Webrelaunch 2020

Partial Differential Equations 2 (Summer Semester 2005)

  • Lecturer: Professor Guido Schneider
  • Classes: Lecture (01563), Problem class (01564)
  • Weekly hours: 4+2
  • Audience: mathematicians, physicists,... (5.-9. semester)

Introduction

This lecture is a continuation of PDE I from the Wintersemester.

Lecture notes will be available.

Problem class

You can find the problem class on the german page.

Schedule
Lecture: Monday 11:30-13:00 Seminarraum 33 Begin: 11.4.2005, End: 12.7.2005
Tuesday 11:30-13:00 Seminarraum 31
Problem class: Monday 14:00-15:30 Seminarraum 31 Begin: 18.4.2005, End: 11.7.2005

Table of contents

  • the Sine--Gordon equation
  • the Swift--Hohenberg equation
  • equations of Nonlinear Optics
  • water wave models
  • dispersive dynamics

References

  • John, Fritz: Partial Differential Equations; Springer, New York, Heidelberg, 4. Aufl., 1991
  • Renardy, Michael: Rogers, Robert C. An introduction to partial differential equations. Second edition. Texts in Applied Mathematics, 13. Springer-Verlag, New York, 2004. xiv+434 pp. ISBN: 0-387-00444-0
  • Evans, Lawrence C.: Partial differential equations. Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 1998. xviii+662 pp. ISBN: 0-8218-0772-2
  • Henry, Daniel: Geometric theory of semilinear parabolic equations. Lecture Notes in Mathematics, 840. Springer-Verlag, Berlin-New York, 1981
  • Temam, Roger: Infinite-dimensional dynamical systems in mechanics and physics. Second edition. Applied Mathematical Sciences, 68. Springer-Verlag, New York, 1997.
  • Strauss, Walter A.: Nonlinear wave equations. CBMS Regional Conference Series in Mathematics, 73. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1989. x+91 pp. ISBN: 0-8218-0725-0