∆, so ∆ ≤ 3. If equality
occurs then, by Lemma 13, part (1), H3 = {yk} and yk ∼ H2. Moreover, the single member of N(v)∩S
is neither yk nor yk−1. Furthermore, equality also implies that it is not possible to find a yk−1 adjacent
to v. Hence, v 6∼ H3 ∪ H2. �

5.11. Proof of Lemma 10.

Let ∆(H) = 1 and H 6∈
{

K2,K2, P3

}

. Hence, k ≥ 4 and ∆(H) ≤ k − 3. Let G −→ H, where G is a
graph on n ≥ k + 2 vertices. By Lemma 1, ∆(G) = 1. We have the following cases:

CASE 1. G has more isolated vertices than H.
Color the isolated vertices of G with as many colors as possible using at most k − 1 colors, color

the vertices of degree 1 in G with the remaining colors. It is clear that any rainbow subgraph on k
vertices will have more isolated vertices than H.

CASE 2. G has more edges than H and H has at least three isolated vertices.
In this case, the number of vertices of degree 1 in H is at most k − 3. Color vertices in as many

edges of G as possible with distinct colors, using at most k − 1 colors, and color the rest of the graph
with the remaining colors. Any rainbow subgraph on k vertices will contain more edges than H.

CASE 3. G has more edges than H and H has at most two isolated vertices.
Assume first that n ≥ k + 3, then color each of the isolated vertices of G with distinct colors and,

for as many edges as possible, color the endvertices with the same color, a different color on each edge.
We see that any rainbow k-vertex subgraph has at least 3 isolated vertices.

Assume now that n = k + 2. If G has at least one isolated vertex, then color the endpoints of one
edge with color 1, color the endpoints of another edge with color 2, rainbow color the rest. Then,
H must have three isolated vertices, a contradiction. Thus, G is a matching. If, as before, we color
the vertices of one edge with color 1, then the vertices in another edge with color 2 and the rest with
remaining colors, then H ≈ M ′

k/2+1
.
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To complete the proof, observe that any coloring of G ≈ Mk/2+1 with k colors gives such a rainbow
H ≈ M ′

k/2+1
. �

5.12. Proof of Lemma 11.

Let ∆ = 2, H 6∈ {Λ, S4}.

CASE 1. H has two nonadjacent vertices of degree 2.
If k ≤ 4, the only possibility is H ≈ C4. Corollary 2 from the paper [2] gives that f(H) = k for any

regular graph H.
Hence, we may assume k ≥ 5 and ∆ = 2 ≤ k − 3. By Lemma 1 part (1), ∆(G) = ∆ = 2. We shall

show that G is a disjoint union of cycles each of length at least 5.

Claim 1. Let S ⊂ V (G) be any vertex set that induces a copy of H. Then V (G)\S is an independent
set.

For all v ∈ V (G) \ S Lemma 13 part (1) gives that |N(v) ∩ (S \ {yk, yk−1})| = ∆ = 2. Each vertex
in V (G)\S sends 2 edges into S, and thus no edges into V (G)\S. So V (G)\S induces an empty graph.

Claim 2. G is a union of cycles.

Assume that there is a vertex v in G such that deg(G, v) < 2, consider any two adjacent ver-
tices w,w′. Color v,w,w′ with one color and the rest of the graph with the remaining k − 1 colors.
Let U ⊆ V (G) induce a rainbow copy of H under this coloring. Then U contains one vertex from
{v,w,w′}, moreover v ∈ U , since its degree is less than 2. On the other hand, both w and w′ cannot
be in V (G) \ U since they are adjacent, contradicting the fact that V (G) \ U is an independent set.
Thus there is no vertex of degree less than 2 in G. Therefore G is 2-regular, and Claim 2 follows.

Claim 3. G has no K3 and no C4.

Assume that G has a triangle. Color its three vertices with the same color and color the rest of
the vertices with new colors. In this coloring, there is a pair of adjacent vertices outside of a rainbow
copy of H, a contradiction. If G has a C4, then color each of the two nonadjacent vertices of a copy
of C4 with color 1, color each of the two other vertices of C4 with color 2 and the color the rest of the
vertices of G with the remaining k − 2 colors (here n ≥ k + 2 is necessary). This gives two adjacent
vertices outside of a rainbow copy of H, a contradiction.

If n ≥ k + 3, then color four consecutive vertices on one cycle with one color, and color the rest of
the vertices arbitrarily with the remaining k − 1 colors. As a result, there is an edge outside of the
rainbow copy of H, a contradiction.

Thus we may assume that n = k + 2. Color three consecutive vertices on one of the cycles of G
with color 1 and rainbow color the rest of the vertices with the remaining colors. Since there is no
edge outside of a copy of H in G, we must pick the middle vertex of color 1 in a rainbow copy of H.
Thus, H is a disjoint union of an isolated vertex, a path and perhaps some cycles. If G has at least
two cycles, then color two vertices in one cycle with color 1, color two vertices in another cycle with
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color 2 and rainbow color the rest of the vertices with the remaining k− 2 colors. Under this coloring,
H has no isolated vertex, a contradiction. The only case that remains is that G is a single cycle and
H = Pk−1 + K1. Since H has two nonadjacent vertices of degree two, k − 1 ≥ 5, thus n ≥ 8. Let v, v′

and u, u′ be two pairs of consecutive vertices of G such that G− u− u′ − v − v′ consists of two paths,
each of length at least 2. Color v, v′ with color 1 and u, u′ with color 2, rainbow color the rest of the
vertices with remaining colors. Under this coloring, H has no isolated vertices, a contradiction.

CASE 2. All degree 2 vertices of H are adjacent.
Recall that n ≥ k + 2. We have that H has one component L ∈ {P3,K3, P4}, and all other

components are isolated edges and vertices. We may assume that k ≥ 4 since H 6∈ F∞. If k = 4 then
H ∈ {P4,Λ, S4}. Since H 6∈ F∞, we see that H ≈ P4. Since n ≥ k + 2 = 6, Ramsey’s theorem gives
that G contains either K3 or K3, contradicting the Deck Lemma (Lemma 3). We can assume that
k ≥ 5, giving that ∆ = 2 ≤ k − 3 and ∆(G) = 2 by Lemma 1. The Deck Lemma implies that each
connected subgraph of G on |V (L)| vertices is isomorphic to L.

Assume first that k ≥ 7. There is only one component of G with at least three vertices (call such a
component large) and this large component is either P3, K3 or P4. Indeed, otherwise one can find two
nonadjacent vertices of degree 2 in G; considering these and their neighbors will contradict the Deck
Lemma. Since n ≥ k + 2, we can color the vertices of the large component of G with two colors and
color the remaining vertices arbitrarily. Under this coloring, any rainbow subgraph has components
with at most two vertices, a contradiction.

Thus, k = 5 or 6 and L ∈ {P3,K3, P4}.
Let k ∈ {5, 6} and L ∈ {P3,K3}. Then, G has no component on more than three vertices, and each

large component of G is isomorphic to L. If G has only one component isomorphic to L, then color
it with two colors, and color the rest arbitrarily, resulting in contradiction. If G has at least two such
components, color the vertices in two copies of L with two colors each and color the rest of V (G) with
the remaining 1 ≤ k − 4 ≤ 2 colors. Under this coloring, no rainbow subgraph has a component with
more than 2 vertices.

Let k = 6 and L ≈ P4. Then, H is either P4 + K2 or P4 + 2K1. Any component of G on at least
three vertices must be P4 since otherwise there is a subgraph P5 of G which contains two vertices of
degree 2, nonadjacent in G, such that these two vertices and their neighbors span at most 5 vertices,
which contradicts the Deck Lemma. Color the vertices of P4 in G with three colors and color the rest
of the graph with the remaining three colors. Under this coloring, no rainbow subgraph has a P4.

Let k = 5 and L ≈ P4. Then H ≈ P4 + K1. In particular, we have that H has no induced 2K2.
Thus, G has only one nontrivial (with at least one edge) component and this component is either P4

or C5. Since n ≥ k+2, we can color this component with three colors and color the rest of the vertices
arbitrarily with the remaining 2 colors, arriving at a contradiction. �

5.13. Proof of Lemma 12. Recall that ∆ = ∆(H) = 3, δ = δ(H) ≤ 1 and δ(G) < n − k + δ.

Claim 1. There exists a set S ⊂ V (G) and vertices y1 ∈ S and v1 ∈ V (G) \ S such that G[S] ≈ H,
y1 is a minimum-degree vertex in G[S] and N(v1) ∩ S = {y1}.

If δ = 1, then this follows directly from Lemma 9.
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If δ = 0, then suppose the claim is false. Lemma 13, part (3) gives that there is a v0 ∈ V (G) \ S
such that S0 := {v0}∪ (S \ {yk}) and G[S0] ≈ H. In this case, |N(v0) ∩ (S \ {y1, y2})| ≤ δ + 1 = 1, so
v0 ∼ {y1, y2} and Lemma 13, part (2) also gives that y1 is the unique isolated vertex in G[S]. We have
the freedom to choose y2 to be any degree-one vertex in G[S], hence v0 is adjacent to every vertex of
degree at most one in G[S].

As a result, G[S0] has no isolated vertices, a contradiction to the claim that G[S0] ≈ H. This proves
Claim 1.

Claim 2. |H3| = 1, H3 ∼ H2.
If δ = 1, this follows directly from Lemma 9. If δ = 0, this comes from Claim 1 and Lemma 13,

part (1). This proves Claim 2.

CASE 1. δ = 0.
By Lemma 13, part (2), the graph G[S] has a unique isolated vertex, y1. Since |H3| = 1, the

component containing yk has an odd number of degree-one vertices.
If the component of G[S] containing yk has 3 degree-one vertices, call two of them y2 and y3. Let

S′ = {v1} ∪ (S \ {y2, y3}), where v1 as in Claim 1. The graph G[S′] has no isolated vertices. Since
|S′| = k−1 and e(S′) = e(H)−1, the Deck Lemma implies that S′ is obtained by deleting a degree-one
vertex from H, which would yield at least one isolated vertex, a contradiction.

Therefore, we may assume that the component of G[S] containing yk has exactly 1 degree-one
vertex. Since all degree-two vertices must be adjacent to yk, the vertex set {yk, yk−1, yk−2}, for two
degree-two vertices yk−1 and yk−2, induces a triangle. Let S′′ = {v1} ∪ (S \ {yk−1, yk−2}). The graph
G[S′′] has no isolated vertices. Since |S′′| = k − 1 and e(S′′) = e(H) − 2, the Deck Lemma implies
that S′′ is obtained by deleting a degree-two vertex from H, which would yield at least one isolated
vertex, a contradiction.

Hence, there is no graph in CASE 1.

CASE 2. δ = 1.
If y1 6∼ yk, then let S′ = {v1} ∪ (S \ {yk, y1}), where v1 as in Claim 1. Since |S′| = k − 1 and

e(S′) = e(H) − 4, the Deck Lemma is contradicted. Therefore, we may assume that y1 ∼ yk.
If H is not connected, then since every degree-two vertex in G[S] is adjacent to yk, every connected

component of G[S] not containing yk must be an isolated edge. Let {y2, y3} be a component of G[S]
not containing yk. If S′′ = {v1} ∪ (S \ {y2, y3}), then e(S′′) = e(H), contradicting the Deck Lemma.
Therefore, we may also assume that H is connected.

Since H3 ∼ H2, y1 ∼ yk and H is connected, there are only three possibilities for H: one for each
of k = 4, 5, 6. If k ≤ 4, then H ≈ Λ. If k ∈ {5, 6} then Figure 3 gives these graphs and the possible
ways for v1 to be adjacent to S.

In the case where k = 5, the vertex set {v1, y1, y3, y4} induces the graph 2K2, which is not in
deck(H). In the case where k = 6, the vertex set {v1, y1, y2, y3, y6} induces the graph P3 +2K1, which
again is not in deck(H).

Hence, the only graph in CASE 2 is H ≈ Λ, which must be excluded because Λ ∈ F∞. �
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Figure 3. Small graphs, δ = 1,∆ = 3 in Lemma 12

6. Concluding remarks

Open question: H ≈ Λ,H ≈ Λ
It is still an open problem to determine Arrow(Λ) and Arrow(Λ). We see by Lemma 6 that C4+K1 −→
Λ; it is shown in [2], that for each t ≥ 1 there is a graph G on 7t vertices such that G −→ Λ. A case
analysis, which we neglect to include in this paper, gives that for any G of order 6, G 6−→ Λ.

Thus, even the weaker problem of determining {n : |V (G)| = n and G −→ Λ} is still open.

Generalizing the problem

A natural generalization of this problem is as follows: Let H be a set of k-vertex graphs and define
G −→ H so that if V (G) is colored with k colors, then there is an H ∈ H such that G contains a
rainbow induced subgraph isomorphic to H. Determine Arrow(H) = {G : G −→ H}, for interesting
sets H of graphs.
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