Bad variances

MB
Cut and project processes

Let \((\mathbb{R}^d, \mathbb{R}^q, \Gamma, W)\) be a cut-and-project scheme, i.e.

- \(\Gamma < \mathbb{R}^d \times \mathbb{R}^q\) is a lattice such that \(\text{pr}_{\mathbb{R}^d}|_{\Gamma}\) is injective and \(\text{pr}_{\mathbb{R}^q}(\Gamma)\) is dense.
- \(W \subset \mathbb{R}^q\) is a bounded Borel set with non-empty interior.

For \((x, y) \in \mathbb{R}^d \times \mathbb{R}^q\), define the cut-and-project set \(P(x, y) = \text{pr}_{\mathbb{R}^d}((\Gamma + (x, y)) \cap (\mathbb{R}^d \times W)) \subset \mathbb{R}^d\).

The first bullet ensures that \(\Gamma + (x, y) \mapsto P(x, y)\) defines a simple and ergodic point process in \(\mathbb{R}^d\).

The second bullet ensures that \(P(x, y)\) is a relatively dense and uniformly discrete set in \(\mathbb{R}^d\) for every \((x, y)\).
Cut and project processes

Let \((\mathbb{R}^d, \mathbb{R}^q, \Gamma, W)\) be a cut-and-project scheme,
Cut and project processes

Let \((\mathbb{R}^d, \mathbb{R}^q, \Gamma, W)\) be a cut-and-project scheme, i.e.

- \(\Gamma < \mathbb{R}^d \times \mathbb{R}^q\) is a lattice such that \(\text{pr}_{\mathbb{R}^d} |_{\Gamma}\) is injective and \(\text{pr}_{\mathbb{R}^q}(\Gamma)\) is dense.
- \(W \subset \mathbb{R}^q\) is a bounded Borel set with non-empty interior.
Cut and project processes

Let \((\mathbb{R}^d, \mathbb{R}^q, \Gamma, W)\) be a cut-and-project scheme, i.e.

- \(\Gamma < \mathbb{R}^d \times \mathbb{R}^q\) is a lattice such that \(\text{pr}_{\mathbb{R}^d} |_{\Gamma}\) is injective and \(\text{pr}_{\mathbb{R}^q}(\Gamma)\) is dense.
- \(W \subset \mathbb{R}^q\) is a bounded Borel set with non-empty interior.

For \((x, y) \in \mathbb{R}^d \times \mathbb{R}^q\), define the \textbf{cut-and-project set}

\[
P_{(x,y)} = \text{pr}_{\mathbb{R}^d}(((\Gamma + (x, y)) \cap (\mathbb{R}^d \times W)) \subset \mathbb{R}^d).
\]
Let \((\mathbb{R}^d, \mathbb{R}^q, \Gamma, \mathcal{W})\) be a cut-and-project scheme, i.e.

- \(\Gamma \subset \mathbb{R}^d \times \mathbb{R}^q\) is a lattice such that \(\text{pr}_{\mathbb{R}^d}|\Gamma\) is injective and \(\text{pr}_{\mathbb{R}^q}(\Gamma)\) is dense.
- \(\mathcal{W} \subset \mathbb{R}^q\) is a bounded Borel set with non-empty interior.

For \((x, y) \in \mathbb{R}^d \times \mathbb{R}^q\), define the **cut-and-project set**

\[P_{(x,y)} = \text{pr}_{\mathbb{R}^d}((\Gamma + (x, y)) \cap (\mathbb{R}^d \times \mathcal{W})) \subset \mathbb{R}^d. \]

The first bullet ensures that \(\Gamma + (x, y) \mapsto P_{(x,y)}\) defines a *simple* and *ergodic* point process in \(\mathbb{R}^d\).

The second bullet ensures that \(P_{(x,y)}\) is a relatively dense and uniformly discrete set in \(\mathbb{R}^d\) for every \((x, y)\).
The number variance

Let m denote the unique $R^d \times R^q$-invariant probability measure on the torus $\Gamma \setminus R^d \times R^q$. Note that

$$Z_{\Gamma \setminus R^d \times R^q} |P(x, y) \cap B| dm(x, y) = \iota_W \text{Vol}^d(B),$$

for every bounded Borel set $B \subset R^d$, where $\iota_W = \text{Vol}^q(W)$ $\text{Covol}(\Gamma)$.

Let B_{R} denote the centered Euclidean ball of radius R and define the discrepancy $D_R(x, y) = |P(x, y) \cap B_{R}| - \iota_W \text{Vol}^d(B_{R})$ and the number variance $N_R(\Gamma, W) := \int_{\Gamma \setminus R^d \times R^q} |D_R|^2 dm$.

The number variance

Let \(m \) denote the unique \(\mathbb{R}^d \times \mathbb{R}^q \)-invariant probability measure on the torus \(\Gamma \setminus \mathbb{R}^d \times \mathbb{R}^q \).

Note that

\[
\int_{\Gamma \setminus \mathbb{R}^d \times \mathbb{R}^q} |P(x, y) \cap B| \, dm(x, y) = \nu_W \, \text{Vol}_d(B),
\]

for every bounded Borel set \(B \subset \mathbb{R}^d \), where \(\nu_W = \frac{\text{Vol}_q(W)}{\text{Covol}(\Gamma)} \).
The number variance

Let \(m \) denote the unique \(\mathbb{R}^d \times \mathbb{R}^q \)-invariant probability measure on the torus \(\Gamma \backslash \mathbb{R}^d \times \mathbb{R}^q \).

Note that

\[
\int_{\Gamma \backslash \mathbb{R}^d \times \mathbb{R}^q} |P(x, y) \cap B| \, dm(x, y) = \iota_W \operatorname{Vol}_d(B),
\]

for every bounded Borel set \(B \subset \mathbb{R}^d \), where \(\iota_W = \frac{\operatorname{Vol}_q(W)}{\operatorname{Covol}(\Gamma)} \).

Let \(B_R \) denote the centered Euclidean ball of radius \(R \) and define the discrepancy

\[
D_R(x, y) = |P(x, y) \cap B_R| - \iota_W \operatorname{Vol}_d(B_R)
\]

and the number variance

\[
N_R(\Gamma, W) := \int_{\Gamma \backslash \mathbb{R}^d \times \mathbb{R}^q} |D_R|^2 \, dm.
\]
The mean ergodic theorem tells us that
\[
\lim_{R \to \infty} N_R(\Gamma, W) R^d = 0.
\]
A theorem of Beck tells us that
\[
\limsup_{R \to \infty} N_R(\Gamma, W) R^d - 1 > 0.
\]
Definition \((\Gamma, W)\) is hyperuniform if
\[
\lim_{R \to \infty} N_R(\Gamma, W) R^d = 0.
\]
Hyperuniformity

The mean ergodic theorem tells us that

$$\lim_{R \to \infty} \frac{N_R(\Gamma, W)}{R^{2d}} = 0.$$
Hyperuniformity

The mean ergodic theorem tells us that
\[\lim_{R \to \infty} \frac{N_R(\Gamma, W)}{R^{2d}} = 0. \]

A theorem of Beck tells us that
\[\limsup_{R \to \infty} \frac{N_R(\Gamma, W)}{R^{d-1}} > 0. \]
Hyperuniformity

The mean ergodic theorem tells us that

$$\lim_{R \to \infty} \frac{N_R(\Gamma, W)}{R^{2d}} = 0.$$

A theorem of Beck tells us that

$$\limsup_{R \to \infty} \frac{N_R(\Gamma, W)}{R^{d-1}} > 0.$$

Definition

(\(\Gamma, W\)) is **hyperuniform** if

$$\lim_{R \to \infty} \frac{N_R(\Gamma, W)}{R^d} = 0.$$
Repellence and hyperuniformity

Definition

Let \(\beta > 0 \). A lattice \(\Gamma \subset \mathbb{R}^d \times \mathbb{R}^q \) is \(\beta \)-repellent if for all sufficiently \(\epsilon > 0 \), and for all \((\gamma_1, \gamma_2) \in \Gamma \setminus \{0, 0\}\)
\[
\|\gamma_1\| < \epsilon \implies \|\gamma_2\| \geq \epsilon - \beta.
\]

Fact:

Generic lattices and badly approximable lattices (e.g. arithmetic) are \(\beta \)-repellent for some \(\beta > 0 \).

Theorem (B-Hartnick, '22)

If \(\Gamma \perp \) is \(\beta \)-repellent for some \(\beta > d + \delta \), then \((\Gamma, W) \) is hyperuniform for every "\(\delta \)-nice enough" \(W \) (e.g. Euclidean balls (\(\delta = 1 \)), smooth convex sets with non-vanishing curvatures).
Repellence and hyperuniformity

Definition

Let $\beta > 0$. A lattice $\Gamma \subset \mathbb{R}^d \times \mathbb{R}^q$ is β-repellent if for all sufficiently $\varepsilon > 0$, and for all $(\gamma_1, \gamma_2) \in \Gamma \setminus \{0, 0\}$

$$\|\gamma_1\| < \varepsilon \implies \|\gamma_2\| \geq \varepsilon^{-\beta}.$$

Fact: Generic lattices and badly approximable lattices (e.g. arithmetic) are β-repellent for some $\beta > 0$.

Theorem (B-Hartnick, '22)

If $\Gamma \perp$ is β-repellent for some $\beta > d + \delta$, then (Γ, W) is hyperuniform for every "δ-nice enough" W (e.g. Euclidean balls ($\delta = 1$), smooth convex sets with non-vanishing curvatures).
Repellence and hyperuniformity

Definition

Let $\beta > 0$. A lattice $\Gamma < \mathbb{R}^d \times \mathbb{R}^q$ is β-repellent if for all sufficiently $\varepsilon > 0$, and for all $(\gamma_1, \gamma_2) \in \Gamma \setminus \{0, 0\}$

$$\|\gamma_1\| < \varepsilon \implies \|\gamma_2\| \geq \varepsilon^{-\beta}.$$

Fact: Generic lattices and badly approximable lattices (e.g. arithmetic) are β-repellent for some $\beta > 0$.

Theorem (B-Hartnick, ’22)

If Γ^\perp is β-repellent for some $\beta > \frac{d}{q+\delta}$, then (Γ, W) is hyperuniform for every ”δ-nice enough” W (e.g. Euclidean balls ($\delta = 1$), smooth convex sets with non-vanishing curvatures).
Let us now introduce a class of highly non-repellent lattices:
Liouvillean lattices and non-hyperuniformity

Let us now introduce a class of highly non-repellent lattices:

Definition

Γ < \mathbb{R}^p \times \mathbb{R}^q is **Liouvillean** if there exist a constant \(c > 0 \) and a sequence \(\gamma^{(k)} = (\gamma_1^{(k)}, \gamma_2^{(k)}) \in \Gamma \setminus \{0\} \) such that

- \(\gamma_1^{(k)} \to 0 \), as \(k \to \infty \),
- \(\|\gamma_2^{(k)}\| \leq c\|\gamma_1^{(k)}\|^{-1/k} \), for all \(k \).
An example

Let $a \geq 0$ be a Liouville number, i.e. a is irrational and there is a sequence $(m_k, n_k) \in \mathbb{Z}^2 \setminus \{(0, 0)\}$ such that $m_k \to \infty$ and $|am_k - n_k| \leq m_k^{-k}$, for all k.

The lattice $\Gamma = \{(am_k - n_k, am_k + n_k) : (m_k, n_k) \in \mathbb{Z}^2\}$ is Liouvillean (with $\gamma(k) = (am_k - n_k, am_k + n_k)$).
An example

Let $a > 0$ be a Liouville number, i.e. a is irrational and there is a sequence $(m_k, n_k) \in \mathbb{Z}^2 \setminus \{0, 0\}$ such that $m_k \to \infty$ and

$$|am_k - n_k| \leq m_k^{-k}, \quad \text{for all } k.$$
An example

Let $a > 0$ be a Liouville number, i.e. a is irrational and there is a sequence $(m_k, n_k) \in \mathbb{Z}^2 \setminus \{0, 0\}$ such that $m_k \to \infty$ and

$$|am_k - n_k| \leq m_k^{-k}, \quad \text{for all } k.$$

The lattice

$$
\Gamma = \{(am - n, am + n) : (m, m) \in \mathbb{Z}^2\} \subset \mathbb{R} \times \mathbb{R}
$$

is Liouvillean
An example

Let $a > 0$ be a Liouville number, i.e. a is irrational and there is a sequence $(m_k, n_k) \in \mathbb{Z}^2 \setminus \{0, 0\}$ such that $m_k \to \infty$ and

$$|am_k - n_k| \leq m_k^{-k}, \quad \text{for all } k.$$

The lattice

$$\Gamma = \{(am - n, am + n) : (m, m) \in \mathbb{Z}^2\} < \mathbb{R} \times \mathbb{R}$$

is Liouvillean (with $\gamma^{(k)} = (am_k - n_k, am_k + n_k)$).
Roundish sets

Definition
A bounded Borel set $W \subset \mathbb{R}^q$ is roundish if there exists $(\alpha, \beta) \in (0, \infty)^2$ such that
$$b\chi_W(y) = \cos\left(\alpha \|y\| - \beta\right) \frac{\|y\|}{d+1/2}.$$ as $y \to \infty$ (plus some minor technical conditions).

Example: If $W = [-1/2, 1/2] \subset \mathbb{R}$, then
$$b\chi_W(y) = \sin\left(\frac{\pi}{\|y\|}\right) = \cos\left(\pi |y| - \frac{\pi}{2}\right) \frac{\|y\|}{\pi|y|}.$$ Every Euclidean ball is roundish by a theorem of Hankel.
Roundish sets

Definition

A bounded Borel set $W \subset \mathbb{R}^q$ is **roundish** if there exists $(\alpha, \beta) \in (0, \infty)^2$ such that

$$\hat{\chi}_W(y) = \frac{\cos(\alpha\|y\| - \beta)}{\|y\|^{(d+1)/2}} + l.o.t.$$

as $y \to \infty$ (±some minor technical conditions).

Example: If $W = [-1/2, 1/2] \subset \mathbb{R}$, then

$$\hat{\chi}_W(y) = \frac{\sin(\pi y)}{\pi y} = \cos(\pi |y| - \pi/2)$$

Every Euclidean ball is roundish by a theorem of Hankel.
Roundish sets

Definition

A bounded Borel set $W \subset \mathbb{R}^q$ is roundish if there exists $(\alpha, \beta) \in (0, \infty)^2$ such that

$$\hat{\chi}_W(y) = \frac{\cos(\alpha \|y\| - \beta)}{\|y\|^{(d+1)/2}} + l.o.t.$$

as $y \to \infty$ (+some minor technical conditions).

Example: If $W = [-1/2, 1/2] \subset \mathbb{R}$, then

$$\hat{\chi}_W(y) = \frac{\sin(\pi y)}{\pi y} = \frac{\cos(\pi |y| - \frac{\pi}{2})}{\pi |y|}$$
Roundish sets

Definition

A bounded Borel set $W \subset \mathbb{R}^q$ is **roundish** if there exists $(\alpha, \beta) \in (0, \infty)^2$ such that

$$\hat{\chi}_W(y) = \frac{\cos(\alpha \|y\| - \beta)}{\|y\|^{(d+1)/2}} + l.o.t.$$

as $y \to \infty$ (+some minor technical conditions).

Example: If $W = [-1/2, 1/2] \subset \mathbb{R}$, then

$$\hat{\chi}_W(y) = \frac{\sin(\pi y)}{\pi y} = \frac{\cos(\pi |y| - \frac{\pi}{2})}{\pi |y|}$$

Every Euclidean ball is roundish by a theorem of Hankel.
Non-hyperuniformity

Theorem (B-Hartnick, ‘22)

Suppose $\Gamma \perp < R^d \times R^q$ is Liouvillean and $W \subset R^q$ is roundish. Then, for Lebesgue almost every $b > 0$,

$$\lim_{R \to \infty} N_R(\Gamma, bW)_{R^2 - \delta} = \infty,$$

for all $\delta > 0$. In other words, for almost every $b > 0$, the pair (Γ, bW) is very far from being hyperuniform.
Non-hyperuniformity

Theorem (B-Hartnick, ’22)

Suppose $\Gamma \perp \mathbb{R}^d \times \mathbb{R}^q$ is Liouvillean and $W \subset \mathbb{R}^q$ is roundish.
Theorem (B-Hartnick, ’22)

Suppose $\Gamma \perp \mathbb{R}^d \times \mathbb{R}^q$ is Liouvillean and $W \subset \mathbb{R}^q$ is roundish.

Then, for Lebesgue almost every $b > 0$,
Non-hyperuniformity

Theorem (B-Hartnick, ’22)

Suppose \(\Gamma^\perp < \mathbb{R}^d \times \mathbb{R}^q \) is Liouvillean and \(W \subset \mathbb{R}^q \) is roundish.

Then, for Lebesgue almost every \(b > 0 \),

\[
\lim_{R \to \infty} \frac{N_R(\Gamma, bW)}{R^{2-\delta}} = \infty, \quad \text{for all } \delta > 0.
\]
Non-hyperuniformity

Theorem (B-Hartnick, ’22)

Suppose $\Gamma^\perp < \mathbb{R}^d \times \mathbb{R}^q$ is Liouvillean and $W \subset \mathbb{R}^q$ is roundish.

Then, for Lebesgue almost every $b > 0$,

$$\lim_{R \to \infty} \frac{N_R(\Gamma, bW)}{R^{2-\delta}} = \infty, \quad \text{for all } \delta > 0.$$

In other words, for almost every $b > 0$, the pair (Γ, bW) is very far from being hyperuniform.
The proof

Let \((R^d, R^q, \Gamma, W)\) be an arbitrary cut-and-project scheme.
The proof

Let \((\mathbb{R}^d, \mathbb{R}^q, \Gamma, W)\) be an arbitrary cut-and-project scheme. By Poisson summation,

\[N_R(\Gamma, W) = c \cdot R^{2d} \cdot \sum_{\xi \in \Gamma^\perp \setminus \{0\}} |\hat{\chi}_B(R\xi_1)|^2 |\chi_W(\xi_2)|^2, \]

where \(B = B_1\) and \(c\) is an explicit constant.
The proof

Let \((\mathbb{R}^d, \mathbb{R}^q, \Gamma, W)\) be an arbitrary cut-and-project scheme. By Poisson summation,

\[
N_R(\Gamma, W) = c \cdot R^{2d} \cdot \sum_{\xi \in \Gamma^\perp \setminus \{0\}} |\hat{\chi}_B(R\xi_1)|^2 |\chi_W(\xi_2)|^2,
\]

where \(B = B_1\) and \(c\) is an explicit constant.
The proof

Let \((\mathbb{R}^d, \mathbb{R}^q, \Gamma, W)\) be an arbitrary cut-and-project scheme. By Poisson summation,

\[
N_R(\Gamma, W) = c \cdot R^{2d} \cdot \sum_{\xi \in \Gamma \perp \backslash \{0\}} |\hat{\chi}_B(R\xi_1)|^2 |\chi_W(\xi_2)|^2,
\]

where \(B = B_1\) and \(c\) is an explicit constant.

Fix \(\varepsilon_0 > 0\) such that \(|\hat{\chi}_B(y)|^2 \geq \frac{1}{2} \text{Vol}_d(B)^2\) for all \(\|y\| \leq \varepsilon_0\). Then, for all \(\delta > 0\) and \(\varepsilon_R < \frac{\varepsilon_0}{R}\), we have

\[
\frac{N_R(\Gamma, bW)}{R^{2d-\delta}} \gg b^{2d} R^\delta \sum_{\|\xi_1\| < \varepsilon_R} |\chi_W(b\xi_2)|^2,
\]

for all \(b > 0\).
The proof

Let us now assume that Γ^\perp is Liouvillean and W is roundish, so that

- There is a sequence $\xi(k) = (\xi(k)_1, \xi(k)_2) \in \Gamma^\perp \setminus \{(0, 0)\}$ with $\xi(k)_1 \to 0$ and $\|\xi(k)_2\| \ll \|\xi(k)_1\|^{-1/k}$, for all k.

- $|\chi_W(\xi(k)_2)|^2 \approx \cos^2(\alpha b \|\xi(k)_2\| - \beta) \|\xi(k)_2\|^{d+1}$.
The proof

Let us now assume that Γ^\perp is Liouvillean and W is roundish, so that

- there is a sequence $\xi^{(k)} = (\xi_1^{(k)}, \xi_2^{(k)}) \in \Gamma^\perp \setminus \{(0,0)\}$ with $\xi_1^{(k)} \to 0$ and $\|\xi_2^{(k)}\| \ll \|\xi_1^{(k)}\|^{-1/k}$, for all k.

- $|\chi_W(\xi_2^{(k)})|^2 \gtrsim \frac{\cos^2(\alpha b\|\xi_2^{(k)}\| - \beta)}{\|\xi_2^{(k)}\|^{d+1}}$.
The proof

Let us now assume that $\Gamma \perp$ is Liouvillean and W is roundish, so that

- there is a sequence $\xi^{(k)} = (\xi_1^{(k)}, \xi_2^{(k)}) \in \Gamma \perp \setminus \{(0,0)\}$ with $\xi_1^{(k)} \to 0$ and $\|\xi_2^{(k)}\| \ll \|\xi_1^{(k)}\|^{-1/k}$, for all k.

- $|\chi_W(\xi_2^{(k)})|^2 \sim \frac{\cos^2(\alpha b \|\xi_2^{(k)}\| - \beta)}{\|\xi_2^{(k)}\|^{d+1}}$

In particular, by choosing $R_k = \|\xi_1^{(k)}\|^{-1}$ and $\varepsilon_{R_k} \asymp 1/R_k$, we get

$$\frac{N_{R_k}(\Gamma, bW)}{R_k^{2d-\delta}} \gg b R_k^\delta \cdot \frac{\cos^2(\alpha b \|\xi_2^{(k)}\| - \beta)}{\|\xi_2^{(k)}\|^{d+1}} \gg b R_k^{\delta-(d+1)/k} \cos^2(\alpha b \|\xi_2^{(k)}\| - \beta).$$
The proof

The problem now is that (potentially)

$$\cos^2(\alpha b \| \xi_2^{(k)} \| - \beta) \ll R_k^{-\delta}.$$
The proof

The problem now is that (potentially)

$$\cos^2(\alpha b \|\xi_2^{(k)}\| - \beta) \ll R_k^{-\delta}.$$

However, standard equidistribution theory tells us that for almost every b we can find a sub-sequence (k_j) such that the sequence

$$\alpha b \|\xi_2^{(k_j)}\| - \beta$$

equidistributes (modulo 2π).
The proof

The problem now is that (potentially)

\[\cos^2(\alpha b\|\xi_2^{(k)}\| - \beta) \ll R_k^{-\delta}. \]

However, standard equidistribution theory tells us that for almost every \(b \) we can find a sub-sequence \((k_j)\) such that the sequence

\[\alpha b\|\xi_2^{(k_j)}\| - \beta \]

equidistributes (modulo \(2\pi \)).

In particular, along some further sub-sequence we can ensure that \(\alpha b\|\xi_2^{(k_j)}\| - \beta \to \pi \), and the problem above does not occur, and hence

\[\frac{N_{R_{k_j}}(\Gamma, bW)}{R_{k_j}^{2d-\delta}} \to \infty, \quad \text{as } j \to \infty. \]