Analyse 2:

Analyze the diagram and the text below for any errors or misinterpretations.
\[
\frac{a - \beta}{\beta} > 0 \\
\frac{a}{\beta} \geq \frac{\beta - x}{\beta} \geq 1 - \frac{\beta}{\beta} - x = [\beta - x - \beta] = [\beta - x - \beta]
\]

Où \(x \) est un entier. Il faut donc que \(x \) soit un entier.

\[z = \frac{a - \beta}{\beta} \]

Dernière formule de Zermelo.

\[x = \frac{a - \beta}{\beta} \]

\[z = \frac{a}{\beta} \]

\[x = \frac{a}{\beta} \]

Remarque: la formule de Zermelo est donnée par

\[z = \frac{a - \beta}{\beta} \]

\[x = \frac{a}{\beta} \]

\[z = \frac{a}{\beta} \]
In the context of differential equations.

\[\frac{d^2}{dx^2} + \frac{1}{x} \frac{d}{dx} + \frac{1}{x^2} f(x) = 0, \quad x \neq 0 \]

For differential equations.

\[f \left(x_0 \right) = y_0, \quad f' \left(x_0 \right) = y'_0 \]

Initial conditions.

\[0 = x_n \quad \text{if } f \left(x_n \right) = 0 \]

Cases for differential equations.

\[f \left(x_0 \right) \neq 0 \]

Boundary conditions.

\[g \left(x \right) \]

Graphical representation.

\[f \left(x \right) \]

The derivative is not defined at points where the function is not continuous.

\[\lim_{x \to a} f(x) = L \]

Limit definition.

\[f \left(x \right) \]

Function definitions.

\[f \left(x \right) \]

Domain of the function.

\[f \left(x \right) \]

Range of the function.

\[f \left(x \right) \]

Codomain of the function.

\[f \left(x \right) \]

Graphical representation.

\[f \left(x \right) \]

Function definition.

\[f \left(x \right) \]

Domain of the function.

\[f \left(x \right) \]

Range of the function.

\[f \left(x \right) \]

Codomain of the function.
\[
\begin{align*}
&(0,0)\cdot (0,0) = (0,0) \\
&(0,0) \cdot (0,0) = (0,0)
\end{align*}
\]
(1) \[x \in A \] implies \(f(x) \in B \)

\[\forall x \in A, \exists y \in B, f(x) = y \]

In other words, for every element \(x \) in set \(A \), there exists an element \(y \) in set \(B \) such that \(f(x) = y \).

The function \(f \) maps elements from \(A \) to \(B \).

If \(f \) is a function from \(A \) to \(B \), then for each \(x \) in \(A \), there is a unique \(y \) in \(B \) such that \(f(x) = y \).
\[
\forall y \in [a, b] \quad (x) \quad (x(y)) = 4y^2 + 3x^2
\]
\[e^{\frac{i}{n}} = (x^i)^{\text{mod n}} \]

Instructor's note on algebra:

Theorem 3.5: For any \(x \) and \(n \) in \(\mathbb{Z} \), we have

\[x^i \equiv (x^n)^{i/n} \mod n \]

Theorem 3.6: For any \(x \) and \(n \) in \(\mathbb{Z} \), we have

\[x^i \equiv (x^n)^{i/n} \mod n \]

Instructor's note on number theory:

Lemma 3.1: For any \(x \) and \(n \) in \(\mathbb{Z} \), we have

\[x^i \equiv (x^n)^{i/n} \mod n \]

Instructor's note on computational algebra:

Algorithm 3.2: For any \(x \) and \(n \) in \(\mathbb{Z} \), we have

\[x^i \equiv (x^n)^{i/n} \mod n \]

Instructor's note on cryptography:

Theorem 3.3: For any \(x \) and \(n \) in \(\mathbb{Z} \), we have

\[x^i \equiv (x^n)^{i/n} \mod n \]

Instructor's note on coding theory:

Lemma 3.5: For any \(x \) and \(n \) in \(\mathbb{Z} \), we have

\[x^i \equiv (x^n)^{i/n} \mod n \]

Instructor's note on information theory:

Theorem 3.8: For any \(x \) and \(n \) in \(\mathbb{Z} \), we have

\[x^i \equiv (x^n)^{i/n} \mod n \]
\[\int_{-\infty}^{\infty} \frac{e^{-ax} - e^{-bx}}{x} \, dx = \begin{cases} \pi, & \text{if } b > a \\
0, & \text{if } b = a \\
-\pi, & \text{if } b < a \end{cases} \]

where

\[a, b > 0 \]

and

\[a > b \]

or

\[b > a \]

as \(x \to \pm \infty \).

For some natural number \(n \geq 0 \), we have that

\[\int_{-\infty}^{\infty} e^{-\alpha x^2} \, dx = \sqrt{\frac{\pi}{\alpha}} \]

where

\[\alpha > 0 \]

and

\[\int_{-\infty}^{\infty} e^{-x^2} \, dx = \sqrt{\pi} \]

as \(x \to \pm \infty \).

Thus we have that

\[\int_{-\infty}^{\infty} e^{-ax^2} \, dx = \sqrt{\frac{\pi}{a}} \]

where

\[\alpha > 0 \]

and

\[\int_{-\infty}^{\infty} e^{-bx^2} \, dx = \sqrt{\frac{\pi}{b}} \]

where

\[b > 0 \]

and

\[\int_{-\infty}^{\infty} e^{-x^2} \, dx = \sqrt{\pi} \]

as \(x \to \pm \infty \).