Asymptotic dimension of countable approximate groups

Vera Tonić

University of Rijeka, Croatia

Workshop on Approximate groups and aperiodic order
KIT, Karlsruhe

24 and 26 August 2023
Suppose \((\Lambda, \Lambda^\infty)\) is a countable approximate group.

- How do you get from this countable approximate group to a metric space representing it (well enough)?

To rephrase:

- How do you produce the metric “nice” enough so you can make some conclusions (about the countable approximate group) regardless which “nice” metric on it you choose?

It turns out: we can define left-invariant proper metrics on the enveloping group \(\Lambda^\infty\), and two such metrics restricted to \(\Lambda\) will be coarsely equivalent.

So we will need coarse invariants, like \(\text{asdim}\), to investigate countable approximate groups with “nice” metrics.
• review \textit{dim}, introduce \textit{asdim} for metric spaces,

• list some basic properties of \textit{asdim},

• see groups as metric spaces and define their \textit{asdim},

• see countable approximate groups as metric spaces and define their \textit{asdim},

• state some recently proven theorems using \textit{asdim} for approximate groups,

• focus on one of these theorems and understand what it is saying (if time permits).

We will need to introduce some notions, like hyperbolicity for approximate groups, and more . . .
Both dimensions take their values in $\mathbb{N}_0 \cup \{\infty\}$, with $\text{dim}\emptyset := -1$.

<table>
<thead>
<tr>
<th>dim</th>
<th>asdim</th>
</tr>
</thead>
<tbody>
<tr>
<td>covering (or topological) dimension</td>
<td>asymptotic dimension</td>
</tr>
<tr>
<td>H. Lebesgue, 1920’s</td>
<td>M. Gromov, 1990’s</td>
</tr>
<tr>
<td>topological spaces</td>
<td>metric spaces</td>
</tr>
<tr>
<td>focused on small stuff</td>
<td>focused on large stuff</td>
</tr>
<tr>
<td>open covers</td>
<td>uniformly bounded covers</td>
</tr>
<tr>
<td>topological invariant</td>
<td>coarse invariant</td>
</tr>
</tbody>
</table>
Definition

Let X be a topological space. If $X = \emptyset$, define $\dim X := -1$. If $X \neq \emptyset$ and $n \in \mathbb{N}_0$, then $\dim X \leq n$ means: for each open cover U of X there is an open cover V of X such that

- V refines U (i.e., $\forall V \in V \exists U \in U$ s.t. $V \subseteq U$), and
- $\text{mult } V \leq n + 1$, i.e., any $x \in X$ lies in at most $n + 1$ elements of V.

We say $\dim X := n$ if $\dim X \leq n$ and $\dim X \not\leq n - 1$. If no such n exists, then $\dim X := \infty$.

\[\text{dim and asdim} \]

Definition of dim
Examples:

- \(\dim \) (of any discrete space) = 0

 (any open cover \(\mathcal{U} \) of \(X \) has \(\mathcal{V} = \{\{x\} \mid x \in X\} \) as its refinement, and \(\text{mult} \ \mathcal{V} = 1 \))

 In particular, for \(\mathbb{Z}^n \subset (\mathbb{R}^n, d_E) \), \(\dim \mathbb{Z}^n = 0 \).

- \(\dim (I^{\aleph_0}) = \infty \), where \(I^{\aleph_0} = \prod_{i=1}^{\infty} [0, 1]_i \) (Hilbert cube)

 \((I^{\aleph_0} \text{ with metric } d((x_i), (y_i)) = \sqrt{\sum_{i \in \mathbb{N}} \frac{(d_E(x_i, y_i))^2}{i^2}} \text{ is bounded}) \)

- \(\dim \mathbb{R}^n = n, \ \forall n \in \mathbb{N} \)

- \(\dim (n\text{-manifold}) = n \)
Definition

Let \((X, d)\) be a nonempty metric space and let \(n \in \mathbb{N}_0\).

Then \(\text{asdim } X \leq n\) means: for each uniformly bounded cover \(U\) of \(X\) there is a uniformly bounded cover \(V\) of \(X\) such that

- \(V\) coarsens \(U\) (i.e., \(U\) refines \(V\)), and
- \(\text{mult } V \leq n + 1\).

We say \(\text{asdim } X := n\) if \(\text{asdim } X \leq n\) and \(\text{asdim } X \nless n - 1\).

If no such \(n\) exists, then \(\text{asdim } X := \infty\).
Examples:

- \(\text{asdim}\) (of any bounded metric space) = 0
 (any uniformly bounded cover \(\mathcal{U}\) of \(X\) has \(\mathcal{V} = \{X\}\) as its coarsening, which is uniformly bounded because \(X\) is bounded, so \(\text{mult} \mathcal{V} = 1\))
 In particular, for Hilbert cube, \(\text{asdim} I^{\aleph_0} = 0.\) [\(\text{dim} I^{\aleph_0} = \infty\)]

- \(\text{asdim}\) (of a discrete space) can be anything.
 In particular, for \(\mathbb{Z}^n \subset (\mathbb{R}^n, d_E)\), \(\text{asdim} \mathbb{Z}^n = n.\) [\(\text{dim} \mathbb{Z}^n = 0\)]

- \(\text{asdim}\) of a discrete group that contains a copy of \(\mathbb{Z}^n, \forall n \in \mathbb{N}\)
 is = \(\infty.\)

- \(\text{asdim} \mathbb{R}^n = n, \forall n \in \mathbb{N}\)
 (we will prove that \(\text{asdim} \mathbb{R}^n = \text{asdim} \mathbb{Z}^n, \forall n \in \mathbb{N}\)).
Equivalent definition of asdim:

Definition (Coloring definition)

Let \((X, d)\) be a nonempty metric space and let \(n \in \mathbb{N}_0\).

Then asdim \(X \leq n \iff \forall R > 0 \ (R < \infty)\) there is a uniformly bounded cover \(\mathcal{U}\) of \(X\) such that

- \(\mathcal{U} = \bigcup_{i=1}^{n+1} \mathcal{U}^{(i)}\), where
- each subfamily \(\mathcal{U}^{(i)}\) is \(R\)-disjoint, i.e., \(\forall U \neq U' \in \mathcal{U}^{(i)}\) we have \(\text{dist}(U, U') \geq R\).

We refer to \(i \in \{1, 2, \ldots, n + 1\}\) as different colors.
To show $\text{asdim}(\mathbb{R}, d_E) = 1$:

- $\text{asdim} \mathbb{R} \leq 1$, because, for any $R > 0$, we can take $\mathcal{U} = \mathcal{U}^{(1)} \cup \mathcal{U}^{(2)}$ (with sets of the same color R-apart),
- We will show $\text{asdim} \mathbb{Z} = \text{asdim} \mathbb{R}$, and
- $\text{asdim} \mathbb{Z} \neq 0$, because otherwise, taking $R > 1$, \mathbb{Z} should have a one color cover, which is uniformly bounded and consisting of sets that are R-apart ...
We have \(\text{asdim } \mathbb{R}^2 \leq 2 \), because, for any \(R > 0 \), we can take \(\mathcal{U} = \mathcal{U}^{(1)} \cup \mathcal{U}^{(2)} \cup \mathcal{U}^{(3)} \) (with sets of the same color \(R \)-apart).

(We still need to show \(\text{asdim } \mathbb{R}^2 \nleq 1 \), since then \(\text{asdim } \mathbb{R}^2 = 2 \).)
Theorem (Monotonicity)

If $A \subseteq X$, then $\text{asdim } A \leq \text{asdim } X$.

Theorem (Product theorem)

$\text{asdim}(X \times Y) \leq \text{asdim } X + \text{asdim } Y$.

Therefore $\text{asdim } \mathbb{R}^n \leq n \cdot \text{asdim } \mathbb{R} = n \cdot 1 = n$.

(Still would have to explain why $\text{asdim } \mathbb{R}^n \not\leq n - 1$.)

Theorem (Functions preserving asdim)

asdim is a coarse invariant, i.e., it is preserved by coarse equivalences (so, in particular, by quasi-isometries).

Once we show that $\mathbb{Z}^n \overset{QI}{\approx} \mathbb{R}^n$, they will have the same asdim.
We introduce the notions of coarse equivalence and quasi-isometry by coarsening the notion of isometry. Recall:

- A function $f : (X, d_X) \to (Y, d_Y)$ is called an \textit{isometric embedding} if it preserves distances, i.e., $\forall x, x' \in X$ we have
 \[d_Y(f(x), f(x')) = d_X(x, x'). \]

- A function $f : (X, d_X) \to (Y, d_Y)$ is an \textit{isometry} if f is an isometric embedding and it is surjective (injectivity follows from the preservation of distances, so this function is bijective).
Coarse equivalence and quasi-isometry

Definition
A function $f : (X, d_X) \rightarrow (Y, d_Y)$ is a coarse embedding if \exists non-decreasing functions $\rho_-, \rho_+ : [0, \infty) \rightarrow [0, \infty)$ s.t. $\rho_-(t) \rightarrow \infty$ when $t \rightarrow \infty$, and $\forall x, x' \in X$ we have

$$\rho_-(d_X(x, x')) \leq d_Y(f(x), f(x')) \leq \rho_+(d_X(x, x')).$$

In particular, if both ρ_- and ρ_+ are linear, i.e., $\exists K \geq 1, C \geq 0$ s.t.

$$\frac{1}{K} \cdot d_X(x, x') - C \leq d_Y(f(x), f(x')) \leq K \cdot d_X(x, x') + C,$$

we say that f is a quasi-isometric embedding (QI-embedding, or, more precisely, a (K, C)-QI-embedding).

(For $K = 1, C = 0$: f is an isometric embedding.)
Coarse equivalence and quasi-isometry

Definition

If there exists a quasi-isometry (coarse equivalence) between spaces X and Y, we write $X \overset{QI}{\approx} Y$ ($X \overset{CE}{\approx} Y$).

Definition

- If $f : X \rightarrow Y$ is a QI-embedding and f is coarsely surjective, then f is called a **quasi-isometry** (shortly QI). ((K, C, D)-QI)
- If $f : X \rightarrow Y$ is a coarse embedding and f is coarsely surjective, then f is called a **coarse equivalence** (shortly CE).

Properties of metric spaces which are preserved by quasi-isometries are called **QI-invariants**, and properties preserved by coarse equivalences are called **coarse invariants**.

Properties of metric spaces which are preserved by quasi-isometries are called QI-invariants, and properties preserved by coarse equivalences are called coarse invariants.

If there exists a quasi-isometry (coarse equivalence) between spaces X and Y, we write $X \overset{QI}{\approx} Y$ ($X \overset{CE}{\approx} Y$).
Coarse equivalence and quasi-isometry

Example: \(\mathbb{Z} \rightarrow \mathbb{R} \) is a QI with constants \(K = 1, C = 0, D = 1 \).

\[
\begin{array}{ccccccccccccc}
\ldots & \bullet & \mathbb{Z} \\
\ldots & \mathbb{R}
\end{array}
\]

Therefore \(\mathbb{Z} \overset{QI}{\approx} \mathbb{R} \). Recall the theorem

Theorem (Functions preserving asdim)

asdim is a coarse invariant, i.e., it is preserved by coarse equivalences (in particular, by quasi-isometries).

That is, \(X \overset{CE}{\approx} Y \Rightarrow \text{asdim } X = \text{asdim } Y \) (in particular, \(X \overset{QI}{\approx} Y \Rightarrow \text{asdim } X = \text{asdim } Y \)).

Consequently \(\text{asdim } \mathbb{Z} = \text{asdim } \mathbb{R} \).

Note: a CE between geodesic metric spaces is a QI.
To introduce \(\text{asdim} \) on groups, we need a metric.

Let \(G \) finitely generated group, \(S \) a fin.gen. set of \(G \) (\(S^{-1} = S \)).

1\(^{st}\) way, on \(G \) we introduce the word metric associated to \(S \):
\[
d_S(g, h) := ||g^{-1}h||_S \text{ (length of } g^{-1}h \text{ w.r. to } S), \forall g, h \in G.
\]
- \(d_S \) is left-invariant: \(d_S(ag, ah) = d_S(g, h), \forall a, g, h \in G \),
- \((G, d_S) \) is a discrete metric space,
- \((G, d_S) \) is proper (closed balls are compact).

2\(^{nd}\) way, build the Cayley graph \(\Gamma_S(G) \):
- Vertices: elements of \(G \),
- Edges: \((g, h) \in E \text{ if } h = gs, s \in S \),
- metric on \(\Gamma_S(G) \): path-length metric, i.e., \(d(a, b) = \text{length of shortest path between } a, b \). (Each edge of length 1.)
- \((\Gamma_S(G), d) \) is a geodesic metric space.

Turns out: \(d \) on \(V(\Gamma_S(G)) \) and \(d_S \) on \(G \) coincide, and \(G \) (identified with \(V(\Gamma_S(G)) \)) is QI to \(\Gamma_S(G) \), for any finite generating set \(S \).
Cayley graph for $\Gamma\{a, b, a^{-1}, b^{-1}\}(F_2)$
Cayley graph for $\Gamma\{a, b, a^{-1}, b^{-1}\}(F_2)$, but fancier.
More on Cayley graphs

Cayley graph depends on choice of the (fin.) generating set S, but:

Theorem

If S and S' are both finite generating sets for G, then

$$(G, d_S) \overset{QI}{\approx} (\Gamma_S(G), d_S) \overset{QI}{\approx} (\Gamma_{S'}(G), d_{S'}) \overset{QI}{\approx} (G, d_{S'}).$$

Example: $\Gamma_{\{1,-1\}}(\mathbb{Z})$ and $\Gamma_{\{2,3,-2,-3\}}(\mathbb{Z})$.
asdim of finitely generated groups

Definition

For a finitely generated group G, and any fin.gen. set S of G:

$$\text{asdim } G := \text{asdim } (G, d_S) = \text{asdim } (\Gamma_S(G), d_S)$$

Note: asdim is a coarse invariant (in particular, preserved by QI), so definition does not depend on the choice of fin.gen. generating set S.

We can also define $\text{asdim } G := \text{asdim } ([G]_c)$, where

$$[G]_c = \{(X, d_X) | (X, d_X) \overset{CE}{\approx} (G, d_S)\}.$$

What if G is not finitely generated? Then it can be:

- G countable (not fin.gen.), or
- G uncountable

(A finitely generated group can have a subgroup which is not finitely generated (but it will be countable).)
Metric on groups (second: for countable groups)

For G countable: can define a left-invariant proper metric d:

Definition

Let G be a countable group and $S \subseteq G$ be a symmetric subset. A function $w : S \cup \{e\} \to [0, \infty)$ is called a *weight function on S* if it is proper and satisfies $w^{-1}(0) = \{e\}$ and $w(s) = w(s^{-1})$ for all $s \in S$.

Lemma

Let S be a symmetric generating set of a countable group G and let $w : S \cup \{e\} \to [0, \infty)$ be a weight function. Then

$$\|g\|_{S,w} := \inf \left\{ \sum_{i=1}^{n} w(s_i) \mid g = s_1 \cdots s_n, \ s_i \in S \right\}$$

defines a norm on G, and the associated metric $d_{S,w}$ given by

$$d_{S,w}(g, h) := \|g^{-1}h\|_{S,w}$$
is left-invariant and proper.
Theorem

If \(d_1\) *and* \(d_2\) *are two left-invariant proper metrics on a countable group* \(G\), *then the identity* \(\text{id} : (G, d_1) \to (G, d_2)\) *is a coarse equivalence (so* \((G, d_1) \overset{CE}{\approx} (G, d_2)\)).

So the following makes sense:

Definition

The **coarse class** \([G]_c\) of a countable group \(G\) is the coarse equivalence class of the metric space \((G, d)\), where \(d\) is some (hence any) left-invariant proper metric on \(G\).

- Therefore, for a countable group \(G\), define:
 \[
 \text{asdim } G := \text{asdim } (G, d),
 \]
 where \(d\) is any left-invariant proper metric on \(G\). We can also define \(\text{asdim } ([G]_c) := \text{asdim } (G, d)\), so \(\text{asdim } G = \text{asdim } (G, d) = \text{asdim } ([G]_c)\).
For uncountable groups, the following theorem gives an idea how to introduce definition of \(\text{asdim} \):

Theorem

If \(G \) is a countable group, then

\[
\text{asdim} \ G = \sup \{ \text{asdim} \ H \mid H \leq G, H \text{ finitely generated} \}.
\]

For uncountable group \(G \), define

\[
\text{asdim} \ G := \sup \{ \text{asdim} \ H \mid H \leq G, H \text{ finitely generated} \}.
\]

But what about the choice of metric?

Some issues here, let us not go there today!
Definition (Approximate subgroup, T. Tao, 2008)

Let \((G, \cdot)\) be a group and let \(k \in \mathbb{N}\). A subset \(\Lambda\) of \(G\) is called a \textit{k-approximate subgroup} of \(G\) if:

\[(\text{AG1})\quad \Lambda = \Lambda^{-1} \quad \text{and} \quad e \in \Lambda, \quad \text{and} \]

\[(\text{AG2})\quad \exists \text{ a finite subset } F \subseteq G \text{ s.t. } \Lambda^2 \subseteq \Lambda F \quad \text{and} \quad |F| = k. \]

We say \(\Lambda\) is an \textit{approximate subgroup} if it is a \(k\)-approximate subgroup, for some \(k \in \mathbb{N}\).

Note:

- \(\Lambda^2 = \Lambda \cdot \Lambda = \{a \cdot b \mid a, b \in \Lambda\}, \quad \Lambda \cdot F = \{a \cdot f \mid a \in \Lambda, f \in F\}.\)
- If \(\Lambda\) is an approx. subgroup, then \(\Lambda^\infty := \bigcup_{k \in \mathbb{N}} \Lambda^k\) is a group \((\Lambda^\infty \leq G)\). We call \(\Lambda^\infty\) the \textit{enveloping group} of \(\Lambda\).

We call the pair \((\Lambda, \Lambda^\infty)\) an \textit{approximate group}.

We say: \((\Lambda, \Lambda^\infty)\) is finite (countable) if \(\Lambda\) is finite (countable).
Approximate groups – examples

(1) Let \((G, \cdot) = (\mathbb{Z}, +), \ n \in \mathbb{N}\) and define
\(\Lambda := \{-n, -n + 1, \ldots, -1, 0, 1, \ldots, n - 1, n\}\).
Then \(\Lambda + \Lambda = \{-2n, \ldots, 2n\} \not\subseteq \Lambda\), but for \(F = \{-n, n\}\) we get \(\Lambda + \Lambda = \Lambda + F\), i.e., \(\Lambda\) is a 2-approximate subgroup of \(\mathbb{Z}\).
Also: \(\Lambda^\infty = \mathbb{Z}\). Therefore \((\Lambda, \mathbb{Z})\) is an approximate group.

(2) (Non-example): Let \((G, \cdot) = (\mathbb{Z}, +)\) and define
\(\Lambda := \{2^i \mid i \in \mathbb{Z}\} \cup \{0\} \cup \{-2^i \mid i \in \mathbb{Z}\}\).
Then \(\Lambda + \Lambda\) contains \(2^n + 2^{n+1} = 3 \cdot 2^n, \forall n \in \mathbb{N}\), so it contains infinitely many numbers which are not in \(\Lambda\), and the “distance” of these new numbers to \(\Lambda\) goes to \(\infty\). If \(F\) is a finite set \(\subseteq \mathbb{Z}\), then the “distance” between the numbers in \(\Lambda + F\) to \(\Lambda\) is bounded. Therefore we cannot have \(\Lambda + \Lambda \subseteq \Lambda + F\), i.e., \(\Lambda\) is not an approximate subgroup of \(\mathbb{Z}\).
(3) If G is a group and $H \leq G \Rightarrow$, then H is also an approximate subgroup of $G \Rightarrow$ the pair (H, H) is an approximate group.

(4) If G is a group and F is a finite symmetric subset of G which contains $e \Rightarrow (F, F^\infty)$ is an approximate group.

(5) If Λ is an approximate subgroup of a group G, then Λ^k is also an approximate subgroup of G, so $(\Lambda^k, \Lambda^\infty)$ is an approximate group.

(6) Cartesian product of two approximate subgroups is an approximate subgroup, the image and the pre-image of an approximate subgroup (via a group homomorphism) are approximate subgroups.
(7) Let $\Lambda^\infty := BS(1, 2) = \langle a, b \mid bab^{-1} = a^2 \rangle$
(Baumslag-Solitar group of type $(1, 2)$), and define $\Lambda := \langle a \rangle \cup \{b, b^{-1}\}$. Then Λ is symmetric, contains e and generates Λ^∞. A calculation (using $(b^{-1}ab)^2 = a$) shows that

$$\Lambda^2 \subseteq \Lambda\{e, b, b^{-1}, b^{-1}a\},$$

hence $(\Lambda, \Lambda^\infty)$ is an approximate group.

(8) If G is a locally compact group and W is a relatively compact (i.e. having compact closure) symmetric neighborhood of identity e in G, then (W, W^∞) is an approximate group.
Approximate groups – examples

(9) “Cut and project” construction on an irrational lattice in \mathbb{R}^2:

\[\text{Diagram of approximate group construction on an irrational lattice.} \]
For a countable approx. group \((\Lambda, \Lambda^\infty)\), how do we define \(\text{asdim} \Lambda\)?

Recall: for a countable group \(G\):
- there are left-invariant proper metrics on \(G\), and
- if \(d_1\) and \(d_2\) are two left-invariant proper metrics on \(G\), then \((G, d_1) \overset{CE}{\approx} (G, d_2)\),
- \(\text{asdim}\) is a coarse invariant, so
- \(\text{asdim} \ G := \text{asdim} (G, d) \ (= \text{asdim} ([G]_c))\) is well-defined (for any left-invariant proper metric \(d\) on \(G\)).

Analogously, if \((\Lambda, \Lambda^\infty)\) is a countable approximate group:
- we want to associate to it the coarse (equivalence) class \([\Lambda]_c\) of (mutually coarsely equivalent) metric spaces, and
- define \(\text{asdim} \Lambda\) to be \(\text{asdim} ([\Lambda]_c)\), i.e., \(\text{asdim}\) of any metric space representing \([\Lambda]_c\).
Lemma

If G is a countable group, and $\Lambda \subseteq G$ is a subset, and if we take any two left-invariant proper metrics d and d' on G, then $\text{id} : (\Lambda, d|_{\Lambda \times \Lambda}) \to (\Lambda, d'|_{\Lambda \times \Lambda})$ is a coarse equivalence.

In particular, apply this on a countable approximate group $(\Lambda, \Lambda^\infty)$, (i.e., on $\Lambda \subseteq \Lambda^\infty$): take any left-invariant proper metric d on Λ^∞, define the (canonical) coarse class of Λ:

$$[\Lambda]_c := [(\Lambda, d|_{\Lambda \times \Lambda})]_c.$$

Note (independence of the ambient group): If Λ is an approximate subgroup of a countable group G, and if d is a left-invariant proper metric on G, then $d|_{\Lambda^\infty \times \Lambda^\infty}$ is a left-invariant proper metric on Λ^∞, so $[\Lambda]_c = [(\Lambda, (d|_{\Lambda^\infty \times \Lambda^\infty})|_{\Lambda \times \Lambda})]_c$ is independent of the ambient group which is used to define it.
Note: \([\Lambda]_c\) admits a representative which is a proper metric space.

Finally, for a countable approximate group \((\Lambda, \Lambda^\infty)\), define

\[
\text{asdim} \Lambda := \text{asdim} ([\Lambda]_c)
\]

\[
= \text{asdim} \text{ of any metric space representing } [\Lambda]_c.
\]

Lemma

If \((\Lambda, \Lambda^\infty)\) is a countable approximate group, then \(\forall k \in \mathbb{N}\), the inclusion \(\Lambda \hookrightarrow \Lambda^k\) is a coarse equivalence, so \([\Lambda]_c = [\Lambda^k]_c\).

Corollary

If \((\Lambda, \Lambda^\infty)\) is a countable approximate group, then

\[
\text{asdim} \Lambda \leq \text{asdim} \Lambda^\infty, \text{ and } \text{asdim} \Lambda^k = \text{asdim} \Lambda, \forall k \in \mathbb{N}.
\]
Some theorems on asdim of approximate groups and the theorems which inspired them.

Theorem (Buyalo-Lebedeva, 2007)

For a hyperbolic group G, $\text{asdim} \, G = \dim \partial G + 1$. In fact, this is true for proper, geodesic, Gromov hyperbolic, cobounded metric spaces.

For approximate groups:

Theorem (Cordes-Hartnick-T.)

For a hyperbolic approximate group $(\Lambda, \Lambda^\infty)$, $\text{asdim} \, \Lambda = \dim \partial \Lambda + 1$. In fact, this is true for proper, geodesic, Gromov hyperbolic, quasi-cobounded metric spaces.
Some theorems on asdim of approximate groups
and the theorems which inspired them.

Theorem (Brodskiy-Dydak-Levin-Mitra, 2008)

Let $h : X \to Y$ be a coarsely Lipschitz map between metric spaces. Then $\text{asdim} \ X \leq \text{asdim} \ Y + \text{asdim} \ h$, where
$\text{asdim} \ h := \sup \{ \text{asdim} \ A \mid A \subseteq X \text{ and } \text{asdim} \ (h(A)) = 0 \}$.

For approximate groups:

Theorem (Cordes-Hartnick-T.)

Let $(\Xi, \Xi^\infty), (\Lambda, \Lambda^\infty)$ be countable approximate groups and let $f : (\Xi, \Xi^\infty) \to (\Lambda, \Lambda^\infty)$ be a global morphism of approximate groups. Then
$\text{asdim} \ \Xi \leq \text{asdim} \ \Lambda + \text{asdim} ([\ker (f)]_c)$.
Now we wish to show how to generalize to approximate groups this:

Theorem (Buyalo-Lebedeva, 2007)

For a hyperbolic group G, $\text{asdim } G = \dim \partial G + 1$. In fact, this is true for proper, geodesic, Gromov hyperbolic, cobounded metric spaces.

We should recall and/or define:

- the notion of being *(Gromov) hyperbolic* for a (nice enough) metric space, group, approximate group,
- *(Gromov) boundary* for a (nice enough) hyperbolic space,
- *properness, coboundedness* and *quasi-coboundedness*.

Definition

A metric space is *proper* if all closed balls in it are compact.
Definition

A geodesic metric space is called *(Gromov) hyperbolic* if \(\exists \delta \geq 0 \) such that all geodesic triangles are \(\delta \)-thin, i.e., every side of a geodesic triangle is contained in \(\delta \)-nbhd of the union of the other two sides.

This is also called being \(\delta \)-hyperbolic. Let us agree that a 0-nbhd of a triangle \(= \) the triangle, so a tripod \(Y \) in a graph is 0-hyperbolic.

Theorem

(Gromov) hyperbolicity is a QI invariant for geodesic metric spaces.
Gromov hyperbolic spaces (and groups)

This definition generalizes the metric properties of classical hyperbolic geometry and of (graphs that are) trees.

- **Some examples:**
 1. hyperbolic plane \mathbb{H}^2 (also \mathbb{H}^n, $\forall n \in \mathbb{N}_{\geq 2}$),
 2. any bounded metric space,
 3. hyperbolic groups (finitely generated groups G with Cayley graph $\Gamma_S(G)$ (Gromov) hyperbolic) …

For 3 in particular: Cayley graph $\Gamma_{\{a, b, a^{-1}, b^{-1}\}}(F_2)$ of the free group of rank 2:

![Cayley graph](image-url)
Gromov boundary

Definition

For a proper geodesic (Gromov) hyperbolic space X, its **(Gromov) boundary** ∂X consists of points that are equivalence classes of geodesic rays in X, where two geodesic rays are equivalent if they fellow-travel, i.e., they are within finite Hausdorff distance from each other $(\sup_{t \in [0, \infty)} d(\gamma(t), \gamma'(t)) < \infty)$.

Elements of ∂X: $\gamma(\infty)$ or ξ.
Gromov boundary

Metric on ∂X: (vague definition a visual metric on ∂X)

For $\xi_1, \xi_2 \in \partial X$, and some fixed $x_0 \in X$, take a geodesic ray γ_1 from x_0 to ξ_1, and a geodesic ray γ_2 from x_0 to ξ_2. These will fellow-travel for some distance L, before they diverge. Define $\rho(\xi_1, \xi_2) := e^{-L}$ (or $e^{-\epsilon L}$, not a metric yet). Now if $\eta_1, \eta_2 \in \partial X$, put

$$d(\eta_1, \eta_2) := \inf \left\{ \sum_{i=1}^{n} \rho(\xi_{i-1}, \xi_i) \mid \eta_1 = \xi_0, \ldots, \xi_n = \eta_2, \ n \in \mathbb{N} \right\}.$$
Topology on ∂X, induced by metric d, can also be described by nbhd bases: for $x_0 \in X$ the base point, and for any $\xi \in \partial X$, if γ is a geodesic ray from x_0 to ξ, take an open ball centered at any point of γ, and the “shadow” of this ball on the boundary will be an open nbhd of ξ in ∂X.
Gromov boundary

Some properties (for X proper geodesic hyperbolic):

- two visual metrics on ∂X induce the same topology on ∂X,
- $(\partial X, d)$ is bounded, complete, compact (for d any visual metric).

Theorem

If (X, d_X), (Y, d_Y) are two proper geodesic hyperbolic spaces which are quasi-isometric, then ∂X and ∂Y are homeomorphic.

Some examples:

- $\partial H^2 \approx S^1$ ($\partial H^n \approx S^{n-1}$)
- $\partial (\Gamma_{\{a,b,a^{-1},b^{-1}\}}(F_2)) \approx$ Cantor set.
A finitely generated group G is called hyperbolic if for any finite generating set S of G, the Cayley graph $\Gamma_S(G)$ is a hyperbolic metric space.

Note that we know that:

- Cayley graphs of fin.gen. groups are geodesic metric spaces (with path-length metrics, i.e., word metrics d_S),
- for S and S' finite generating sets of G, we have $(\Gamma_S(G), d_S) \approx (\Gamma_{S'}(G), d_{S'})$,
- hyperbolicity is a QI invariant of geodesic metric spaces
 \Rightarrow hyperbolicity of finitely generated groups is well-defined.
- Cayley graphs of fin.gen. groups are proper and geodesic, so if G hyperbolic, define $\partial G := \partial(\Gamma_S(G), d_S)$.

Gromov hyperbolic spaces (and groups)

Some examples:
- Elementary hyperbolic groups:
 - finite groups \(\Rightarrow \) Cayley graph of finite diameter,
 - \(\mathbb{Z} \) and virtually cyclic groups (containing \(\mathbb{Z} \) as a finite index subgroup)
- finitely generated free groups,
- small cancellation groups,
- fundamental groups of closed surfaces with genus \(\geq 1 \),
- fundamental groups of closed, negatively curved manifolds.

Non-examples:
- \(\mathbb{Z}^2 \) \(\cong \) \((\mathbb{R}^2, d_E))\),
- any group containing \(\mathbb{Z}^2 \) as a subgroup,
- Baumslag–Solitar groups \(B(m, n) \).
A metric space \((X, d)\) is said to be **cobounded** if there is an \(r > 0\) so that for all \(x, y \in X\) there is an isometry \(f : X \rightarrow X\) so that \(d(f(x), y) < r\).

Or, equivalently, there exists a bounded subset \(A\) of \(X\) s.t. the orbit of \(A\), under the \textit{Isometry}(\(X\)) acting on \(X\), covers \(X\).
Coboundedness and quasi-coboundedness

For a metric space \((X, d)\) and for \(K \geq 1, C \geq 0, r > 0\), we say that \(X\) is \((K, C, r)\)-quasi-cobounded if for all \(x, y \in X\) there is a \((K, C, C)\)-quasi-isometry \(f : X \to X\) such that \(d(f(x), y) < r\).

\((X, d)\) is quasi-cobounded if it is \((K, C, r)\)-quasi-cobounded, for some \(K, C, r\) as above.

(Note that \(X\) is cobounded if it is \((1, 0, 0)\)-quasi-cobounded (those maps \(f\) are isometries).)
Recall that we have defined hyperbolicity for finitely generated groups. How does this translate to approximate groups?

For a group: being finitely generated

\[\Downarrow \]

For an approximate group:

• being algebraically finitely generated
• being geometrically finitely generated

Definition

For \((\Lambda, \Lambda^\infty)\) we say it is algebraically finitely generated if \(\Lambda^\infty\) is a finitely generated group.
A countable approximate group \((\Lambda, \Lambda^\infty)\) is said to be \textbf{geometrically finitely generated} if \((\Lambda, d|_{\Lambda \times \Lambda})\) is \textbf{coarsely connected}, where \(d\) is a left-invariant proper metric on \(\Lambda^\infty\).

Coarsely connected = connected by “coarse paths”: \(\exists c > 0\) s.t. \(\forall x, x' \in \Lambda\), there is a \textit{c-path} from \(x\) to \(x'\), i.e., \(\exists\) a finite sequence \(x = x_0, x_1, \ldots, x_{n-1}, x_n = x'\) in \(\Lambda\) so that
\[
d(x_i, x_{i+1}) < c, \text{ for } i = 0, \ldots, n - 1.
\]

(For a countable approximate group, being geometrically finitely generated \(\Rightarrow\) being algebraically finitely generated. But not the other way around.)
Let $(\Lambda, \Lambda^\infty)$ be a countable approximate group, and let d be a left-invariant proper metric on Λ^∞. Then: $(\Lambda, d|_{\Lambda \times \Lambda})$ is coarsely connected \iff there is a representative $X \in [\Lambda]_c$ which is large-scale geodesic.

Large-scale geodesic means: $\exists a > 0, b \geq 0, c > 0$ such that $\forall x, x' \in X$ there is a c-path between x, x' of length $\leq a \cdot d(x, x') + b$.

Now, for $(\Lambda, \Lambda^\infty)$ geometrically finitely generated, we define the internal QI type of $(\Lambda, \Lambda^\infty)$:

$$[\Lambda]_{\text{int}} := \{X \in [\Lambda]_c \mid X \text{ large-scale geodesic}\},$$

Note: • X large-scale geodesic \iff $X \approx^{QI}$ to a geodesic metric space,
 • For $X, X' \in [\Lambda]_{\text{int}}$, we have $X \approx^{QI} X'$.

Note that, for \((\Lambda, \Lambda^\infty)\) geometrically finitely generated:

- \([\Lambda]_{\text{int}}\) can always be represented by a proper metric \(d\) on \(\Lambda\), called *internal metric* on \(\Lambda\) (“large-scale path metric”).

- For internal metric \(d\), \((\Lambda, d)\) is proper and large-scale geodesic, so \((\Lambda, d)\) \(\approx\) to a locally finite graph \(X_\Lambda\), which we call a *generalized Cayley graph* of \((\Lambda, \Lambda^\infty)\).

- We can choose a representative \((X, d)\) of \([\Lambda]_{\text{int}} \subset [\Lambda]_c\) which is a *proper, geodesic and quasi-cobounded metric space*. We will call such a space an *apogee* for \((\Lambda, \Lambda^\infty)\).
Recall the definition for groups: A finitely generated group G is hyperbolic if one (hence any) Cayley graph $\Gamma_S(G)$ of it (with respect to a finite generating set S) is (Gromov) hyperbolic.

Definition (Hyperbolicity for approximate groups)

A geometrically finitely generated approximate group $(\Lambda, \Lambda^\infty)$ is said to be hyperbolic if one (hence any) apogee of it is hyperbolic. Equivalently, if some (hence any) generalized Cayley graph of it is hyperbolic.

Note: For a hyperbolic approximate group $(\Lambda, \Lambda^\infty)$, an apogee $(X, d) \in [\Lambda]_{\text{int}} \subseteq [\Lambda]_c$ is a proper geodesic hyperbolic quasi-cobounded space.
B.-L. Theorem for hyperbolic approximate groups

Theorem (Cordes-Hartnick-T.)

For a hyperbolic approximate group \((\Lambda, \Lambda^\infty)\),
\[\text{asdim} \, \Lambda = \dim \partial \Lambda + 1. \]

In fact, this is true for proper geodesic hyperbolic quasi-cobounded metric spaces.

How do we define the (Gromov) boundary \(\partial \Lambda\):

- take any apogee \((X, d) \in [\Lambda]_{\text{int}} \subseteq [\Lambda]_c\),
- recall that, if \((X, d_X), (Y, d_Y)\) are proper geodesic hyperbolic spaces s.t. \(X \approx^{QI} Y\), then \(\partial X \approx \partial Y\),
- therefore define \(\partial \Lambda := [\partial X]_{\text{homeo}} = \) the homeomorphism class of \(\partial X\), for any apogee \((X, d) \in [\Lambda]_{\text{int}}\),
- recall that \(\dim\) is a topological invariant (i.e., preserved by homeomorphisms).
Equivalently, the first part of this theorem is saying:

Theorem

For any apogee X of a hyperbolic approximate group $(\Lambda, \Lambda^\infty)$, we have

$$\text{asdim } X = \dim \partial X + 1.$$

In full generality, the theorem we prove is:

Theorem

For a metric space X which is proper, geodesic, hyperbolic and quasi-cobounded, we have

$$\text{asdim } X = \ell\text{-dim} (\partial X, d) + 1 = \dim \partial X + 1,$$

where d is any visual metric on ∂X.

Here $\ell\text{-dim}$ denotes *linearly controlled metric dimension*.
Outline of the proof

We need to show:

- \(\asdim X \geq \dim \partial X + 1 \) and
- \(\asdim X \leq \dim \partial X + 1 \).

The first of these two inequalities works without the assumption of coboundedness or quasi-coboundedness:

Theorem (Buyalo-Schroeder)

If \(X \) is a proper, geodesic, hyperbolic metric space, then

\[
\asdim X \geq \dim \partial X + 1.
\]

This is not too hard to prove, using a hyperbolic cone of \(\partial X \) and its embedding into \(X \), and then some properties of \(\dim \) ...

Note that equality holds when \(X \) is a bounded metric space, since \(\asdim X = 0 \) and \(\dim \partial X = \dim \emptyset = -1 \).

But if \(X \) is unbounded, “\(\leq \)” does not work with only the assumptions from B.-S. Theorem, as shown in the following example:
Outline of the proof

Example (hyperbolic shish-kebab (or shashlik or skewer)): Let \(n \geq 2 \), \(\gamma : [0, \infty) \to \mathbb{H}^n \) be a geodesic ray, and let \(x_1, x_2, \ldots \) be points on \(\gamma([0, \infty)) \) such that \(d(x_k, x_{k+1}) \geq 2^{k+2}, \forall k \in \mathbb{N} \). Define

\[
X = \gamma([0, \infty)) \cup \bigcup_{k \in \mathbb{N}} B(x_k, 2^k) \subset \mathbb{H}^n.
\]

With path-length metric, \(X \) is a proper geodesic hyperbolic space, which contains arbitrarily large balls of \(\mathbb{H}^n \), so \(\text{asdim } X = n \).

But \(X \) contains a single geodesic ray, so \(\partial X \) is just one point \(\Rightarrow \text{dim } \partial X = 0 \).

So \(\text{asdim } X \not\leq \text{dim } \partial X + 1 \), since \(n \not\leq 0 + 1 \).
Outline of the proof

Let us list the main steps of the proof for

$$\text{asdim } X \leq \ell \cdot \dim (\partial X, d) + 1 \leq \dim \partial X + 1,$$

when X is an unbounded, proper, geodesic, hyperbolic and quasi-cobounded space, and d is any visual metric on ∂X.

First of all, the following lemmas are true [Cordes-Hartnick-T.]:

L1: X is a visual space (has coarse version of the geodesic extension property)

L2: $(\partial X, d)$ is locally quasi-similar to itself (i.e., there are constants $\lambda \geq 1$, $K \geq 1$, and $R_0 > 1$ s.t. $\forall R > R_0$ and $\forall C \subset \partial X$ with $\text{diam } C \leq \frac{1}{R}$, \exists a map $f : C \to \partial X$ such that $\forall x_1, x_2 \in C$

$$\frac{1}{\lambda} R^K (d(x_1, x_2))^K \leq d(f(x_1), f(x_2)) \leq \lambda^{\frac{K}{R^k}} \sqrt{d(x_1, x_2)}.$$

L3: $(\partial X, d)$ is doubling, i.e., $\exists N \in \mathbb{N}$ s.t. for all $t > 0$ and all $\xi \in \partial X$ there exist $\xi_1, \ldots, \xi_N \in \partial X$ s.t. $B(\xi, 2t) \subset \bigcup_{i=1}^{N} B(\xi_i, t)$.
Outline of the proof

Now we use the following:

Thm1: [Buyalo-Schroeder] Since \((\partial X, d)\) is doubling (at small scales), then \(\ell\)-dim\((\partial X, d)\) < \(\infty\).

Thm2: [Buyalo-Schroeder] Any visual hyperbolic space \(X\) with \(\ell\)-dim\((\partial X, d) = n\) can be QI-embedded into the product of \(n + 1\) simplicial trees, i.e., \(\exists X \xrightarrow{QI} T_1 \times \ldots \times T_{n+1}\).

Cor: We know that asdim \(T_i \leq 1\), so asdim \((T_1 \times \ldots \times T_{n+1}) \leq n + 1\), by the product theorem for asdim. Therefore asdim \(X \leq n + 1 = \ell\)-dim \((\partial X, d) + 1\).

Thm3 [C.-H.-T.] If a metric space \((\partial X, d)\) is locally quasi-similar to itself, and \(\ell\)-dim\((\partial X, d) < \infty\), then \(\ell\)-dim\((\partial X, d) \leq \dim \partial X\).

Prop: In general, for a metric space \((Z, d)\): \(\ell\)-dim\((Z, d) \geq \dim Z\).

So

\[\text{asdim } X \leq \ell\text{-dim } (\partial X, d) + 1 = \dim \partial X + 1.\]
Theorem (Cordes-Hartnick-T.)

For a proper, geodesic, (Gromov) hyperbolic, quasi-cobounded metric space X, $\text{asdim } X = \dim \partial X + 1$.

In particular, this is true for a hyperbolic approximate group $(\Lambda, \Lambda^\infty)$, i.e., $\text{asdim } \Lambda = \dim \partial \Lambda + 1$.

- this theorem for hyperbolic approximate groups is useful in proving some interesting facts, like the fact that every non-elementary hyperbolic approximate group of $\text{asdim } = 1$ is QI to a fin. generated, non-abelian free group.

- this is then used to show that non-elementary hyperbolic approximate groups have exponential internal growth.
Matthew Cordes, Tobias Hartnick, and Vera Tonić. Foundations of geometric approximate group theory.

Thank you!