1 Introduction

Let G be a locally compact (Hausdorff) group. We call
\[C^{n}_{cb}(G) := \{ f \in C(G^{n+1}, \mathbb{R}) \mid f(gg_0, \ldots, gg_n) = f(g_0, \ldots, g_n), \|f\|_\infty < \infty \} \]
the space of continuous bounded homogeneous n-cochains and define the coboundary map
\[d^{n-1} : C^{n-1}_{cb}(G) \to C^n_{cb}(G) \]
by
\[d^{n-1}(f)(g_0, \ldots, g_n) := \sum_{j=0}^{n} (-1)^{j} f(g_0, \ldots, \hat{g}_j, \ldots, g_n). \]

This yields a cochain complex (i.e. $d^n \circ d^{n-1} = 0$), so we can consider its n-th cohomology
\[H^n_{cb}(G) := \ker(d^n) / \text{im}(d^{n-1}). \]

We call $H^n_{cb}(G)$ the n-th continuous bounded cohomology space of G with \mathbb{R}-coefficients. We are interested in the continuous bounded cohomology of connected groups.

Theorem 1.1 (Monod, 2001). Let G be a locally compact second countable group and let N be a closed normal amenable subgroup. Then $H^*_{cb}(G) \cong H^*_{cb}(G/N)$.

Theorem 1.2 (Gleason-Yamabe). Let G be a connected locally compact group. For every open neighborhood U of the identity there exists a compact normal subgroup K of G in U such that G/K is isomorphic to a connected Lie group.

Corollary 1.3. Let G be a connected locally compact second countable group. Then there exists a connected semisimple center-free Lie group without compact factors G' such that $H^*_{cb}(G) \cong H^*_{cb}(G')$.

Proof. There exists a compact normal subgroup K of G such that G/K is isomorphic to a connected Lie group. We can write
\[\widehat{G/K} \cong R \rtimes (S_1 \times S_2), \]
where R denotes the solvable radical of $\widehat{G/K}$, S_1 is a connected compact semisimple Lie group and S_2 is a connected semisimple Lie group without compact factors. Since solvable groups and compact groups are amenable, this yields the isomorphism
\[H^*_{cb}(G) \cong H^*_{cb}(S_2/Z(S_2)). \]

Here, $G' = S_2/Z(S_2)$ is a connected semisimple center-free Lie group without compact factors.

Conjecture 1.4 (Monod, 2006). Let G be a connected semisimple finite-center Lie group without compact factors. Then the comparison map
\[H^*_{cb}(G) \to H^*_c(G), \ [c]_b \mapsto [c] \]
is an isomorphism.
Here, $H^*_c(G)$ denotes the continuous cohomology of G. It is known explicitly in all cases. Note that both continuous bounded cohomology and continuous cohomology are invariant under finite extensions. The comparison map is not an isomorphism for $SL_2(R)$, which has infinite center.

A Künneth formula is conjectured to hold for continuous bounded cohomology. Thus, it would suffice to check the isomorphism conjecture for connected simple center-free Lie groups without compact factors. These groups are classified.

Degree 0/1: Not difficult.

Degree 2: Proven by Burger and Monod.

Degree 3: Proven for $SL_n(R)$ by Burger and Monod. Proven for $SL_n(C)$ by Goncharov, Bloch, and Monod. Recently proven for the groups $SO_{2r+1}(C)$, $Sp_{2r}(C)$, and $SO_{2r}(C)$ by De la Cruz Mengual and Hartnick.

Degree 4: Proven for $SL_2(R)$ by Hartnick and Ott.

We will focus on the recent results by De la Cruz Mengual and Hartnick, see [1].

2 Bounded-Cohomological Stabilization

Fact 2.1. Let G be a connected simple finite-center Lie group. Then

$$H^3_c(G) \neq 0 \iff G \text{ is a complex Lie group.}$$

In that case, $H^3_c(G) \cong \mathbb{R}$ is generated by the Borel class.

Consider the block embeddings

$$SL_2(C) \hookrightarrow SL_3(C) \leftrightarrow SL_4(C) \leftrightarrow \ldots$$

Monod proved that the induced sequence

$$H^3_{cb}(SL_2(C)) \hookrightarrow H^3_{cb}(SL_3(C)) \leftrightarrow H^3_{cb}(SL_4(C)) \leftrightarrow \ldots$$

consists of injections preserving the bounded Borel class. Combined with the fact that the comparison map $H^3_{cb}(SL_2(C)) \to H^3_c(SL_2(C))$ is an isomorphism mapping the bounded Borel class to the Borel class, this implies $H^3_{cb}(SL_r(C)) \cong \mathbb{R}$ for all $r \geq 2$.

We say that a sequence

$$F_1 \hookrightarrow F_2 \hookrightarrow F_3 \leftrightarrow \ldots$$

of embeddings of locally compact groups is stable (resp. weakly stable) if for every degree q there exists $R_0 \in \mathbb{N}$ such that

$$H^q_{cb}(F_{R_0}) \leftrightarrow H^q_{cb}(F_{R_0+1}) \leftrightarrow H^q_{cb}(F_{R_0+2}) \leftrightarrow \ldots$$

consists of isomorphisms (resp. injections).

Theorem 2.2 (De la Cruz Mengual, Hartnick). The families $O_{2r+1}(C)$, $Sp_{2r}(C)$, and $O_{2r}(C)$, together with block embeddings, are weakly stable with stability range R_0 of order $O(2^q)$.
A quantitative version of this theorem yields a weak stability range $R_0 = 12$ for $q = 3$. Kastenholz and Sroka [3] improved the stability range to be of linear order with respect to q and obtain $R_0 = 6$ for $q = 3$. However, nothing is known about the bounded cohomology of $O_{13}(\mathbb{C})$, $Sp_{12}(\mathbb{C})$, or $O_{12}(\mathbb{C})$.

3 Bootstrapping

The crucial technique is bootstrapping an arbitrary stability range to the optimal one. From now on, we exclusively consider the symplectic family $Sp_{2r}(\mathbb{C})$.

Key Lemma 3.1. For every $r \geq 1$, the induced map

$$\iota_r^*: H^3_{cb}(Sp_{2r+2}(\mathbb{C})) \rightarrow H^3_{cb}(Sp_{2r}(\mathbb{C}))$$

is injective.

Lemma 3.2. For every $r \geq 1$, there exists a linear isomorphism

$$\ker(\iota_r^*) \cong H^3_{cb}(Sp_{2r+2}(\mathbb{C}) \smallfrown \mathbb{P}(V_{r+1})).$$

Lemma 3.3. For every $r \geq 1$, there exists an isomorphism

$$H^3_{cb}(Sp_{2r+2}(\mathbb{C}) \smallfrown \mathbb{P}(V_{r+1})) \cong H^3_{cb}(Sp_{2r}(\mathbb{C}) \smallfrown \mathbb{P}(V_2)).$$

Proof of Key Lemma. We have $\ker(\iota_r^*) \cong H^3_{cb}(Sp_{4}(\mathbb{C}) \smallfrown \mathbb{P}(V_2))$. There exists $s \geq 1$ such that $\iota_s^*: H^3_{cb}(Sp_{2s+2}(\mathbb{C})) \rightarrow H^3_{cb}(Sp_{2s}(\mathbb{C}))$ is injective, so $\ker(\iota_r^*) = 0$ for every $r \geq 1$.

Corollary 3.4. For every $r \geq 1$, the comparison map $H^3_{cb}(Sp_{2r}(\mathbb{C})) \rightarrow H^3_{cb}(Sp_{2r}(\mathbb{C}))$ is an isomorphism.

Proof. We use induction on r. We have $Sp_2(\mathbb{C}) = SL_2(\mathbb{C})$, and the conjecture is already known for $SL_2(\mathbb{C})$.

Now we assume that $c^3: H^3_{cb}(Sp_{2r}(\mathbb{C})) \rightarrow H^3_{cb}(Sp_{2r}(\mathbb{C}))$ is an isomorphism. Let us consider the commutative diagram

$$\begin{array}{ccc}
H^3_{cb}(Sp_{2r+2}(\mathbb{C})) & \xrightarrow{c^3} & H^3_{cb}(Sp_{2r+2}(\mathbb{C})) \\
\downarrow & & \downarrow \\
H^3_{cb}(Sp_{2r}(\mathbb{C})) & \xrightarrow{c^3} & H^3_{cb}(Sp_{2r}(\mathbb{C}))
\end{array}$$

It is known that the right arrow is an isomorphism. Hence it suffices to show that ι_r^* is a linear isomorphism.

We already know that ι_r^* is injective. First, we inductively prove that the restriction map
res_\ast : H^3_{cb}(\text{SL}_2_r(\mathbb{C})) \to H^3_{cb}(\text{Sp}_{2r}(\mathbb{C})) is a linear isomorphism. The case \(r = 1 \) is trivial. Let us now assume that \(\text{res}_r \) is a linear isomorphism. From the commutative diagram

\[
\begin{array}{ccc}
H^3_{cb}(\text{SL}_{2r+2}(\mathbb{C})) & \xrightarrow{\text{res}_{r+1}} & H^3_{cb}(\text{Sp}_{2r+2}(\mathbb{C})) \\
\downarrow & & \downarrow \\
H^3_{cb}(\text{SL}_{2r}(\mathbb{C})) & \xrightarrow{\text{res}_r} & H^3_{cb}(\text{Sp}_{2r}(\mathbb{C}))
\end{array}
\]

we see that \(\iota^r_\ast \) is a linear isomorphism. Hence \(\text{res}_{r+1} \) is also a linear isomorphism. Thus, \(\iota^r_\ast \) is a linear isomorphism for every \(r \geq 1 \). \(\square \)

4 The Spectral Sequence

Let \(V_r \) denote the 2\(r \)-dimensional complex vector space with basis \{\(e_r, \ldots, e_1, f_1, \ldots, f_r \)\}. We define a symplectic form \(\omega : V_r \times V_r \to \mathbb{C} \) by setting \(\omega(e_i, f_i) = 1 \) for all \(i = 1, \ldots, r \). Then \(\text{Sp}_{2r}(\mathbb{C}) \) is the automorphism group of \((V_r, \omega) \), and acts transitively on \(\mathbb{P}(V_r) \).

Consider the action

\[
\text{Sp}_{2r}(\mathbb{C}) \acts L^\infty(\mathbb{P}(V_r)^p), (g, f)(v_1, \ldots, v_p) := f(g^{-1}v_1, \ldots, g^{-1}v_p)
\]

and the complex

\[
0 \to \mathbb{R} \xrightarrow{d^{r-1}_r} L^\infty(\mathbb{P}(V_r)) \xrightarrow{d^p_r} L^\infty(\mathbb{P}(V_r)^2) \xrightarrow{d^1_r} L^\infty(\mathbb{P}(V_r)^3) \to \ldots
\]

where

\[
d^{r-1}_r : L^\infty(\mathbb{P}(V_r)) \to L^\infty(\mathbb{P}(V_r)^p),
\]

\[
d^{p-1}_r(f)(v_0, \ldots, v_p) := \sum_{j=0}^{p} (-1)^j f(v_0, \ldots, \hat{v}_j, \ldots, v_p)
\]

for all \(p \in \mathbb{N} \), and \(d^{-1}_r \) is the inclusion of constants. We denote by \(H^\ast_{cb}(\text{Sp}_{2r}(\mathbb{C}) \acts \mathbb{P}(V_r)) \) the homology of the complex \(L^\infty(\mathbb{P}(V_r)^{k+1})_{\text{Sp}_{2r}(\mathbb{C})} \).

Let \(Q_r \) be the stabilizer of the point \([e_r] \in \mathbb{P}(V_r)\). The Levi decomposition yields \(Q_r \cong U_r \times R_r \), where \(R_r \cong \mathbb{C}^\times \times \text{Sp}_{2r-2}(\mathbb{C}) \). We write

\[
\mathbb{P}(V_r)^{k+1} := \{v = [v_0, \ldots, v_k] \in \mathbb{P}(V_r)^{k+1} | \text{v is in general position, } \omega(v_i, v_j) \neq 0\}
\]

and denote the point stabilizer of the group action \(\text{Sp}_{2r}(\mathbb{C}) \acts \mathbb{P}(V_r)^{3} \) by \(S_r \). We have a short exact sequence

\[
1 \to N \to S_r \to \text{Sp}_{2r-4}(\mathbb{C}) \to 1,
\]

where \(N \) is solvable.

A spectral sequence \(E_r^{p, q} \bullet \) is a sequence of differential bigraded vector spaces, i.e. for \(r \in \mathbb{N} \) and \(p, q \in \mathbb{N}_0 \) we have a vector space \(E_r^{p, q} \) together with differentials

\[
d^{p, q}_r : E^{p, q}_r \to E^{p+r, q-r+1}_r
\]

such that \(E^{p, q}_{r+1} = \ker(d^{p, q}_r)/\text{im}(d^{p-r, q+r-1}_r) \). For \(r > \max(p, q + 1) \) we have \(E^{p, q}_r = E^{p, q}_r \), so we can define \(E^\infty := E^{p, q}_r \) and say that \(E_r^{p, q} \bullet \) converges to \(E^\infty \bullet \).
Proof of Lemma 3.2. We define $E_1^{p,q} = H^q_{cb}(\text{Sp}_{2r+2}(\mathbb{C}); L^\infty(\mathbb{P}(V_{r+1})^p))$ and the induced maps
\[
d_1^{p,q} : C^q_{cb}(\text{Sp}_{2r+2}(\mathbb{C}); L^\infty(\mathbb{P}(V_{r+1})^p)) \to C^q_{cb}(\text{Sp}_{2r+2}(\mathbb{C}); L^\infty(\mathbb{P}(V_{r+1})^{p+1})), \quad c \mapsto d_1^{p-1} \circ c
\]
and $d_1^{p,q} : E_1^{p,q} \to E_1^{p+1,q}$. In De la Cruz Mengual and Hartnick [2], Proposition 2.15 it is shown that $E_1^{p,\bullet}$ converges to zero. We have
\[
E_1^{0,q} \cong H^q_{cb}(\text{Sp}_{2r+2}(\mathbb{C})),
\]
\[
E_1^{1,q} \cong H^q_{cb}(\text{Sp}_{2r+2}(\mathbb{C}); I_{Q_{r+1}}^{\text{Sp}_{2r+2}(\mathbb{C})}(\mathbb{R})) \cong H^q_{cb}(Q_{r+1}) \cong H^q_{cb}(\text{Sp}_{2r}(\mathbb{C})),
\]
\[
E_1^{2,q} \cong H^q_{cb}(\text{Sp}_{2r+2}(\mathbb{C}); I_{R_{r+1}}^{\text{Sp}_{2r+2}(\mathbb{C})}(\mathbb{R})) \cong H^q_{cb}(R_{r+1}) \cong H^q_{cb}(\text{Sp}_{2r}(\mathbb{C})),
\]
\[
E_1^{3,q} \cong H^q_{cb}(\text{Sp}_{2r+2}(\mathbb{C}); I_{S_{r+1}}^{\text{Sp}_{2r+2}(\mathbb{C})}(\mathbb{R})) \cong H^q_{cb}(S_{r+1}) \cong H^q_{cb}(\text{Sp}_{2r-2}(\mathbb{C})).
\]
Hence $E_1^{p,1} = 0 = E_1^{p,2}$, $p \leq 3$. In De la Cruz Mengual and Hartnick [2], Lemma 3.7 it is shown that $d_1^{0,3} : E_1^{0,3} \to E_1^{1,3}$ is conjugated to ι_1^* by the isomorphisms above. Hence $E_2^{3,0} \cong \ker(\iota_1^*)$. We have $E_1^{p,0} = L^\infty(\mathbb{P}(V_{r+1})^p)^{\text{Sp}_{2r+2}(\mathbb{C})}$. Furthermore, we have $E_2^{p,0} = H^q_{cb}(\text{Sp}_{2r+2}(\mathbb{C}) \cap \mathbb{P}(V_{r+1}))$ for all $p \geq 0$. Also $E_2^{1,2} = E_2^{2,1} = E_2^{2,2} = E_2^{3,1} = 0$, and all these terms remain unchanged until the fourth page $E_4^{p,\bullet}$. Since $E_4^{p,\bullet}$ converges to zero, we know that
\[
0 = E_5^{0,3} = \ker(d_4^{0,3})/\text{im}(d_4^{-4,6}) = \ker(d_4^{0,3}),
\]
\[
0 = E_5^{4,0} = \ker(d_4^{4,0} : E_4^{4,0} \to E_4^{8,-3})/\text{im}(d_4^{0,3}) = E_4^{4,0}/\text{im}(d_4^{0,3}).
\]
Hence $\text{im}(d_4^{0,3}) = E_4^{1,0}$, so $d_4^{0,3} : E_4^{0,3} \to E_4^{4,0}$ is an isomorphism between $\ker(\iota_1^*)$ and $H^3_{cb}(\text{Sp}_{2r+2}(\mathbb{C}) \cap \mathbb{P}(V_{r+1}))$. \hfill \Box

Proposition 4.1. (a) $\text{Sp}_{2r}(\mathbb{C})$ acts transitively on $\mathbb{P}(V_r)^{[3]}$, $r \geq 1$.
(b) There are cross-ratios cr_1 and cr_2 such that the $\text{Sp}_{2r}(\mathbb{C})$-invariant map
\[
\pi_3 : \mathbb{P}(V_r)^{[4]} \to \mathbb{C}^2, \quad \pi_3 := (\text{cr}_1, \text{cr}_2)
\]
induces an isomorphism $\text{Sp}_{2r}(\mathbb{C}) \backslash \mathbb{P}(V_r)^{[4]} \cong \mathbb{C}^2$, $r \geq 2$.
(c) There are cross-ratios $\alpha_1, \alpha_2, \beta_1, \beta_2, \gamma$ such that the $\text{Sp}_{2r}(\mathbb{C})$-invariant map
\[
\pi_4 : \mathbb{P}(V_r)^{[5]} \to \mathbb{C}^5, \quad \pi_4 := (\alpha_1, \alpha_2, \beta_1, \beta_2, \gamma)
\]
induces an isomorphism $\text{Sp}_{2r}(\mathbb{C}) \backslash \mathbb{P}(V_r)^{[5]} \cong \mathbb{C}^5$, $r \geq 2$.

5
Proof of Lemma 3.3. We know

\[L^\infty(\mathbb{P}(V_{r+1})^3)^{\text{Sp}_{2r+2}(\mathbb{C})} \cong L^\infty(\text{Sp}_{2r+2}(\mathbb{C}) \setminus \mathbb{P}(V_{r+1})^3) \cong \mathbb{R}, \]
\[L^\infty(\mathbb{P}(V_{r+1})^4)^{\text{Sp}_{2r+2}(\mathbb{C})} \cong L^\infty(\text{Sp}_{2r+2}(\mathbb{C}) \setminus \mathbb{P}(V_{r+1})^4) \cong L^\infty(\mathbb{C}^2), \]
\[L^\infty(\mathbb{P}(V_{r+1})^5)^{\text{Sp}_{2r+2}(\mathbb{C})} \cong L^\infty(\text{Sp}_{2r+2}(\mathbb{C}) \setminus \mathbb{P}(V_{r+1})^5) \cong L^\infty(\mathbb{C}^5). \]

Hence

\[d^{3,0}_1 = d^{2,0}_{r+1} : L^\infty(\mathbb{P}(V_{r+1})^3)^{\text{Sp}_{2r+2}(\mathbb{C})} \to L^\infty(\mathbb{P}(V_{r+1})^4)^{\text{Sp}_{2r+2}(\mathbb{C})}, \]
\[d^{3,0}_1(f)(v_0, v_1, v_2, v_3) = f(v_1, v_2, v_3) - f(v_0, v_2, v_3) + f(v_0, v_1, v_3) - f(v_0, v_1, v_2) = 0, \]

so

\[H^3_{\text{cb}}(\text{Sp}_{2r+2}(\mathbb{C}) \lhd \mathbb{P}(V_{r+1})) = E^4_{2,0} = \ker(d^{4,0}_1)/\text{im}(d^{3,0}_1) = \ker(d^{3}_{r+1}). \]

Let \(D_{r+1}^3 \) be the operator making the following diagram commute:

\[\begin{array}{ccc}
L^\infty(\mathbb{C}^2) & \xrightarrow{D_{r+1}^3} & L^\infty(\mathbb{C}^5) \\
\pi^3_1 \downarrow & & \downarrow \pi^3_2 \\
L^\infty(\mathbb{P}(V_{r+1})^4)^{\text{Sp}_{2r+2}(\mathbb{C})} & \xrightarrow{d^{3}_{r+1}} & L^\infty(\mathbb{P}(V_{r+1})^5)^{\text{Sp}_{2r+2}(\mathbb{C})}
\end{array} \]

One guesses

\[D_{r+1}^3(f)(a_1, a_2, b_1, b_2, c) = f\left(\frac{-a_1 c}{a_2 b_1}, \frac{c}{a_2}, \frac{-b_2 c}{a_2 b_1}\right) - f\left(\frac{c}{b_1}, \frac{-b_2 c}{a_2 b_1}\right) + f\left(c, \frac{-a_1 b_2 c}{a_2 b_1}\right) - f(b_1, b_2) + f(a_1, a_2) \]

and checks that this makes the diagram above commute. Now we see that \(\ker(d^{3}_{r+1}) \cong \ker(D_{r+1}^3) \) is independent of \(r \), which yields the claim. \(\Box \)
References

