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Abstract

For a bipartite graph G, let h̃(G) be the largest t such that either G contains Kt,t, a complete
bipartite subgraph with parts of size t, or the bipartite complement of G contains Kt,t as a

subgraph. For a class of graphs F , let h̃(F) = min{h̃(G) : G ∈ F}. We say that a bipartite graph
H is strongly acyclic if neither H nor its bipartite complement contains a cycle. By Forb(n,H)
we denote the set of bipartite graphs with parts of size n, which do not contain H as an induced
bipartite subgraph respecting the sides. One can easily show that h̃(Forb(n,H)) = O(n1−ε) for
a positive ε if H is not strongly acyclic. Here we ask whether h̃(Forb(n,H)) is linear in n for
any strongly acyclic graph H. We answer this question in the positive for all but four strongly
acyclic graphs. We do not address this question for the remaining four graphs in this paper.

Introduction

A conjecture of Erdős and Hajnal [5] states that for any graph H, there is a constant ε > 0 such
that any n-vertex graph that does not contain H as an induced subgraph has either a clique or
a coclique on at least nε vertices. While this conjecture remains open, see for example a survey
by Chudnovsky [4], we address a bipartite variation of the problem.

Let G be a bipartite graph with parts U and V of size n each, we write G = ((U, V ), E),
E ⊆ U × V . We further write E = E(G), and for an edge (u, v) ∈ E, we simply write uv. We
shall often depict the sets U and V as sets of points on two horizontal lines in the plane and
call U the top part and V the bottom part. We say that a graph is the bipartite complement
of G if it has the same vertex set as G and its edge set is (U × V ) \E. We denote the bipartite
complement of a graph G by G′. By ω̃(G) we denote the largest integer t such that there are
A ⊆ U , B ⊆ V with |A| = |B| = t and ab ∈ E for all a ∈ A, b ∈ B, i.e., A and B form a biclique.
By α̃(G) we denote the largest integer t such that there are A ⊆ U , B ⊆ V with |A| = |B| = t
and ab 6∈ E for all a ∈ A, b ∈ B, i.e., A and B form a co-biclique. Let h̃(G) = max{α̃(G), ω̃(G)}.

For bipartite graphs H = ((U, V ), E) and G = ((A,B), E′), we say that H is an induced
bipartite subgraph of G respecting sides if U ⊆ A, V ⊆ B, and for any u ∈ U , v ∈ V , we
have uv ∈ E(H) if and only if uv ∈ E(G). We say that a bipartite graph H = ((U, V ), E) is
a copy of a bipartite graph H∗ = ((U∗, V ∗), E∗) if H∗ is isomorphic to H with isomorphism
ϕ : U∗∪V ∗ → U ∪V such that ϕ(U∗) = U and ϕ(V ∗) = V . Let Forb(n,H) denote the set of all
bipartite graphs with parts of size n which do not contain a copy of H as an induced bipartite
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subgraph respecting sides. We call a bipartite graph H-free if it does not contain a copy of H.
Let

h̃(n,H) = h̃(Forb(n,H)) = min{h̃(G) : G ∈ Forb(n,H)}.

It is implicit from a result of Erdős, Hajnal, and Pach [6] that for any bipartite H with the
smaller part of size k, h̃(n,H) = Ω(n1/k). A standard probabilistic argument shows that if H
or its bipartite complement contains a cycle, then h̃(n,H) = O(n1−ε) for a positive ε. Here, we
address the question of when h̃(n,H) is linear in n. We say that a bipartite graph H is strongly
acyclic if neither H nor its bipartite complement contain a cycle. We show that for all but at
most four strongly acyclic graphs H, h̃(n,H) is linear in n. Moreover, for several graphs H we
determine h̃(n,H) exactly.

Theorem 1. There is a set H of four graphs with the property that for any strongly acyclic
bipartite graph H, such that neither H nor H ′ is in H, there is a positive constant c = c(H)
such that h̃(n,H) ≥ cn.

The set H = {P̃5, P6, H̃3,4, P7} is given in Figure 1. It is sufficient to take c(H) = 1
30|V (H)| .

Note that the notion of large bicliques and co-bicliques in ordered bipartite graphs with
forbidden induced subgraphs corresponds to the notion of submatrices of all 0’s or of all 1’s in
binary matrices with forbidden submatrices. A paper of Korándi, Pach, and Tomon [9] addresses
a similar question for matrices. In addition, one could interpret bipartite graphs as set systems
consisting of all the neighborhoods of vertices from one part. Structural properties of these
graphs in terms of VC-dimension of the respective set system in connection to the Erdős-Hajnal
conjecture are addressed for example by Fox, Pach, and Suk [8].

The paper is structured as follows. In Section 1 we characterize all strongly acyclic bipartite
graphs. In Section 2 we find linear lower bounds on h̃(n,H) for each of the strongly acyclic
graphs with few exceptions, thus, proving Theorem 1. In Section 3 we determine the optimal
constant c in Theorem 1 exactly for forbidden bipartite graphs with two vertices in each part.
In Section 4 we prove some general bounds for completeness. Finally, in Section 5 we discuss
some progress which has occurred since the submission of this manuscript.

1 Characterization of all strongly acyclic graphs

In this section we determine all strongly acyclic bipartite graphs up to a bipartite complement.

P̃5 P6 H̃3,4 P7

Figure 1: Strongly acyclic subgraphs with parts of size at least 3.
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s1 s2

Hs1,s2

s1 s2

Ms1,s2

s1 s2

M∗s1,s2

Figure 2: Strongly acyclic bipartite graphs with one part of size 2.

We denote a cycle of length i by Ci, a path on i vertices by Pi, and a complete bipartite
graph with parts of size s and t by Ks,t.

Theorem 2. Let H be a strongly acyclic bipartite graph. Then one of its parts has size at most 3
and either H or its bipartite complement is an induced subgraph of a graph from {H̃3,4, P7,M

∗
s,s},

for some positive integer s. If H is not a strongly acyclic bipartite graph, then H or its bipartite
complement contains C4, C6, or C8.

Remark: The complete list of all strongly acyclic graphs (up to bipartite complementation) is
given in Figures 1 and 2. Note that P̃5, P6, Hs1,s2 , and Ms1,s2 are induced subgraphs of H̃3,4,
P7, M∗s,s, and M∗s,s, respectively, for s ≥ s1, s2.

Proof of Theorem 2. Let H be a bipartite graph with top part U = {u1, . . . , uk} and bottom
part V = {v1, . . . , vl}, where 2 ≤ k ≤ l. Denote by H ′ the bipartite complement of H and d(u)
the degree of a vertex u in H.

Assume that k = 2. Consider u1, u2 and their neighborhoods. We see that these neighbor-
hoods share at most one vertex, otherwise we have a cycle of length four. The same holds for
the bipartite complement of H. Thus, H is an induced subgraph of M∗s1,s2 , for some s1, s2, as
shown in Figure 2.

Now let k ≥ 3. Since H and H ′ are acyclic, the number of edges in each of H and H ′ is at
most |U |+ |V |−1, i.e., the total number of edges in these two graphs is at most 2(|U |+ |V |−1).
On the other hand, this number is |U ||V |. We see however, that if |U |, |V | ≥ 4, then |U ||V | >
2(|U |+ |V |−1). Similarly, if |U | = 3 and |V | ≥ 5, we have that |U ||V | > 2(|U |+ |V |−1). Thus,
k = |U | = 3 and |V | ≤ 4.

Let |U | = 3 and |V | = 3. Assume there is a vertex from U of degree 0, say d(u2) = 0. Then we
have d(u1), d(u3) ≥ 2, otherwise there is a C4 in H ′. Moreover we must have |N(u1)∩N(u3)| ≤ 1.
Thus, H = P̃5. By considering H ′, we can assume that no vertex in U has degree 3. Thus, all
vertices of H have degrees 1 or 2. Since H is strongly acyclic, there are at most 5 and at least
4 edges. So, up to bipartite complementation, we can assume that there are 4 edges in H with
respective degrees 1, 1, and 2 in both parts. This is only possible when H is a disjoint union of
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K2 and P4, whose bipartite complement is P6.

Let |U | = 3 and |V | = 4. Assume there is a vertex u ∈ U with d(u) = 4. Then any two
other vertices in U each have 3 non-neighbors in N(u), and thus, have at least two common
non-neighbors, resulting in C4 in H ′, a contradiction. Thus, d(u) ≤ 3 for any u ∈ U . By
considering H ′, we see that there are no vertices of U of degree 0. I.e., the degrees of vertices
from U could be 1, 2, or 3. Since H is strongly acyclic, the number of edges is at most 6 and
at least 12 − 6 = 6. So, H has 6 edges, and the degrees of vertices in U are 1, 2, 3 or 2, 2, 2.
In the case where the degrees are 1, 2, 3, we see that the neighborhoods of the degree 2 and 3
vertices intersect in exactly one vertex. The vertex of degree 1 must be adjacent to a neighbor
of a degree 3 vertex which is not adjacent to a degree 2 vertex, otherwise there is a C4 in the
bipartite complement of H. Thus, we have that H = H̃3,4. If the degrees of vertices in U are
2, 2, 2, then the only option is P7.

We only need to show that for any bipartite graph H which is not strongly acyclic, either H
or its bipartite complement contains C4, C6, or C8. If H has one part of size at most 4, we are
done, since any cycle in H or H ′ has length at most 8. If H has both parts of size at least 5,
one can easily verify that either H or H ′ contains a C4.

2 Proof of Theorem 1

Let Hs = Hs,s, Ms = Ms,s, and M∗s = M∗s,s. In the following results we use the fact that if

H is an induced bipartite subgraph of K respecting sides, then h̃(n,H) ≥ h̃(n,K). We omit
ceilings and floors where they are not crucial. The essential part of the proof of Theorem 1 is
Lemma 4, which is in turn based on Lemma 3. However, we include the short Lemmas 1 and 2
that provide better bounds on h̃(n,H) when H is either a star or a vertex-disjoint union of two
stars.

Lemma 1. Let G be a bipartite graph with parts U and V of size n each. Assume that the
degrees of the vertices from U are less than s. Then α̃(G) ≥ n/s.

Proof. Let U ′ be a subset of n/s vertices of U . Then |N(U ′)| ≤ (s − 1)n/s = n − n/s. Let
V ′ = V −N(U ′), we have |V ′| ≥ n/s and (U ′, V ′) forms a co-biclique.

Lemma 2. Let s1 ≥ s2 > 0. Then h̃(n,Hs1,s2) ≥ h̃(n,Hs1) ≥ n
2s1
.

Proof of Lemma 2. Let H = Hs, for s = s1. Let G be an H-free bipartite graph with top part
U and bottom part V , each of size n. We will show that h̃(G) ≥ n

2s . Let {u1, . . . , un} be an
ordering of the vertices of U , such that d(ui) ≤ d(uj) if i < j. Since H is isomorphic to its
bipartite complement, we can assume that d(un/2) ≤ n/2. Assume first that there is an i < n/2
with |N(ui) \ N(un/2)| ≥ s. Then we have a set V ′ of s vertices, V ′ ⊆ N(ui) \ N(un/2), and
since |N(ui)| ≤ |N(un/2)|, we also have a set V ′′ of s vertices, V ′′ ⊆ N(un/2) \N(ui). But then
{ui, un/2} and V ′ ∪ V ′′ induce H. Let Y = V \N(un/2). We have |Y | ≥ n/2 and by the above
argument, we have |Y ∩N(ui)| ≤ s− 1, for all i ≤ n/2. Applying Lemma 1 to a subgraph of G
induced by Y and {u1, . . . , un/2}, we get α̃(G) ≥ n

2s .

Note that in the case where s2 = 0, one can show that h̃(n,Hs,0) ≥ n
2s−1 .

We need an auxiliary lemma about rooted trees. We call two vertex disjoint subforests of a
rooted tree independent if no vertex in one forest is an ancestor of a vertex in the other forest.

Lemma 3. Any rooted tree on n vertices has either height at least n/4, or it contains two
independent subforests on at least n/4 vertices each.
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Proof. Let T be a rooted tree on n vertices with root r. We say that a path in T is a root-leaf
path if its endpoints are r and a leaf of T . For a root-leaf path P in T , let m(P ) be the order
of a largest component in T − V (P ). Among all root-leaf paths in T , let P have the smallest
value of m(P ). If m(P ) > n/2, consider a leaf u of T which belongs to the largest component
of T − V (P ). Then m(P ′) < m(P ) for an r-u path P ′, a contradiction. Thus, we have that
m(P ) ≤ n/2. If P has at least n/4 vertices, the height of T is at least n/4, and we are done.
Thus, the number of vertices in T − V (P ) is at least 3n/4. Consider a set S of components of
T − V (P ) with the total number of vertices s as small as possible, such that s ≥ n/4. If the
number of remaining vertices of T − V (P ) is less than n/4, then s > n/2, so there are at least
two components in S. Removing a smallest one results in a set of components of size less than s
and at least n/4 vertices, a contradiction. Thus, S and the remaining components of T − V (P )
form two independent subforests on at least n/4 vertices each.

Recall that Ms = Ms,s and M∗s = M∗s,s.

Lemma 4. Let s1 ≥ s2 > 0. Then h̃(n,Ms1,s2) ≥ h̃(n,Ms1) ≥ n
(

1
4

1
2s1+1

)(
1− 1

8s1

)
and

h̃(n,M∗s1,s2) ≥ h̃(n,M∗s1) ≥ n
(

1
8

1
2s1+1

)(
1− 1

8s1

)
.

Proof. Let s = s1, s ≥ 1. Let G′ ⊆ Kn,n have partite sets U ′ and V and assume that G′

has no induced copy of Ms with the smaller partite set in U ′. We shall show that h̃(G′) ≥
n
(

1
4

1
2s+1

) (
1− 1

8s

)
. Assume that h̃(G′) < n

8s , otherwise we are done.

Let S be the set of vertices from U ′ of degree at most 2s in G′. Assume |S| ≥ n
8s and let

S′ ⊆ S, |S′| = n
8s . If V ′ = N(S′), then we have |V ′| ≤ n

4 . Thus, (V −V ′, S′) forms a co-biclique

with parts of size at least n
8s . This contradicts our assumption that h̃(G′) < n

8s . Thus, |S| ≤ n
8s .

Let G = G′ − S and let U = U ′ − S. We see that |U | ≥ n − n
8s . We shall show that

h̃(G) ≥ n
(

1
4

1
2s+1

) (
1− 1

8s

)
, that would imply the desired result for G′ since h̃(G′) ≥ h̃(G).

Introduce an auxiliary graph I with vertex set U and two vertices adjacent if and only if
their neighborhoods in G intersect.

Claim 0. Let x, y, z ∈ U , xy, yz ∈ E(I), xz 6∈ E(I). Then d(x) + d(z) < d(y) + 2s.
Assume otherwise, then without loss of generality |N(x) \N(y)| ≥ s. Hence, |N(y) \N(x)| < s,
implying |N(y) \N(z)| > s, which in turn implies that |N(z) \N(y)| < s. Since N(z)∩N(y) ⊆
N(y) \N(x), we have |N(z) ∩N(y)| < s. Thus, |N(z)| < 2s, a contradiction.

Claim 1. In each nontrivial component F of any induced subgraph of I, a vertex v of F that
has the highest degree in G is adjacent to all other vertices in F .
We shall prove this statement by induction on the order of F with a trivial basis. Consider F ,
v, and a component F ′ of F − v with at least two vertices. By induction, a vertex v′ of F ′

with highest degree in G is adjacent to all other vertices in F ′. We know that v is adjacent
to some vertex of F ′. Assume that v is not adjacent to some vertex in F ′. Then there are
two vertices w,w′ ∈ V (F ′), such that ww′, wv ∈ E(I), w′v 6∈ E(I), where v′ ∈ {w,w′}. Then
d(v) + d(w′) < d(w) + 2s by Claim 0. However, d(w) ≤ d(v), thus, d(w′) < 2s, a contradiction,
since we deleted all small degree vertices from the respective part of our graph.

Thus, each component of I is a tree closure, i.e., a graph obtained from a rooted tree by
adding, for each vertex v, all edges between v and each vertex on a path from v to the root.

5



Consider a component of I on a vertex set Q. By Lemma 3, either there is a root-leaf path on
|Q|/4 vertices in the underlying tree, which in turn corresponds to a clique in the tree-closure,
or there are two disjoint subsets of vertices of size at least |Q|/4 each so that there are no
edges from I between them. I.e., each component of I has either a clique on a quarter of its
vertices, or a co-biclique with at least a quarter of the component’s vertices in each part. We
say a component is of Type 1 in the former case and we say that it is of Type 2 in the latter case.

Case 1. There is a subset X of U , |X| ≥ 2s
2s+1 |U |, so that X is spanned by the components

of I of Type 1, i.e., with large cliques.
We have that X contains pairwise disjoint, pairwise nonadjacent cliques in I on a vertex set

X ′, |X ′| ≥ |X|/4. If each clique has size at most |X ′|/3, then split the cliques of I[X ′] into two
groups of total size at least |X ′|/3, let the vertex sets of these groups be X ′′ and X ′′′. Assume,
without loss of generality, that |N(X ′′)| ≤ |N(X ′′′)| in G. Then (V − N(X ′), X ′′′) induces a
co-biclique with parts of size at least |X ′|/3. If there is a clique in I(X ′) on a set of vertices X ′′,
|X ′′| ≥ |X ′|/3. Consider the set Y = NG(X ′′). If |Y | < 2n/3, then (X ′′, V − Y ) induces a co-
biclique with parts of size at least min{|X ′′|, n/3}. If |Y | ≥ 2n/3, then we see that (X ′′, Y ) does
not induce Hs, otherwise these stars and a common neighbor of their centers induce Ms. Thus,
by Lemma 2, h̃(G) ≥ min{|X ′′|, 2n/3}/(2s). Since |X ′′| ≥ 1

4 |X| ≥
1
4

2s
2s+1 |U | ≥

1
4

2s
2s+1 (n − n

8s ),

h̃(G) ≥ 1
4(2s+1) (n−

n
8s ).

Case 2. There is a subset X of U , |X| ≥ 1
2s+1 |U |, spanned by the components of I of Type 2,

i.e., with large co-bicliques. Consider one part of such co-bicliques and form their union, X ′.
Similarly, consider the other parts of the co-bicliques and let their union be X ′′. We have |X ′|,
|X ′′| ≥ |X|/4, and there are no edges between X ′ and X ′′. In particular, NG(X ′)∩NG(X ′′) = ∅.
Assume, without loss of generality, that |NG(X ′)| < n/2. Then (X ′, V − NG(X ′)) induces
a co-biclique with parts of sizes at least min{|X ′|, n/2} ≥ |X|/4 ≥ 1

4
1

2s+1 (n − n
8s ). Thus,

h̃(G) ≥ 1
4(2s+1) (n−

n
8s ).

This concludes the proof of the lemma for Ms. Now, consider an M∗s -free bipartite graph
G with top part U and bottom part V , each of size n. If there is a vertex v ∈ V of degree
d(v) ≤ n/2, then the graph G[U − N(v), V \ {v}] is Ms-free. Thus, by the previous result on
Ms, we have h̃(G) ≥ 1

8(2s+1) (n −
n
8s ). If V does not contain a vertex of degree at most n/2,

consider the bipartite complement G′ of G. Since M∗s is (bipartite) self-complementary, G′ does
not contain M∗s either, but we have a vertex v ∈ V with dG′(v) ≤ n

2 and thus, we can apply the
same argument.

Proof of Theorem 1. Consider a strongly acyclic graph H such that neither H nor H ′ is in the
family H. By Theorem 2, H is an induced subgraph of M∗s,s for some s. Thus h̃(n,H) ≥
h̃(n,M∗s,s) ≥ n/(30s) ≥ n/(30|V (H)|) as follows from Lemma 4 and the fact that we can choose
s ≤ |V (H)|.

3 Tight bounds for all strongly acyclic graphs with two
vertices in each part

We consider strongly acyclic bipartite graphs with each part of size 2. These are exactly 2K2,
P4, and H4, where H4 is such a graph with exactly two adjacent edges and 2K2 is a graph with
exactly two disjoint edges. We shall give bounds for h̃(H) for each of these graphs. Recall that
h̃(H) = h̃(H ′), where H ′ is a bipartite complement of H.

Proposition 1. Let G be a bipartite P4-free graph with n vertices in each part. Then h̃(G) ≥
dn/3e. This bound is tight.
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Proof. Let G have partite sets U and V . It is easy to see that G is a pairwise vertex disjoint
union of bicliques. Let, for some index set I, these bicliques have partite sets Ui and Vi of sizes
ai, bi, respectively, Ui ⊆ U , i ∈ I. Observe first that min{ai, bi} < n/3, for each i ∈ I, otherwise
the ith biclique gives us ω̃(G) ≥ n/3. Moreover, ai < n/3 and bi < n/3, for each i ∈ I since
otherwise a co-biclique with parts Ui, V − Vi or Vi, U − Ui has parts of size at least n/3.

Let I ′ be the set of indices, so that ai ≤ bi, i ∈ I ′. Let I ′′ = I \ I ′. Let U ′ = ∪i∈I′Ui,
V ′ = ∪i∈I′Vi, U ′′ = U −U ′, V ′′ = V −V ′, a′ = |U ′|, a′′ = |U ′′|, b′ = |V ′|, b′′ = |V ′′|. Consider a
co-biclique with parts V ′, U ′′. We can assume that either b′ or a′′ is less than n/3, say b′ < n/3.
Then a′ < n/3 since for each i ∈ I ′, ai ≤ bi. Thus, a′′ > 2n/3.

Consider a minimal subset I ′′′ ⊆ I ′′ such that U ′′′ = ∪i∈I′′′Ui has size a′′′ > n/3. Then
a′′′ < 2n/3 otherwise for any i ∈ I ′′′, |U ′′′ − Ui| > 2n/3 − n/3 = n/3. In particular, we could
have taken I ′′′ − {i} instead of I ′′′, contradicting its minimality. Thus, V ′′′ = ∪i∈I′′′Vi has size
less than 2n/3. This implies that U ′′′ and V − V ′′′ form a co-biclique with each part of size at
least n/3.

We have shown h̃(G) ≥ n/3 (and thus, h̃(G) ≥ dn/3e). To see that this bound is sharp when
3 divides n, take 3 vertex disjoint copies of Kn/3,n/3. For n = 3m+ 1, take one copy Km+1,m+1

and two of Km,m, and for n = 3m+ 2, take two copies of Km+1,m+1 and one of Km,m.

Proposition 2. Let G be a 2K2-free bipartite graph with n vertices in each part. Then h̃(G) ≥
dn/2e. This bound is tight.

Proof. Let G be bipartite 2K2-free with parts U, V of size n each. Then we have for any
vertices u, u′ ∈ U that N(u) ⊆ N(u′) or N(u′) ⊆ N(u). Thus, there is a total ordering
{u1, . . . , un} of the vertices in U where i < j if and only if N(uj) ⊆ N(ui). Consider the two
subgraphs G1 = G[U1 ∪ V1], G2 = G[U2 ∪ V2], with U1 = {u1, . . . , udn2 e}, V1 = N(udn2 e),
U2 = {udn2 e, . . . , un}, V2 = V \N(udn2 e).

By our vertex ordering, we have that N(udn2 e) ⊆ N(ui), 1 ≤ i ≤
⌈
n
2

⌉
, and thus, G1 is

a biclique. On the other hand, V \ N(udn2 e) ⊆ V \ N(ui),
⌈
n
2

⌉
≤ i ≤ n, and thus, G2 is a

co-biclique. We know that |U1| =
⌈
n
2

⌉
and |U2| ≥

⌈
n
2

⌉
. Since |V1|+ |V2| = n, one of V1 and V2

has to have size at least
⌈
n
2

⌉
, which gives us max{ω̃(G), α̃(G)} ≥

⌈
n
2

⌉
.

Note that
⌈
n
2

⌉
is sharp. Consider a bipartite graph G that is a union of a complete bipartite

graph Kdn/2e,n and
⌊
n
2

⌋
isolated vertices added to the smaller part. Both parts have size n, we

have h̃(G) =
⌈
n
2

⌉
and G is 2K2-free.

Recall that H4 is a bipartite graph with two vertices in each part and two edges, such that
the edge are adjacent.

Proposition 3. Let G be an H4-free bipartite graph with n vertices in each part. Then h̃(G) ≥
b2n/5c. This bound is tight for n ≡ 0 (mod 5).

Proof. Let G have parts U and V of size n each, assume n is divisible by 5. Denote by G′ the
bipartite complement of G. Let U correspond to the part of H4 containing the vertex of degree
2. First observe, that |N(u) \N(u′)| ≤ 1, for any u, u′ ∈ U .

Claim: There is a set X ⊆ V such that for a graph Q, where Q = G or Q = G′ the following
holds. For any u ∈ U we have X ⊆ NQ(u) and |NQ(u)| ≤ |X| + 1. I.e., the neighborhoods of
the vertices from U form a sunflower set system with petals of size at most one.

To prove the claim, consider a vertex u′ ∈ U of largest degree. If NG(u) ⊆ NG(u′) for each
u ∈ U , then X = V \NG(u′) satisfies the conditions of the claim with Q = G′. So, we assume
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that there is a vertex u′′ ∈ U such that N(u′′) 6⊆ N(u′). In particular, we must have that
NG(u′) = V ′ ∪ {v′} and NG(u′′) = V ′ ∪ {v′′}, for V ′ ⊆ V , and v′, v′′ ∈ V \ V ′, v′ 6= v′′. Let
V ′′ = V ′ ∪ {v′, v′′}.

If there is a vertex u ∈ U , such that NG(u) 6⊆ V ′′ and V ′ 6⊆ NG(u), then there are vertices
v1 ∈ V ′, v2 ∈ V ′′ such that v1, v2 6∈ NG(u). Then either {u′, u, v1, v2} or {u′′, u, v1, v2} induces
H4, a contradiction. Thus, for each u ∈ U , either V ′ ⊆ N(u) or N(u) ⊆ V ′′.

If for any vertex u ∈ U , N(u) ⊆ V ′′, then X = V − V ′′ satisfies the conditions of the claim
with Q = G′. If for any u ∈ U , V ′ ⊆ N(u), then the claim is satisfied with X = V ′ and Q = G.
If there are u1, u2 such that u1, u2 6∈ {u′, u′′}, V ′ 6⊆ N(u1) ⊆ V ′′ and V ′ ⊆ N(u2) 6⊆ V ′′, we see
that u1, u2, v

′, v′′ form a copy of H4. This proves the claim.

Now that we proved the claim, it remains to find a large biclique or co-biclique. Assume
without loss of generality that Q = G in the claim. If |X| ≥ 2n/5, then (U,X) induces a
biclique with parts of sizes at least 2n/5. Assume that |X| < 2n/5. Let Y = V \ X. We see
that (U, Y ) induces a pairwise disjoint union of stars in G with centers in Y . Let s = |Y |,
note that s ≥ 3n/5. Let Y = {y1, . . . , ys} such that d(yi) ≤ d(yi+1), i = 1, . . . , s − 1. Let
Y1 = {y1, . . . , y2n/5}. If |N(Y1)| ≤ 3n/5, then (Y1, U \ N(Y1)) induces a co-biclique with
parts of sizes at least 2n/5. If |N(Y1)| > 3n/5, then d(yi) ≥ 2 for all i > 2n/5. Thus,
|N(Y )| ≥ |N(Y1)|+ 2|Y − Y1| > 3n/5 + 2 · (3n/5− 2n/5) = n, a contradiction since N(Y ) ⊆ U .

To show that the bound is tight, construct the following graph G with parts U and V of sizes
n, n ≡ 0 (mod 5). Let U = U1 ∪ U2 where |U1| = 2n/5 and |U2| = 3n/5. Let V = V1 ∪ V2 ∪ V3,
where |V1| = |V2| = 2n/5 and |V3| = n/5. Let G have all edges between V1 and U , form a perfect
matching between U1 and V2, and form a perfect matching between U2 and V2 ∪ V3. Note that
if G has a copy of H4, this copy has a vertex u of degree 2 in U . Thus, this copy must have a
neighbor of u in V1, that in turn is adjacent to all of U and thus could not have degree 1 in a
copy of H. Thus, G is H4-free. In addition, we see that h̃(G) = 2n/5.

4 General bounds

In this section we work out known arguments for completeness.

Theorem 3. Let H be a bipartite graph that is not strongly acyclic. Then there is an ε > 0 such
that for each sufficiently large n, h̃(n,H) ≤ n1−ε. Moreover, if H or its bipartite complement
contains C4, C6, or C8, then ε could be taken any positive real strictly less than 1/3, 1/6, or
1/16, respectively.

Proof. First, recall from Theorem 2, that if H is not strongly acyclic, then H or its bipartite
complement contains C4, C6, or C8. In case of C4, we know by a result of Caro and Rousseau [2]
that there is a bipartite graph G with parts of size n each that does not contain C4 and with
α̃(G) = O(n2/3). This result was shown using Lovász Local Lemma that we abbreviate as LLL.
The LLL tells us that if there are bad events Ai, . . . and positive numbers xi, . . . associated with
these events, such that Prob(Ai) ≤ (1− xi)

∏
j∼i xj , where i ∼ j if and only if Ai is adjacent to

Aj in the dependency graph, then with positive probability none of the bad events happen.

We use the same approach to randomly create respective graphs with no C6 and with no C8

and not having large co-cliques. Consider Kn,n and color each edge red with probability p and
blue with probability (1− p). For a specific C6, we say that there is a red bad event if this C6 is
red. Similarly, for a specific Kt,t, we say that there is a blue bad event if this Kt,t is blue. We
shall use the LLL to prove that with positive probability there are no bad events. Let Pr and Pb
be the probabilities of the the red bad and blue events, respectively. Consider the dependency
graph. Let drr be the number of red bad events adjacent to a red bad event, drb be the number
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of blue bad events adjacent to a red bad event, dbb be the number of blue bad events adjacent to
a blue bad event, and finally dbr be the number of red bad events adjacent to a blue bad event.

Then we have that Pr = p6 and Pb = (1−p)t2 . Counting the number of C6’s sharing an edge

with a given C6, we have drr ≤ 6
(
n
2

)2
4 ≤ 6n4; counting the number of Kt,t’s sharing an edge

with a given C6 we have drb ≤ 6
(
n
t−1
)2 ≤ n2t; counting the number of C6’s sharing an edge with

a given Kt,t we have dbr ≤ t2
(
n
2

)2
4 ≤ t2n4; and finally, counting the number of Kt,t’s sharing

an edge with a given Kt,t we have dbb ≤ t2
(
n
t−1
)2

4 ≤ n2t.
Since here we have bad events of two types, let xi = x for red bad events and xi = y for blue
bad events. We shall assign the values to p, t, x, and y such that

p6 ≤ (1− x)x6n
4

yn
2t

and (1− p)t
2

≤ (1− y)xn
2t2yn

2t

.

Let ε, ε′ be small positive constants, say ε < 1/6, ε′ < 1/(6ε)− 1. Let

t = n1−ε, x = 1− n−5, y = 1− n−2n
1−ε
, p = n−1+ε(1+ε

′).

We shall be using the fact that (1− s) ≈ e−s for small s. Then, for large n we have

p6 ≈ n−6+6ε(1+ε′),

(1− p)t
2

≈ e−n
−1+ε(1+ε′)·n2−2ε

= e−n
1−ε(1−ε′)

,

(1− x)x6n
4

yn
2t

≈ n−5e−n
−56n4

e−1 & e−1n−5,

(1− y)xn
4t2yn

2t

≈ n−2n
1−ε
e−n

−5n4n2−2ε

e−1.

Thus, p6 ≤ (1 − x)x6n
4

yn
2t

and (1 − p)t2 ≤ (1 − y)xn
2t2yn

2t

. Therefore, by the LLL there is
an edge-coloring of Kn,n with no red C6’s and no blue Kn1−ε,n1−ε .

To see the result for C8, we closely follow the above argument, choose the parameters and
notation similarly and define red bad event corresponding to a red C8 and blue bad event as
before.

Then we have that Pr = p8 and Pb = (1 − p)t
2

. We have drr ≤ 8
(
n
3

)2
c ≤ Cn6, drb ≤

8
(
n
t−1
)2 ≤ n2t, dbr ≤ t2(n3)2c ≤ Ct2n6, and dbb ≤ t2

(
n
t−1
)2

4 ≤ n2t.
Let ε, ε′ be a small positive constants, say ε < 1/16, ε′ < 1/(16ε)− 1. Let

t = n1−ε, x = 1− n−7.5, y = 1− n−2n
1−ε
, p = n−1+ε(1+ε

′).

Then, for large n we have

p8 ≈ n−8+8ε(1+ε′),

(1− p)t
2

≈ e−n
−1+ε(1+ε′)·n2−2ε

= e−n
1−ε(1−ε′)

,

(1− x)xCn
6

yn
2t

≈ n−7.5e−n
−7.5Cn6

e−1,

(1− y)xCn
6t2yn

2t

≈ n−2n
1−ε
e−Cn

−7.5n6n2−2ε

e−1.

Thus, p8 ≤ (1− x)xCn
6

yn
2t

and (1− p)t2 ≤ (1− y)xn
6t2yn

2t

. Therefore, by the LLL there is
an edge-coloring of Kn,n with no red C8’s and no blue Kn1−ε,n1−ε .

Now, let H be a bipartite graph containing C2k, k ∈ {2, 3, 4}. Consider an edge-coloring of
Kn,n with no red C2k and no blue Kn1−ε,n1−ε . Let G be a graph formed by the red edges. Then
G does not contain C2k and thus, does not contain H, which implies that it does not contain
an induced copy of H. In particular G does not have K4,4. On the other hand, the bipartite

complement of G does not contain Kn1−ε,n1−ε . Thus, for sufficiently large n, h̃(G) ≤ n1−ε.
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Theorem 4. [6] Let H be a bipartite graph with parts of sizes k and l, 2 ≤ k ≤ l. Let G be
a bipartite graph with parts of sizes n, n ≥ lk. Then either G is H-free or h̃(G) ≥ t, where
t = b(nl )1/kc.

Lemma 5. Let G be an (l + 1)-partite graph with vertex classes U1, . . . , Ul, V , |Ui| ≥ tm,
|V | ≥ tl, for some integers l, t,m ≥ 2. Let α̃(Ui, V ) and ω̃(Ui, V ) denote α̃ and ω̃ of the
bipartite subgraph of G induced by (Ui, V ). Let α̃(Ui, V ) < t, ω̃(Ui, V ) < t for all i ∈ [l]. Then
for any map f : [l]→ {0, 1}, there exists a vertex v ∈ V , such that

|N(v) ∩ Ui| ≥ tm−1, f(i) = 1,

|Ui \N(v)| ≥ tm−1, f(i) = 0.

Proof. Let G be an (l + 1)-partite graph as in the statement and fix a function f : [l]→ {0, 1}.
Assume there is no such vertex v ∈ V . Then for every v ∈ V , there must be at least one index
iv ∈ [l], such that Uiv is bad for v, meaning that

|N(v) ∩ Uiv | ≤ tm−1 − 1, if f(i) = 1,

or |Uiv \N(v)| ≤ tm−1 − 1, if f(i) = 0.

Since there are only l sets, we have a set Ui that is bad for at least |V |l ≥ t vertices in V . Choose
V ′ ⊆ V such that |V ′| = t and iv = j for all v, w ∈ V ′.

Case 1: f(j) = 0. Consider the subset U ′ ⊆ Uj of vertices, that are adjacent to all ver-
tices in V ′. Since every vertex in V ′ is non-adjacent to at most tm−1 − 1 vertices we obtain
|U ′| ≥ |Uj | − t(tm−1 − 1) ≥ tm − (tm − t) ≥ t. Thus, the pair (U ′, V ′) contains a copy of Kt,t,
which contradicts our assumption of ω̃(Uj , V ) < t.

Case 2: f(j) = 1. Consider the subset U ′ ⊆ Uj of vertices, that have no neighbor in V ′. Since
every vertex in V ′ is adjacent to at most tm−1−1 vertices we obtain |U ′| ≥ |Uj |− t(tm−1−1) ≥
tm − (tm − t) ≥ t. Thus, the pair (U ′, V ′) contains a co-biclique of size t, which contradicts our
assumption of α̃(Uj , V ) < t.
Hence, for every f we find a vertex v, which is good for all sets Ui.

Proof of Theorem 4. Let H = (X ∪ Y,EH) be a bipartite graph with parts X = {x1, . . . , xl},
Y = {y1, . . . , yk} with 2 ≤ k ≤ l, let n0 = lk−1. Assume that α̃(U, V ) < t and ω̃(U, V ) < t. We
show how to find an induced copy of H. Note that from the choice of t and n, we have that
n ≥ tkl and t ≥ l.

Partition U into l subsets U1, . . . , Ul, each of size at least tk. Partition V into k subsets
V1, . . . , Vk each of size at least tk. Since t ≥ l, we have that |Vi| ≥ tlk−1 ≥ tl, for all i ∈ [k]. We
shall apply Lemma 5 a total of k times to obtain subsets Ui ⊇ U1

i ⊇ · · · ⊇ Uki , such that we can
embed xi ∈ Uki and yj ∈ Vj for i = 1, . . . , l and j = 1, . . . , k.

In Step 1, we apply Lemma 5 to the sets U1, . . . , Ul, V1 with m = k and

f1 : [l]→ {0, 1}, i 7→
{

1, xiy1 ∈ EH
0, xiy1 6∈ EH

to find a vertex v1 ∈ V and subsets

U1
i =

{
N(v1) ∩ Ui, xiy1 ∈ EH
Ui \N(v1), xiy1 6∈ EH
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such that |U1
i | ≥ tk−1 for i ∈ [l].

Assume that after Step j we have subsets U j1 , . . . , U
j
l , |U ji | ≥ tk−j .

In Step j + 1 for j < k, we apply the lemma again, to the sets U j1 , . . . , U
j
l , Vj+1 with m =

k − j − 1 ≥ 2 and

fj : [l]→ {0, 1}, i 7→
{

1, xiyj+1 ∈ EH
0, xiyj+1 6∈ EH

to find a vertex vj+1 ∈ Vj+1 and subsets

U j+1
i =

{
N(v1) ∩ U ji , xiyj+1 ∈ EH
U ji \N(v1), xiyj+1 6∈ EH

such that |U j+1
i | ≥ t(k−j)−1 = tk−(j+1) for i ∈ [l].

We finish after k steps, and by our choice of n, t, we still obtain |Uki | ≥ 1, i ∈ [l]. Thus, we have
found vertices v1, . . . , vk where we can embed {x1, . . . , xk} and nonempty sets of candidates Uki ,
in which we can embed Y . This concludes the proof.

5 Concluding Remarks

During the review process of this paper, more results and insights on this problem have been
obtained. We could now say more about the remaining four open cases. Using an approach
very similar to one of Bousquet, Lagoutte, and Thomassé [3], we can show that h̃(Forb(n, P7))
and h̃(Forb(n, P6)) are linear in n, thus, taking care of two out of the four missing cases. For
the last two graphs H = P̃5 and H = H̃3,4, a more general result on induced trees from a very

recent manuscript by Scott, Seymour, and Spirkl [7], implies that h̃(Forb(n,H)) is also linear in
n. In addition, in [1], we could determine the asymptotic behavior of h̃(Forb(n,K1,s)) exactly
for fixed but large s, improving on the bound in Lemma 1.
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