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Abstract

We call a pair (m, f) of integers, m ≥ 1, 0 ≤ f ≤
(
m
2

)
, absolutely avoidable if there is n0 such

that for any pair of integers (n, e) with n > n0 and 0 ≤ e ≤
(
n
2

)
there is a graph on n vertices

and e edges that contains no induced subgraph on m vertices and f edges. Some pairs are
clearly not absolutely avoidable, for example (m, 0) is not absolutely avoidable since any
sufficiently sparse graph on at least m vertices contains independent sets on m vertices.
Here we show that there are infinitely many absolutely avoidable pairs. We give a specific
infinite set M such that for any m ∈ M , the pair (m,

(
m
2

)
/2) is absolutely avoidable. In

addition, among other results, we show that for any integer function q(m) for which the limit

lim
m→∞

q(m)
m exists, there are infinitely many values of m such that the pair (m,

(
m
2

)
/2+q(m))

is absolutely avoidable.

1 Introduction

One of the central topics of graph theory deals with properties of classes of graphs that contain
no subgraph isomorphic to some given fixed graph, see for example Bollobás [5]. Similarly,
graphs with forbidden induced subgraphs have been investigated from several different angles
– enumerative, structural, algorithmic, and more.

Erdős, Füredi, Rothschild and Sós [8] initiated a study of a seemingly simpler class of graphs
that do not forbid a specific induced subgraph, but rather forbid any induced subgraph on a
given number m of vertices and number f of edges. Following their notation we say a graph G
arrows a pair of non-negative integers (m, f) and write G → (m, f) if G has an induced sub-
graph on m vertices and f edges. We say that a pair (n, e) of non-negative integers arrows the
pair (m, f), and write (n, e)→ (m, f), if for any graph G on n vertices and e edges, G→ (m, f).
As an example, if tm−1(n) denotes the number of edges in the balanced complete (m−1)-partite
graph on n vertices, then by Turán’s theorem [15] we know that any graph on n vertices with
more than tm−1(n) edges contains Km, a complete subgraph on m vertices. Equivalently stated,
we have (n, e)→ (m,

(
m
2

)
) if e > tm−1(n).

For a fixed pair (m, f) let

Sn(m, f) = {e : (n, e)→ (m, f)} and σ(m, f) = lim sup
n→∞

|Sn(m, f)|/
(
n

2

)
.

In [8] the authors considered σ(m, f) for different choices of (m, f). One of their main results is
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Theorem 1. [8] If (m, f) 6∈ {(2, 0), (2, 1), (4, 3), (5, 4), (5, 6)}, then σ(m, f) ≤ 2
3 ; otherwise

σ(m, f) = 1.

He, Ma, and Zhao [9] improved the upper bound 2/3 to 1/2 and showed that there are infinitely
many pairs for which the equality σ(m, f) = 1

2 holds.

In [8] the authors also gave a construction demonstrating that “most of the” σ(m, f) are 0, by
showing that for large n almost all pairs (n, e) can be realized as the vertex disjoint union of a
clique and a high-girth graph, and that for fixed m most pairs (m, f) cannot be realized as the
vertex disjoint union of a clique and a forest. For some other results concerning sizes of induced
subgraphs, see for example Alon and Kostochka [1], Alon, Balogh, Kostochka, and Samotij [2],
Alon, Krivelevich, and Sudakov [3], Axenovich and Balogh [4], Bukh and Sudakov [6], Kwan
and Sudakov [11,12] and Narayanan, Sahasrabudhe, and Tomon [14].

In this paper we investigate the existence of pairs (m, f) for which we not only have σ(m, f) = 0,
but the stronger property Sn(m, f) = ∅ for large n.

Definition 1. A pair (m, f) is absolutely avoidable if there is n0 such that for each n > n0
and for any e ∈ {0, . . . ,

(
n
2

)
}, (n, e) 6→ (m, f).

Our results show that there are infinitely many absolutely avoidable pairs. Our first result gives
an explicit construction of infinitely many absolutely avoidable pairs (m,

(
m
2

)
/2). The second

one provides an existence result of infinitely many absolutely avoidable pairs (m, f), where f is
“close” to

(
m
2

)
/2. Finally, the last result shows that for every sufficiently large m congruent to 0

or 1 modulo 4, at least one of the pairs (m,
(
m
2

)
/2) and (m,

(
m
2

)
/2−6m) is absolutely avoidable.

For the first result we need to define the following set M of integers. Let

M =

{
1

2

((
1 0

)
·
(

3 4
2 3

)s
·
(

3
1

)
+ 5

)
: s ∈ N, s ≥ 2

}
.

In particular, we have M = {40, 221, 1276 . . .}.

Theorem 2. For any m ∈ M , f =
(
m
2

)
/2 is an integer and the pair (m, f) is absolutely

avoidable.

Theorem 3. For any integer valued function q(m) for which the limit lim
m→∞

q(m)
m exists, there

are infinitely many values of m, such that the pair (m,
(
m
2

)
/2− q(m)) is absolutely avoidable.

Moreover, there are infinitely many values of m, such that for any integer f ′ ∈ (
(
m
2

)
/2 −

0.175m,
(
m
2

)
/2 + 0.175m) the pair (m, f ′) is absolutely avoidable.

Theorem 4. For any m ≥ 740 with m ≡ 0, 1 (mod 4) either (m,
(
m
2

)
/2) or (m,

(
m
2

)
/2 − 6m)

is absolutely avoidable.

The main idea of the proofs is that for certain pairs (m, f), there is no graph on m vertices and
f edges which is a vertex disjoint union of a clique and a forest or a complement of a vertex
disjoint union of a clique and a forest. In order to do so, we need several number theoretic state-
ments that we prove in several lemmas. After that, we use the observation from [8], that for any
0 ≤ c < 1, for any sufficiently large n (depending on c), and any e ≤ c

(
n
2

)
, there is a graph on

n vertices with e edges that is the vertex disjoint union of a clique and a graph of girth greater
than m. In particular, any m-vertex induced subgraph of such a graph is a disjoint union of a
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clique and a forest. Considering the complements, we deduce that (m, f) is absolutely avoidable.

The problem can also be considered in a bipartite setting. It would be interesting to show
whether there are absolutely avoidable pairs. Unfortunately we cannot use our method to find
such pairs, since any bipartite pair (m, f) with f ≤ m2/2 can be represented as the vertex
disjoint union of a complete bipartite graph and a forest, see Section 4.

We state and prove the lemmas in Section 2 and prove the theorems in Section 3.

2 Lemmas and number theoretic results

For a positive real number x, let [x] = {0, 1, . . . , bxc}. We say that a pair (m, f) is realizable
by a graph H = (V,E) if |V (H)| = m and |E(H)| = f . For two reals x, y, x ≤ y, we use the
standard notation (x, y), [x, y), (x, y], and [x, y] for respective intervals of reals. For x ∈ R let
{x} = x − bxc denote the fractional part of x, i.e. {x} ∈ [0, 1) and {x} = x (mod 1). A real
valued sequence (xn)n∈N is called uniformly distributed modulo 1 (we write u.d. mod 1) if for
any pair of real numbers s, t with 0 ≤ s < t ≤ 1 we have

lim
N→∞

|{n : 1 ≤ n ≤ N, {xn} ∈ [s, t)}|
N

= t− s.

The following lemma is used in the proof of Theorem 4:

Lemma 1. (a) The sequence (xn) = αn is u.d. mod 1 for any α ∈ R \Q.

(b) If a real valued sequence (xn) is u.d. mod 1 and a real valued sequence (yn) has the property
lim
n→∞

(xn − yn) = β, a real constant, then (ym) is also u.d. mod 1.

For proofs of these facts see for example Theorem 1.2 and Example 2.1 in [10].

The following lemma is given in [8], we include it here for completeness.

Lemma 2. Let p ∈ N and c be a constant 0 ≤ c < 1. Then for n ∈ N sufficiently large and any
e ∈ [c

(
n
2

)
], there exists a non-negative integer k and a graph on n vertices and e edges which is

the vertex disjoint union of a clique of size k and a graph on n− k vertices of girth at least p.

Proof. Let p > 0 be given. We use the fact that for any v large enough there exists a graph

of girth p on v vertices with v
1+ 1

2p edges. For a probabilistic proof of this fact see for example
Bollobás [5] and for an explicit construction see Lazebnik et al. [13]. Let n be a given sufficiently
large integer. Let e ∈ [c

(
n
2

)
]. Let k be a non-negative integer such that

(
k
2

)
≤ e ≤

(
k+1
2

)
− 1.

Note that since e ≤ c
(
n
2

)
, and

(
k
2

)
≤ c

(
n
2

)
, thus k ≤

√
cn + 1 ≤ c′n, where c′ is a constant,

c′ < 1. We claim that (n, e) could be represented as a vertex disjoint union of a clique on k
vertices and a graph of girth at least p. For that, consider a graph G′ on n − k vertices and

girth at least p such that |E(G′)| ≥ (n − k)
1+ 1

2p . Consider G′′, the vertex disjoint union of G′

and Kk. Then |E(G′′)| ≥
(
k
2

)
+ (n − k)

1+ 1
2p ≥

(
k+1
2

)
≥ e. Here, the second inequality holds

since (n− k)
1+ 1

2p ≥ k for k ≤ c′n and n large enough. Finally, let G be a subgraph of G′′ on e
edges, obtained from G′′ by removing some edges of G′. Thus, G is the vertex disjoint union of
a clique on k vertices and a graph of girth at least p.

We shall need two number theoretic lemmas for the proof of the main result. Below the set M
is defined as in the introduction.
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Lemma 3. For any m ∈ M , m is a positive integer congruent to 0 or 1 modulo 4, and√
2m2 − 10m+ 9 is an odd integer for each m ∈M .

Proof. Recall that M =

{
1
2

((
1 0

)
·
(

3 4
2 3

)s
·
(

3
1

)
+ 5

)
: s ∈ N, s ≥ 2

}
. We see, that M

corresponds to the following recursion: (x0, y0) = (3, 1) and for s ≥ 0

xs+1 = 3xs + 4ys

ys+1 = 2xs + 3ys.

I.e., for s ≥ 0, (
xs
ys

)
=

(
3 4
2 3

)s
·
(

3
1

)
.

Indeed, M = {(xs + 5)/2 : s ≥ 2}.

From the recursion we see that x2s ≡ 3 (mod 8), x2s+1 ≡ 5 (mod 8), y4s = y4s+1 ≡ 1
(mod 8), and y4s+2 = y4s+3 ≡ 5 (mod 8) for s ∈ N0. In particular ys is an odd integer.
Let ms = (xs + 5)/2, i.e., M = {ms : s ≥ 2}. When s is even, ms ≡ 0 (mod 4), and if s is odd,
ms ≡ 1 (mod 4). This proves the first statement of the lemma.

Next, we observe that (x, y) = (xs, ys) gives an integer solution to the generalized Pell’s equation

x2 − 2y2 = 7. (∗)

Indeed, (x, y) = (x0, y0) = (3, 1) satisfies (∗). Assume that (x, y) = (xs, ys) satisfies (∗). Let
(x, y) = (xs+1, ys+1) and insert it into the left hand side of (∗). Then we have

x2s+1 − 2y2s+1 = 9x2s + 24xsys + 16y2s − 8x2s − 24xsys − 18y2s = x2s − 2y2s = 7.

Thus (x, y) = (xs+1, ys+1) also satisfies (∗).

Since (xs, ys) satisfies (∗), we have that ys =
√

1
2(x2s − 7). Then ys =

√
1
2((2ms − 5)2 − 7) =√

1
2(4m2

s − 20ms + 18) =
√

2m2
s − 10ms + 9. Since ys is an odd integer, the second statement

of the lemma follows.

For the next lemmas and theorems we will need the following definitions. Let m, q ∈ Z,
m ≥ 5 + 2

√
|q|. Let

yq(m) =

√
2m2−10m−8q+9

2 , zq(m) =

√
2m2−2m−8q+1

2 ,

tq(m) = zq(m)− yq(m), dq(m) = 3
2 − tq(m),

Lq(m) =
⌊
5
2 + yq(m)

⌋
, Rq(m) =

⌊
1
2 + zq(m)

⌋
.

Note that since m ≥ 5 + 2
√
|q|, we always have yq(m), zq(m) ∈ R.

Lemma 4. Let q = q(m),m ∈ Z, m ≡ 0, 1 (mod 4), m ≥ 5 + 2
√
|q|, and |q(m)| ∈ O(m).
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(a) We have tq(m) =
2
√
2(1− 1

m
)√

1− 1
m
+
1−8q
2m2 +

√
1− 5

m+
9−8q
2m2

. In particular, limm→∞ dq(m) = 3
2 −
√

2.

(b) We have Lq(m) > Rq(m) if and only if {yq(m)} ∈ [0, dq(m)) ∪
[
1
2 , 1
)
. In particular,

L0(m) > R0(m) if m ∈M .

Proof. We start by proving (a). By definition of tq(m) we have

tq(m) = zq(m)− yq(m)

=
1

2

√
2m2 − 2m− 8q + 1− 1

2

√
2m2 − 10m− 8q + 9

=
1

2

2m2 − 2m− 8q + 1− 2m2 + 10m+ 8q − 9√
2m2 − 2m− 8q + 1 +

√
2m2 − 10m− 8q + 9

=
2
√

2(1− 1
m)√

1− 1
m + 1−8q

2m2 +
√

1− 5
m + 9−8q

2m2

.

This also shows that for |q| = |q(m)| ∈ O(m), limm→∞ dq(m) = 3
2 − lim

m→∞
tq(m) = 3

2 −
√

2,

which concludes the proof of (a).

Now we can prove part (b). From part (a) we have in particular that tq(m) =
√

2+εq(m), where
form sufficiently large |εq(m)| < 0.05, and thus, tq(m) ∈ (1, 32). Thus, dq(m) = 3

2−tq(m) ∈ (0, 12)
for sufficiently large m. We compare Lq(m) and Rq(m) using the expression x = bxc+ {x}:

Lq(m) =

⌊
5

2
+ yq(m)

⌋
= 2 + byq(m)c+

⌊
1

2
+ {yq(m)}

⌋
= 2 + byq(m)c+

{
0, {yq(m)} ∈ [0, 12)

1, {yq(m)} ∈ [12 , 1)
,

Rq(m) =

⌊
1

2
+ zq(m)

⌋
=

⌊
1

2
+ yq(m) + tq(m)

⌋
= byq(m)c+

⌊
1

2
+ tq(m) + {yq(m)}

⌋
= byq(m)c+

{
1, tq(m) + {yq(m)} ∈ [1, 32)

2, tq(m) + {yq(m)} ∈ [32 ,
5
2)
.

Thus

Lq(m)−Rq(m) = 2 +


0− 1, {yq(m)} ∈ [0, 12) and tq(m) + {yq(m)} ∈ [1, 32)

0− 2, {yq(m)} ∈ [0, 12) and tq(m) + {yq(m)} ∈ [32 ,
5
2)

1− 1, {yq(m)} ∈ [12 , 1) and tq(m) + {yq(m)} ∈ [1, 32)

1− 2, {yq(m)} ∈ [12 , 1) and tq(m) + {yq(m)} ∈ [32 ,
5
2)

.
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So, Lq(m)−Rq(m) > 0 in all cases except for the second one, i.e., if and only if

{yq(m)} ∈ [0, 1) \
([

0, 12
)
∩
[
3
2 − tq(m), 52 − tq(m)

))
=

[
1
2 , 1
)
∪ ([0, 1) \ [dq(m), 1 + dq(m)))

=
[
1
2 , 1
)
∪ [0, dq(m)).

Now let m ∈ M and consider y0(m) =
√
2m2−10m+9

2 . Then by Lemma 3, 2y0(m) is an odd
integer for all m ∈ M , i.e. {y0(m)} = 1

2 . Thus, we have L0(m) > R0(m) for all m ∈ M , which
concludes the proof of (b).

Lemma 5. If q = q(m) ∈ Z, m ∈ N, m ≡ 0, 1 (mod 4), m ≥ 2
√
|q|+ 5, and Lq(m) > Rq(m),

then the pair (m,
(
m
2

)
/2 − q) cannot be realized as the vertex disjoint union of a clique and a

forest.

Proof. Let f =
(
m
2

)
/2 − q. Suppose that (m, f) can be realized as the vertex disjoint union

of a clique K on x vertices and a forest F on m−x vertices. We shall show that Lq(m) ≤ Rq(m).

Claim 1: x ≥ Lq(m).
The forest F has f−

(
x
2

)
=
(
m
2

)
/2−q−

(
x
2

)
edges. Since F has m−x vertices, it contains strictly

less than m− x edges. Thus, we have
(
m
2

)
/2− q −

(
x
2

)
< m− x. Solving for x gives

x >
3

2
+

1

2

√
2m2 − 10m− 8q + 9 or x <

3

2
− 1

2

√
2m2 − 10m− 8q + 9.

Since m ≥ 2
√
|q| + 5, we have 2m2 − 10m − 8q + 9 ≥ 9. The second inequality gives x <

3
2 −

1
2

√
2m2 − 10m− 8q + 9, and thus x < 0, a contradiction. So only the first inequality for x

holds and implies that

x ≥

⌊
3 +

√
2m2 − 10m− 8q + 9

2

⌋
+ 1 = Lq(m),

which proves Claim 1.

Claim 2: x ≤ Rq(m).
The number of edges in the clique K is at most f and exactly

(
x
2

)
. Thus

(
x
2

)
≤ f =

(
m
2

)
/2− q,

which implies that 2x(x− 1) ≤ m(m− 1)− 4q. This in turn gives

x ≤

⌊
1 +

√
2m2 − 2m− 8q + 1

2

⌋
= Rq(m),

and proves Claim 2.
Claims 1 and 2 imply that Lq(m) ≤ Rq(m).

Lemma 6. Let q = q(m) ∈ Z, m ∈ N, m ≡ 0, 1 (mod 4), m ≥ 2
√
|q| + 5. If both Lq(m) >

Rq(m) and L−q(m) > R−q(m), then the pair (m, f) = (m,
(
m
2

)
/2− q) is absolutely avoidable.

Proof. Let m satisfy the condition of the lemma and let f− =
(
m
2

)
/2 − q and f+ =

(
m
2

)
/2 + q.

Then by Lemma 5, neither (m, f+) nor (m, f−) can be represented as the vertex disjoint union
of a clique and a forest.
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By Lemma 2, for every sufficiently large n, and all e ≤
⌈(
n
2

)
/2
⌉

we can realize (n, e) as the vertex
disjoint union of a clique and a graph of girth greater than m. Thus, for each e ∈ {0, 1, . . . ,

(
n
2

)
}

there is a graph G on n vertices and e edges such that either G or the complement G of G is a
vertex disjoint union of a clique and a graph of girth greater than m.

If G is the vertex disjoint union of a clique and a graph of girth greater than m, then any m-
vertex induced subgraph of G is a vertex disjoint union of a clique and a forest. Since (m, f−)
can not be represented as a clique and a forest, we have G 6→ (m, f−). If G is the vertex disjoint
union of a clique and a graph of girth greater than m, then as above G 6→ (m, f+). Since
f− =

(
m
2

)
− f+, we have that G 6→ (m, f−). Thus, (m, f−) is absolutely avoidable.

3 Proofs of the Main Theorems

Proof of Theorem 2. Let m ∈ M . By Lemma 3 we have m ≡ 0, 1 (mod 4), so f =
(
m
2

)
/2 is an

integer. By Lemma 4(b) we have L0(m) > R0(m). Now we can apply Lemma 6 with q = 0.
Thus, the pair (m, f) is absolutely avoidable.

Proof of Theorem 3. Let q = q(m) ∈ Z and let a = lim
m→∞

q(m)
m .

Recall that yq(m) = 1
2

√
2m2 − 10m+ 9− 8q.

Claim 1: lim
m→∞

(
m√
2
− yq(m)

)
= 5

2
√
2

+
√

2a and lim
m→∞

(
m√
2
− y−q(m)

)
= 5

2
√
2
−
√

2a.

Observe that

lim
m→∞

(
m√

2
− yq(m)

)
= lim

m→∞

m√
2

(
1−

√
1− 5

m
+

9− 8q

2m2

)

= lim
m→∞

m√
2

5
m −

9−8q
2m2

1 +
√

1 + 5
m + 9−8q

2m2

=
5

2
√

2
+ lim
m→∞

√
2q

m

=
5

2
√

2
+
√

2a.

Doing a similar calculation for y−q(m) proves Claim 1.

Claim 2: yq(4m) and y−q(4m) are u.d. mod 1, and in particular, y0(4m) is u.d. mod 1.

Since 1√
2
∈ R\Q, by Lemma 1(a) the sequence (x4m) = (4m)/

√
2 is u.d. mod 1. Since we have

lim
m→∞

(x4m − yq(4m)) = 5+2
√
2a

2
√
2
∈ R and lim

m→∞
(x4m − y−q(4m)) = 5−2

√
2a

2
√
2
∈ R, by Lemma 1(b)

(yq(4m)) and (y−q(4m)) are also u.d. mod 1. This proves Claim 2.

Now, to prove the first part of the theorem, from Lemma 6 it suffices to find infinitely many
integers m such that for q = q(m), Lq(m) > Rq(m) and L−q(m) > R−q(m).
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By Lemma 4(a), we have that limm→∞ dq(m) = limm→∞ d−q(m) = 3/2 −
√

2. Let m0 be
large enough so that for any m ≥ m0, dq(m) and d−q(m) are close to these limits, i.e.,
|dq(m)− (3/2−

√
2)| < (3/2−

√
2)/3 and |d−q(m)− (3/2−

√
2)| < (3/2−

√
2)/3.

Let δ > 0 be a small constant such that δ < (3/2−
√

2)/2, 2δ < 1−{
√

2a} and if {
√

2a} < 1/2,
then δ < 1/2 − {

√
2a}. In addition assume that δ is sufficiently small that for any m ≥ m0,

δ < dq(m)/3, and δ < d−q(m)/3. Using Claim 1, define mδ to be sufficiently large, so that
mδ > m0 and for any m ≥ mδ, yq(m)− m√

2
and y−q(m)− m√

2
are δ-close to the limiting values:

yq(m) ∈
((

m√
2
− 5

2
√

2
−
√

2a

)
− δ,

(
m√

2
− 5

2
√

2
−
√

2a

)
+ δ

)
and

y−q(m) ∈
((

m√
2
− 5

2
√

2
+
√

2a

)
− δ,

(
m√

2
− 5

2
√

2
+
√

2a

)
+ δ

)
.

We distinguish 2 cases based on the values of a:

Case 1: {
√

2a} ∈ [0, 14) ∪ [12 ,
3
4), i.e. {2

√
2a} ∈ [0, 12).

Since 4m√
2
− 5

2
√
2

is a sequence u.d. mod 1, there is an infinite set M1 of integers at least mδ,

such that for any m ∈M1

4m√
2
− 5

2
√

2
∈ (km + 1/2 + {

√
2a}+ δ, km + 1/2 + {

√
2a}+ 2δ),

for some integer km. Then we have

yq(4m) ∈
(

(1/2 + km + {
√

2a}+ δ)−
√

2a− δ, (1/2 + km + {
√

2a}+ δ)−
√

2a+ δ
)
,

y−q(4m) ∈
(

(1/2 + km + {
√

2a}+ δ) +
√

2a− δ, (1/2 + km + {
√

2a}+ δ) +
√

2a+ δ
)
.

This implies that
{yq(4m)}, {y−q(4m)} ∈ [1/2, 1) .

From Lemma 4(b), Lq(4m) > Rq(4m) and L−q(4m) > R−q(4m). Note that f =
(
4m
2

)
/2−q(4m)

is an integer. Thus, by Lemma 6 the pair
(
4m,

(
4m
2

)
/2− q(4m)

)
is absolutely avoidable for any

m ∈M1.

Case 2: {
√

2a} ∈ [14 ,
1
2) ∪ [34 , 1), i.e. {2

√
2a} ∈ [12 , 1).

Since 4m√
2
− 5

2
√
2

is a sequence which is u.d. mod 1, there is an infinite set M2 of integers at

least mδ, such that for any m ∈M2

4m√
2
− 5

2
√

2
∈ (km + {

√
2a}+ δ, km + {

√
2a}+ 2δ),

for some integer km. Then we have

yq(4m) ∈
(

(km + {
√

2a}+ δ)−
√

2a− δ, (km + {
√

2a}+ δ)−
√

2a+ δ
)

and

y−q(4m) ∈
(

(km + {
√

2a}+ δ) +
√

2a− δ, (km + {
√

2a}+ δ) +
√

2a+ δ
)
.
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This implies that
{yq(4m)} ∈ [0, 2δ) , {y−q(4m)} ∈ [1/2, 1) .

Recall that for any m > mδ, δ < dq(m)/3. Thus, {y−q(4m)} ∈ [1/2, 1) and {yq(4m)} ∈
[1/2, 1) ∪ [0, dq(4m)). From Lemma 4(b), Lq(4m) > Rq(4m) and L−q(4m) > R−q(4m). Note
that f =

(
4m
2

)
/2 − q(4m) is an integer. Thus, by Lemma 6 the pair

(
4m,

(
4m
2

)
/2− q(4m)

)
is

absolutely avoidable for any m ∈M2.

This proves the first part of the theorem.

For the second part, let c = 0.175 < 1
4
√
2
. We shall show that there is an infinite set M0 of

integers such that for any m ∈M0 and for all integers q ∈ (−cm, cm), the pair (m,
(
m
2

)
/2− q) is

absolutely avoidable. In order to do that, we shall show that y0(m) does not differ much from
yq(m), for chosen values of m.

Recall that limm→∞ dq(m) = 3/2 −
√

2 > 0 for any q ∈ (−cm, cm). Thus, the interval[
3
4 ,

3
4 + dq(m)

)
has positive length for any such q and sufficiently large m. By Claim 2 the

sequence y0(4m) is u.d. mod 1, thus there are infinitely many values of m that m ≡ 0 (mod 4)
and {y0(m)} ∈

[
3
4 ,

3
4 + dq(m)

)
. Now our choice for m will allow us to use Lemmas 4, 5 and 6.

Let q ∈ (−cm, cm). It will be easier for us to deal with yq(m) − y0(m) instead of yq(m). Let
sq(m) = yq(m)− y0(m). We have

lim
m→∞

sq(m) = lim
m→∞

(yq(m)− y0(m))

= lim
m→∞

1

2

(√
2m2 − 10m+ 9− 8q −

√
2m2 − 10m+ 9

)
= −

√
2 lim
m→∞

q

m
.

Thus, since q ∈ (−cm, cm), c = 0.175 < 1
4
√
2
, for m sufficiently large we have sq(m) ∈

(
−1

4 ,
1
4

)
.

Since yq = sq(m) + y0(m), and {y0(m)} ∈
[
3
4 ,

3
4 + dq(m)

)
, we have that {yq} = {sq(m) +

y0(m)} ∈ [0, dq(m)) ∪ [12 , 1). Lemma 4(b) implies that Lq(m) > Rq(m) and L−q(m) > R−q(m).
Lemmas 5 and 6 then imply that (m,

(
m
2

)
/2− q) is absolutely avoidable.

Proof of Theorem 4. Let m ≥ 740, m ≡ 0, 1 (mod 4). If L0(m) > R0(m), by Lemma 6
(m,

(
m
2

)
/2) is absolutely avoidable, so we assume using Lemma 4(b) that {y0(m)} ∈ [d0(m), 12).

We shall first make some observations about y6m(m) and y−6m(m) by comparing them to
y0(m). From the definition we have

y0(m) =
1

2

√
2m2 − 10m+ 9, y6m(m) =

1

2

√
2m2 − 58m+ 9, y−6m(m) =

1

2

√
2m2 + 38m+ 9.

Thus
lim
m→∞

y0(m)− y6m(m) = 6
√

2 and lim
m→∞

y0(m)− y−6m(m) = −6
√

2.

By Lemma 4(a),
lim
m→∞

t0(m) = lim
m→∞

t6m(m) = lim
m→∞

t−6m(m) =
√

2.
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This implies that

lim
m→∞

y0(m)− y6m(m)− t6m(m) = 5
√

2 > 7

lim
m→∞

y0(m)− y6m(m) + t0(m) = 7
√

2 < 10

lim
m→∞

−(y0(m)− y−6m(m)) + t−6m(m) = 7
√

2 < 10

lim
m→∞

−(y0(m)− y−6m(m))− t0(m) = 5
√

2 > 7.

Thus, for sufficiently large m we have

y6m(m) < y0(m)− t6m(m)− 7

y6m(m) > y0(m) + t0(m)− 10

y−6m(m) < 10 + y0(m)− t−6m(m)

y−6m(m) > 7 + y0(m) + t0(m).

In particular, one can verify that for m ≥ 740 the differences between the limits and the actual
values are sufficiently small that the above inequalities hold.
Thus, combining these inequalities and recalling that dq(m) + tq(m) = 3/2, for any q, we have

y0(m)− 8− 1

2
− d0(m) < y6m(m) ≤ y0(m)− 8− 1

2
+ d6m(m),

y0(m) + 8 +
1

2
− d0(m) < y−6m(m) ≤ y0(m) + 8 +

1

2
+ d−6m(m).

Recall that by assumption {y0(m)} ∈ [d0(m), 12). Recall also that by Lemma 4(a), limm→∞ dq(m) =
3
2 −
√

2 ≈ 0.086, for q ∈ {0, 6m,−6m}. Then for sufficiently large m we have {y6m(m)} ∈
[0, d6m(m)) ∪ [12 , 1) and {y−6m(m)} ∈ [0, d−6m(m)) ∪ [12 , 1). In particular, one can again verify
that this holds for m ≥ 740.

This implies by Lemma 4(b) that L6m(m) > R6m(m) and L−6m(m) > R−6m(m). Therefore by
Lemma 6, the pair (m,

(
m
2

)
/2− 6m) is absolutely avoidable.

4 The bipartite setting

Our entire argument for the existence of absolutely avoidable pairs so far built on the fact that
certain pairs (m, f) can not be realized as the disjoint union of a clique and a forest. A similar
question can be asked in the bipartite setting:

We say a bipartite graph G bipartite arrows the pair (m, f), and write G
bip→ (m, f) if G has

an induced subgraph with parts of size m each, contained in the respective parts of G, with
exactly f edges. We say that a pair (n, e) of non-negative integers bipartite arrows the pair

(m, f), written (n, e)
bip→ (m, f) if for any bipartite graph G with parts of size n each and with

e edges, G
bip→ (m, f).

We call a pair (m, f) absolutely avoidable in a bipartite setting if there exists n0, such that for

each n ≥ n0 and for any e ∈ {0, . . . , n2}, (n, e)
bip9 (m, f). We refer to a complete bipartite
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graph as a biclique. We say that a pair (m, f) is bipartite representable as a graph H if there
is a bipartite graph H with m vertices in each part and f edges. The following lemma shows
that our argument for the existence of such pairs in the non-bipartite case cannot be extended
to the bipartite setting.

Here, a biclique is an induced subgraph of a complete bipartite graph, i.e., could be in particular
an empty set or a single vertex.

Lemma 7. For any positive integer m and any non-negative integer f , f ≤
⌊
m2

2

⌋
, there is a

bipartite graph H with m vertices in each part, f edges, which is the vertex disjoint union of a
biclique and a forest.

Proof. Fix a pair (m, f) with f ≤
⌊
m2

2

⌋
. Let x =

⌊
m
2

⌋
and let y be the largest integer such that

xy ≤ f . In particular

xy > f − x and y ≤
⌊
m2

2

⌋
/
⌊m

2

⌋
.

We shall use the fact that for any non-negative integers v′ and e′, with e′ < v′ and for any
partition v′ = v′′ + v′′′, with v′′, v′′′ positive integers, there is a forest with partite sets of sizes
v′′ and v′′′ and e′ edges.

Case 1: y < m.
If y = 0 then f <

⌊
m
2

⌋
. In this case (m, f) is bipartite representable as a forest. So, assume that

y > 0. We shall show that (m, f) is bipartite representable as a vertex disjoint union of Kx,y

and a forest. Let e′ = f−xy, v′ = 2m−x−y. We have that e′ ≤ x−1 =
⌊
m
2

⌋
−1. On the other

hand, using the upper bound on y, we have that v′ ≥ 2m−
⌊
m
2

⌋
−
(⌊

m2

2

⌋
/
⌊
m
2

⌋)
. Considering

the cases when m is even or odd, one can immediately verify that e′ < v′. Since x+y+v′ = 2m
and xy+e′ = f , we have that (m, f) is bipartite representable as a vertex-disjoint union of Kx,y

and a forest on v′ vertices and e′ edges. Note that in this case we needed y < m so that Kx,y

doesn’t span one of the parts completely.

Case 2: y = m.
In particular, we have that f ≥

⌊
m
2

⌋
m. If m is even, we have that f ≥ m2/2 and from our

original upper bound f ≤ m2/2 it follows that f = m2/2. Thus (m, f) is bipartite representable

as Km/2,m and isolated vertices. If m is odd, let m = 2k+ 1, k ≥ 1. Then f ≤
⌊
m2

2

⌋
= 2k2 + 2k

and f ≥ y
⌊
m
2

⌋
= 2k2 +k. Consider Kk+1,2k−1 and let e′ = f− (k+1)(2k−1) and v′ = 2m−3k.

Then e′ ≤ 2k2 + 2k − (2k2 + k − 1) = k + 1 and v′ = 4k + 2 − 3k = k + 2. Thus v′ > e′.
Therefore (m, f) is bipartite representable as a vertex disjoint union of Kk+1,2k−1 and a forest
on v′ vertices and e′ edges.

Case 3:. y = m+ 1.
This case could happen only if m is odd. Let m = 2k+1. Then we have x = k and y = 2k+2 and
f = 2k2 +2k. We see that (m, f) is bipartite representable by K2k,k+1 and isolated vertices.

5 Conclusion

We showed that there are infinite sets of absolutely avoidable pairs (m, f). One could further
extend our results and provide more absolutely avoidable pairs.
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A statement analogous to Theorem 4 statement holds for m ≡ 2, 3 (mod 4), i.e. for any
m ≥ m0 either (m,

⌊(
m
2

)
/2
⌋
) or (m,

⌊(
m
2

)
/2
⌋
− 6m) is absolutely avoidable. We omit the proof

here but it can be obtained by a very similar method by slightly changing the constants in the
calculations. The arguments in the proof of Theorem 4 should still hold if we deviate from
f0 =

(
m
2

)
/2 by a small term, as in Theorem 3. The reason here is that this change does not

affect the limit computations for dq(m) and yq(m). Thus, for each large enough m, one should
be able to obtain a small interval for f so that each (m, f) is absolutely avoidable. We cannot
hope to do much better though: In infinitely many cases, if (m, f0) is absolutely avoidable, then
already for (m, f0−m) or (m, f0 +m) our method does not give a contradiction. The constant
6 is the smallest integer for which the argument in the proof of Theorem 4 works (since {6

√
2}

is close to 1
2 while {c

√
2}, c ∈ [5] is not). We believe that one could show by an argument

very similar to that used in the proof, that for sufficiently large m, for any constants a, b which
satisfy that {a

√
2− b
√

2} is close enough to 1
2 , we have that either (m, f0−am) or (m, f0− bm)

is absolutely avoidable.

Recently, a similar question on avoidable order-size pairs was considered by Caro, Lauri, and
Zarb [7] in the class of line graphs.

As mentioned in Section 4, the bipartite setting leaves the following:

Open Question: Are there any absolutely avoidable pairs (m, f) in the bipartite setting?

Acknowledgements: The authors thank Alex Riasanovsky for his careful reading of the
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the manuscript.
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