(i) Nach den angegebenen Funktionen ergeben sich die Ableitungen y und z in \mathbb{R} als

\[
\frac{dy}{dx} = \frac{\partial y}{\partial x}
\]

\[
\frac{dz}{dx} = \frac{\partial z}{\partial x}
\]

(ii) Die Summe der Ableitungen y und z wird in \mathbb{R} als

\[
\frac{dy + dz}{dx} = \frac{\partial y}{\partial x} + \frac{\partial z}{\partial x}
\]

(iii) Die Ableitung der Funktion y mit der Ableitung z in \mathbb{R} als

\[
\frac{dy}{dz} = \frac{\partial y}{\partial z}
\]

(iv) Die Funktion y mit der Funktion z in \mathbb{R} als

\[
\frac{y(z)}{x} = \frac{\partial y}{\partial x}
\]

(v) Die Funktion y mit der Funktion z in \mathbb{R} als

\[
\frac{y}{z(x)} = \frac{\partial y}{\partial x}
\]

(vi) Die Funktion y mit der Funktion x in \mathbb{R} als

\[
\frac{y(x)}{z} = \frac{\partial y}{\partial x}
\]

(vii) Die Funktion y mit der Funktion x in \mathbb{R} als

\[
\frac{y}{x(z)} = \frac{\partial y}{\partial x}
\]

(viii) Die Funktion y mit der Funktion x in \mathbb{R} als

\[
\frac{y(x)}{z} = \frac{\partial y}{\partial x}
\]

(ix) Die Funktion y mit der Funktion x in \mathbb{R} als

\[
\frac{y}{x(z)} = \frac{\partial y}{\partial x}
\]

(x) Die Funktion y mit der Funktion x in \mathbb{R} als

\[
\frac{y(x)}{z} = \frac{\partial y}{\partial x}
\]

(xi) Die Funktion y mit der Funktion x in \mathbb{R} als

\[
\frac{y}{x(z)} = \frac{\partial y}{\partial x}
\]

(xii) Die Funktion y mit der Funktion x in \mathbb{R} als

\[
\frac{y(x)}{z} = \frac{\partial y}{\partial x}
\]

(xiii) Die Funktion y mit der Funktion x in \mathbb{R} als

\[
\frac{y}{x(z)} = \frac{\partial y}{\partial x}
\]

(xiv) Die Funktion y mit der Funktion x in \mathbb{R} als

\[
\frac{y(x)}{z} = \frac{\partial y}{\partial x}
\]

(xv) Die Funktion y mit der Funktion x in \mathbb{R} als

\[
\frac{y}{x(z)} = \frac{\partial y}{\partial x}
\]

(xvi) Die Funktion y mit der Funktion x in \mathbb{R} als

\[
\frac{y(x)}{z} = \frac{\partial y}{\partial x}
\]

(xvii) Die Funktion y mit der Funktion x in \mathbb{R} als

\[
\frac{y}{x(z)} = \frac{\partial y}{\partial x}
\]

(xviii) Die Funktion y mit der Funktion x in \mathbb{R} als

\[
\frac{y(x)}{z} = \frac{\partial y}{\partial x}
\]

(xix) Die Funktion y mit der Funktion x in \mathbb{R} als

\[
\frac{y}{x(z)} = \frac{\partial y}{\partial x}
\]

(xx) Die Funktion y mit der Funktion x in \mathbb{R} als

\[
\frac{y(x)}{z} = \frac{\partial y}{\partial x}
\]

(xxi) Die Funktion y mit der Funktion x in \mathbb{R} als

\[
\frac{y}{x(z)} = \frac{\partial y}{\partial x}
\]

(xxii) Die Funktion y mit der Funktion x in \mathbb{R} als

\[
\frac{y(x)}{z} = \frac{\partial y}{\partial x}
\]

(xxiii) Die Funktion y mit der Funktion x in \mathbb{R} als

\[
\frac{y}{x(z)} = \frac{\partial y}{\partial x}
\]

(xxiv) Die Funktion y mit der Funktion x in \mathbb{R} als

\[
\frac{y(x)}{z} = \frac{\partial y}{\partial x}
\]

(xxx) Die Funktion y mit der Funktion x in \mathbb{R} als

\[
\frac{y}{x(z)} = \frac{\partial y}{\partial x}
\]

(xxiv) Die Funktion y mit der Funktion x in \mathbb{R} als

\[
\frac{y(x)}{z} = \frac{\partial y}{\partial x}
\]

(xxv) Die Funktion y mit der Funktion x in \mathbb{R} als

\[
\frac{y}{x(z)} = \frac{\partial y}{\partial x}
\]

(xxvi) Die Funktion y mit der Funktion x in \mathbb{R} als

\[
\frac{y(x)}{z} = \frac{\partial y}{\partial x}
\]

(xxvii) Die Funktion y mit der Funktion x in \mathbb{R} als

\[
\frac{y}{x(z)} = \frac{\partial y}{\partial x}
\]

(xxviii) Die Funktion y mit der Funktion x in \mathbb{R} als

\[
\frac{y(x)}{z} = \frac{\partial y}{\partial x}
\]

(xxix) Die Funktion y mit der Funktion x in \mathbb{R} als

\[
\frac{y}{x(z)} = \frac{\partial y}{\partial x}
\]

(30) Die Funktion y mit der Funktion x in \mathbb{R} als

\[
\frac{y}{x(z)} = \frac{\partial y}{\partial x}
\]